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A general model of gas-solid reactions in fluidized bed reactor presented in [8] is applied to coal 
gasification process. Numerical schemes and results of computations are presented for averaged 
isothermal and distributed isothermal models. Results are checked against laboratory measurements 
reported in [7]. 
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1. Introduction 

' The following paper represents a continuation of [8], where a model of gas-solid 
reactions in fluidized reactors has been propesed. Here we apply the model of [8] 
to a coal gasifier fed by pure high-temperature steam. 

Since the physical processes taking place in the fluidized bed have already 
been described in [8], here we shall only recall their final mathematical form. The 
chemical part of the model will be presented in more detail. 

As it is mentioned in [8], the full model of a reactor may be simplified in three 
ways: by space averaging, transition to stationary state and/or neglecting 
thermal effects. In this paper we consider two of these cases: 

averaged isothermal model, 
- distributed isothermal model. 

The data for numerical experiments originate from [7], where one can also 
find the results of measurements in laboratory installation. These results provide 
at least partial validation of the models used. 
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2. The model of steam-fed coal gasification reactor 

2.1. A full isothermal model 

Let us recall that the reactor consists of a vessel containing the fluidized bed 
together with 
- fluidizing gas (steam) distributor, 
- a feeder for injecting coal powder, 
- a gas outlet, 
- an outlet for removing partially reacted coal particles. 
In the bed one can discern two phases, the emulsion being the mixture of a gas 
with solid particles and the bubble phase containing only gases. Structure of such 
reactor is schematically shown in Fig. 1, together with location of coordinate axis 
used throughout the paper. In the model the following gaseous components are 
taken into account (numbers refer to the corresponding indices) 

1-CO 

The bubble phase is distinguished by the superscript h. the emulsion phase by e. 

----'l• gas outlet 

X 

H 

bed 

0 

steam ---

Fig. I. A l1uidized bed gasifier 

Among the reactions taking place in the bed the following five are considered 
to dominate the process, [7], [13]: 

k 
C+H2 0 ~CO+H2 

k, 
C+C02 -+2CO 

k, 
C+2H2 --+ CH4 
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It is assumed that no devolatisation or cracking occur in the reactor, i.e. it is 
fed with pure coal particles or the injected particles have been devolatilised 
previously. 

Kinetics of the chemical reactions is characterised in the usual Arrhenius 
form 

k;(1) = k?exp(-E; / RI). (1) 

In the emulsion phase all the above reactions take place simultaneously, while in 
bubble phase we have to do with reactions 4 and 5 only. Let us denote R ?, R r the 
intensities of generation for appropriate gases. Then we have: 
- for bubble phase: 

Rf = R{' = - Rb 

Rj = Rf = R b (2) 

R~ = 0, 
where 

- for emulsion phase: 

R3 = S(k1 C[- k3 C:f) +Re, (3) 

R4 = - Sk
1 
C4- Re, 

where 

The active surface of coal particles unit volume of emulsion phase may be 
expressed as 

S - A We 
- e HA (1- 6)' (4) 

where We - mass of the coal in the bed, and A e - active surface of the coal per 
unit weight. 
Ae is determined by the statistical distribution of coal particle sizes. 
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The last equation of the model describes the rate of coal consumption and has 
the form 

(5) 

Since the model we are considering is isothermal, this completes the description 
of its chemical part. It should be stressed here that in order to derive the above 
formulae it was neccessary to make many simplifications concerning e.g the 
orders of reactions, the number of reactions taking place etc.: for more detailed 
discussion see [13]. · 

The hydrodynamical part has been specified in [8] in detail. Here we only 
recall that the bed height H is computed by solving some nonlinear algebraic 
equation involving working parameters of the reactor, which may be written 
symbolically as 

(6) 

Having H, one can obtain the fraction b denoting the volume share of bubble 
phase, 

(7) 

After fixing H, we may formulate advection-diffusion equations describing the 
behaviour of gaseous components: 

~cb ::1 cb ~z cb 
u ; = be ; Dbu ; F (Cb Cb) Rb 
ot - u ox + i ox2 - be i - i + i' 

ocr 
ot 

ue oCf Djo2C1 b Fbe(Cb b) Ri ---+---+--- ; -C; +-, 
em! ox em! or . 1 - b emf . emf 

X E (0, H), t ) 0, 1, .. . ,5 
with boundary conditions: 

X= 0: C b_ DfoCf = C 
I b ~ l(). ' u uX 

Deocb 
ce- - 1

-
1 = cl().' i = 1, ... ,5 

I Ue OX 

X = H: 

ocr = o i = 1 5 ox ' , ... , 

and initial conditions for t = 0: 

Cf = Ci = CiO, i = 1, ... ,5. 

(8) 

(9) 
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Similarly to gases, the mass of the coal contained in the bed has a dynamics 
described by the equation 

dWe _ We 
---;Jt - W;n - W Wour - Re. (10) 

subject to initial condition W c (0) = Weo· 

2.2. Working regime 

As it is evident from (6), the height of the fluidized bed depends strongly on the 
mass of solids. Equations (8) have been written under the assumption that 
H = const., so thay may be applied only to the working regime in which the mass 
W is also kept constant. The only practical way to achive this is by using 
intensities of feeding (or removal) as control variables. Therefore we assume that 
the control system of reactor contains some sensors measuring the bed height, 
influencing via actuators the feeding rate. The rate of removal is assumed fixed . 
The sketch of such an installation is given in Fig.2. 

H 

bed 

Wout 

Fig.2. The control of reactor 

The overall aim of such a control system is to stabilise H at some value H .. 
The dynamics of H is neglected in this model. Such simplification allows us to 
determine the evolution of coal mass in the bed explicitly. Let us notice that the 
mass of the whole bed fulfils the equation: 

(11) 

Since W = const, one obtains 

---------
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After substitution into (10), the coal mass We satisfies the problem 

(12) 

Equation (12) may be easily integrated, giving: 

(I 3) 

f3 = w out I w. 

Even if initially the bed contains neutral particles, i.e. We
0 

;f. W, after some time 
they are replaced and We-Was t-oo. 

2.3. Evolution of particle population 

Let us recall briefly main features of the particle population model given in [8]. 
The bed contains spherical coal particles with radii satisfying r E (0, r

1110
). The 

normalising factor N0 is given by 

6W 
(14) 

The particle population is described by means of a normalised distribution of 
quantities of particles as function of radius, n (r, t), which must satisfy a condition 

rmax 
N0 J0 

n (r, t) dr = N e (t), 

where Ne(t)- a total number of coal particles in the bed at the moment t . 
The particles are being consumed while staying in reactor and the rate of 

shrinking is given as (see (5)): 

(15) 

The assumption that W = const. allows us to compute the feeding intensity, see 
(11): 

win (t) = 4 rr p V No CIGX n (r, t) r dr + wout• (16) 

Also the active surface of coal per unit volume of emulsion phase is easily 
obtained, 
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S() _ 4ITN0 J'max ( ) .. 7 d t - HA (1 _ b) 0 n r, t ,- r. (17) 

The complete model of particle population evolution takes on the form: 

(18) 

n (r, 0) = n0 (r),r E (0, rmaJ, 

with addition of equations (15) and (16). 
Relationships (15) and (17) link equation (18) with the dynamics of gas 

components. 

3. The averaged model 

3.1. Formal description 

· The averaged isothermal model results from integration of advection-diffusion 
equations with respect to x over the interval (0, H). Let the operator of averaging 
be defined as 

- 1 H 

(e ) = H So (e) dx (19) 

The right-hand sides expressions R 7, R r depend nonlinearly on concentrations, 
so they cannot be averaged directly. They are approximated by R7, R'! obtained 
by replacing original functions c~ (r, t) , c; (x, t) with averaged values c ~ (t), 
- e - b -e 
C;(t). The new expressions are denoted R; (t) , R;(t). After taking into account 
boundary conditions (9) one obtains from (8) the system of ordinary differential 
equations 

(20) 

-b - e . ci (O) = ci (O), z = 1, ... ,5. 
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The above equations are supplemented with the equation of particles evolution 
(18) and relations (15), (17). Since the bed height H may be computed only once 
before the start of the modef, and then stays constant, we assume it to be 
a parameter. 

The final form of a isothermal averaged model may be summarised as: 

dC - -dt = fl (C, n), 

on - on -o t = v(C)~ + fz (C, n), (21) 

with initial conditions 

C (0) C0 ,n (r, 0) = n0 (r), r E (0, r ma.J 

Here 

C(t) = (C{(t), C{(t), ... ,Ci(t), c;(t)) r, 

3.2. Solution method 

In the process of solving (21) every time step splits into two stages. In the first 
stage a new value of C is computed, for fixed n (r, t). Then, using a new vector C, 
the coefficients of transport equation describing evolution of n are calculated. 
Finally, a new value of n is obtained. Such solution strategy implied that onestep 
algorithms had to be used for ordinary differential equations as well as for the 
transport equation. 

For the system of ordinary differential equations the predictor-corrector 
method with additional correction to convergence has been applied. It is known, 
[11], that such method is unconditionally stable and equivalent to implicit 
scheme. It may be symbolically written down for a given time step dt in the 
following form: 
(i) perform twice the predictor-corrector operation 

Cr'~·l/3 : = et+ h (Cl, nt)dt, 

- -1-- --
C/lj.2/3 : = Ct + 2 [/1 (Ct, nt) + / 1 (C/\'-u3 , n1)] dt, 

1 - - - -
Cl'!;.l : = et+ 2u;_ (Cl, nt) + h (Ctt2 /3' nt)]dt (22) 
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(ii) repeat correction to convergence using Newton method for dC*: 

(23) 

dC* := dC*- r, 

until llell < e. 

(iii) compute corrected values: 

Here I denotes the unit matrix, and dh - jacobian of ft with respect to C1 . 

In principle, the step (i) alone guarantees the stabillity for the second order 
Adams-type method, [11]. Additional corrections (ii) do not change stability 
properties, but diminish the solution error. Matrices A and A - 1 are renewed only 
sporadically, when the iteration count in step (ii) exceeds certain given value, so 
their presence does not add much to the computation time. 

The transport equation for n (r, t) is solved by means of an implicit second 
order difference scheme, using the method of characteristics. The family of 
characteristics for such equation consists of curves R = R (t) satisfying 

dR - = -v 
dt 

(24) 

The method of characteristics is based on introducing a new function 

nR (t) = n (R (t), t). (25) 

The total time derivative of such function fulfils the relation 

DnR - on on 
Dt - - V or + at' 

and hence 

- - - ---------------
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DnR -- = !;_ (C, n (R (t), t)). 
Dt 

(26) 

The implicit second order difference scheme has been applied to (26) giving 

nR(t+dt)-nR(t) = 1\[f;\r+dr+f;\Jdt. (27) 

t-dt ------

0 

Fig.3. Characteristics for transport cq uation 

Let us now introduce a discretisation of the interval [0, r max], see Fig. 3. Let r; (t) 
be a curve satisfying (24) and crossing through point (r;, t). Denote 

n;(t) = n(r;(t), t), (28) 

and apply the scheme (27) to n; (t): 

n (r; (t), t) - n (r; (t - dt), t - dt) = 

1 - -
2[/; (C, n (r;(t), t)) + J;_ (C, n (r;(t- dt), t- dt))] dt 

Since 
f; (t - dt) ~ f; + V dt, 

the final difference equation has the form: 

n (r; (t), t) = n (r; + v dt, t- dt) + 

I - -+ 2 [fz (C, n (r;(t), t)) + !;_ (C, n (r; + v dt, t- dt))] dt, (29) 

i = 1, ... 'k. 
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In case when r; + v dt > r max it was assumed that n (r; + v dt, t- dt) := 0. 
Such an assumption allowed us to limit solution to the interval [0, rmaxL in spite 
of the fact that in principle the transport equation is defined on the whole axis 
rE (-oo , oo). 

Both methods described above were independently tested on known 
examples, especially with respect to their stability. 

3.3. Simulation results 

The numerical experiments have been performed for the reactor and conditions 
identical as in [7]. In this way there was a possibility to compare the results with 
experimental data. There is, however, an important difference. In [7] the coal 
particles were porous with active surface Ac = 200000m2 I kg, much bigger than 
that corresponding to smooth spherical particles. It was compensated for by 
increasing reactions frequency factors in such a way, that a powder consisting of 

spheres with uniform radii r = ~rmax reacted with the same intensity as porous 

particles. Such adjustement amounts to assuming that the active surface of 
porous particles is proportional to their outer surface, which is a rather rough 
approximation. 

For values of chemical parameters we refer the reader to [7]. The structural 
and working parameters of the experimental installation were as follows (for the 
meaning and units see Notation): 
D = 0.1, W = 0.973 , u'"1 = 0.1 , em1 = 0.43, D7 = 0.001, 
Df = 1000, T = 1000, u0 = 0.165, Wout = 0.1, C40 = 100% H 2 0 , 
rmax = 0.0003. 
The adjustement factor fork;, i = 1, 2, 3, resulting from the value of rmax given 
above was 2.5 · 104. The feeding powder consisted of particles with uniform radii 

03 1.0 3 10 30 100 200 

Fig.4. Composition or the outgoing gas 
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equal 0,9 r max· For the discretisation of(29) the interval [0, rmax] has been divided 
into 20 parts, while time step was variable. 

Two numerical experiments have been performed: 
1° At the start of simulation the bed contains only neutral particles. The processes 
are comparativley slow and a steady state is reached after about 200 s. 

2° The bed initially contains coal consisting of particles with uniform radii~ rmax· 

The processes are more abrupt, there are even traces of oscillations. The time of 
reaching a steady state is similar. Since this is a more interesting case, the history 
of concentrations for the outgoing gas are given in Fig.4, together with evolution 
of particle sizes distribution, Fig.S. A quasi logarithmic time scale is used, in 
order to give better resolution of fast initial phase. 

Fig.5. Evolution of particles 

The steady state concentrations are very similar for both cases. A comparison 
with [7] will be given in the last section. 
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4. Distributed isothermal model 

4.1. Formal description 

Let us notice that couplings between individual equations in system (8) enter only 
terms responsible for mass transfer through the interface between emulsion 
phase and bubble phase and in the righ-hand sides describing chemical reactions. 
Diffusion and advection processes are autonomous for each component. Hence 
(8) may be written in the form of the following nonlinear parabolic system: 

with boundary conditions: 

X= 0: 

X= H: aci = o ax , 

t = 0 : ci (x, 0) = Ci(), X E [0, H], 

i = 1,2, ... ,10. 

Here Czi-1 = Cf, c2i = er and similarly for Ui, Di, see (8). 

(30) 

(31) 

To complete the model, one must of course extend it with particle population 
dynamics (18). 

4.2. Solution method 

A specific form of the system (30) suggests convenience of solving it by so-called 
splitting into physical processes. Let us denote by Li a differential operator 

Then (30) may be discretised with respect to time in the following way: 

c ~ (t + dt) - ci (t) = (C- < ) ) dt gi t, n , 
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C;**(t) = c; (t + dt), (32) 

C;(t + dt)- C;** (t) •• . 
---'--'---d~t--- = L;(C; (t),n), 1 = 1, ... ,10. 

Adding the above equations gives the relation 

C;(t + dt)- C;(t) - •• 
dt = g;(C(t),n) + L;(C; (t) , n). 

Let us note that if functions g; are smooth enough, convergence 

L; (C,** (t), n) --+ L; (C; (t), n), 

as dt --+ 0 is ensured. It means that the system (32) is asymptotically equivalent to 
(30) and may be therefore used as its approximation. 

Solving the first of equations (32) consists in making one time step from t to 
t + dt for 

de: -
dt' = g;(C, n), i = 1, ... ,10, (33) 

with initial conditions 

c; (t) = C; (t). 

The algorithm for such problem has already been introduced in Section 3.2. 
The second part of the system (32) may be treated as realisation of time step 

from t to t + dt for equation 

ac -fu = L;(C;, n), i = 1, ... ,10, (34) 

with initial conditions 

C; (t) = C(* (t), i = 1, ... , 10. 

Equations in (34) are independent of each other and have the form 

(35) 
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with boundary conditions 

X= 0: 

X= H: 

oc 
uc - D ox = uC0 , 

oc = 0 ox ' 

165 

(36) 

For solving (35), (36) we shall use the finite difference method. Let us divide the 
interval [0, H] into l parts, 

Then we approximate the equation (35) by means of an unconditionally stable 
difference scheme [6], using notation C (i, k) = C (i · h, k · dt): 

C(i, k + 1)- C(i, k) + u ~ dt [ C(i, k + 1)- C(i- 1, k + 1)] + 

- D ~/t [ C(i- 1, k + 1)- 2C(i, k + 1) + C(i + 1, k + 1)] = 0. (37) 

for 1 < i < l + 1. After introducing notations 

a=u·dt jh, 

the system (37) reduces to 

- (a+ b) C (i- 1, k + 1) + (1 +a+ 2b) C (i, k + 1) - bC (i + 1, k + 1) 

= c (i, k), 

<i<l+l. (38) 

The first and last equations require taking into account the boundary conditions 
(36), what leads to 

(1 +a+ b) C (1, k + 1) - bC (2, k + 1) = C (1, k) + aC0 

- (a+ b) C (!, k + 1) + (1 +a+ b) C (! + 1, k+ 1) = C (! + 1, k) (39) 

------ - -
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As a result, from (38) and (39) one obtains a symmetric, positive definite 
tridiagonal linear system 

AC (k + 1) (40) 

- T - T where C (*) = (C1 (1, *), ... , C (l + 1, *)) , and C0 = (C0 0, ... , 0) . Such sys-
tem may be very effectively solved using for example Cholesky decomposition. 

In its final form the algorithm for distributed model may be outlined as 
follows: 
- for each point x;, i = 1 ,: .. , I+ 1 solve the system of ordinary differential 
equations (33) in (t, t + 1), 
- after taking the results of the former step as an initial condition solve the 
advection-diffussion equations (34), 
- solve the equation of particle population dynamics (21 ). 

4.3. Simulation results 

All the data for numerical experiments performed with distributed model were 
the same as in the case of the averaged one, described in Section 3.3. The interval 
[0, H] has been divided, for the discretisation of the advection-diffussion 

100% 

case 2 

3.0 10 

30 60 00 

eo 
CH 

30 

Fig.6. Composition oJ' outguing gases 



Fig. 7. Evolution of concentrations case I 

Fig. 8. Evolution of particle population 
[1 671 

case 2 
{scale 1•101 
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equation, into 10 parts. Because of the long computation time, the sequence of 
time moments used in the presentation of results has been shortened. Two 
simulation runs were executed, exactly as in Section 3.3. In the first the initial bed 
contens was neutral, in the second it consists of uniform spheres with radii 
0.5r max· Fig.6 shows the compositions of outgoing gases for both cases, while in 
Fig. 7 the evolution of hydrogen concentration is presented. The influence of 
initial bed reactivity is clearly visible. Fig.8 gives a comparison of particle 
population evolutions. 

5. Conclusions 

In order to check the results given by the models described in this paper, they 
were compared with laboratory results given in [7], as well as the mathematical 
model described there. The composition of gases leaving the reactor in each case 
are summarised in Table 1. Here 

I - chemical experiment [7], 
II - lumped model [7], 
Ill - averaged model, case 1, 

Table 1 

% I II Ill 

IV - distributed model, case 1, 
V - averaged model, case 2, 
VI - distributed model, case 2. 

IV V VI 
cu 12.4 15.5 10.5 9.5 10 9.4 
C02 24 22 23 18 23 18 
Hz 59.4 59.8 53 49 52 48 
CH4 3.1 1.6 0.9 0.9 0.7 0.7 

The results are not strictly comparable, because the model of the evolution of the 
active surface for coal particle is different here. Nevertheless, the agreement is 
quite satisfactory. Moreover, the present model makes it possible to simulate 
some additional phenomena like e.g. the start-up phase, the influence of the 
change in feed composition or temperature, and the transient states connected 
with them. A more sophisticated description of particle evolution may also be 
incorporated in the easy way. 

Let us notice that both averaged and distributed models give similar numbers 
and the more complicated simulation reveals some additional details. Construc­
ting such a consistent hierarchy of process descriptions is one of the ways of 
ensuring correctness of the simulation results. 
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Notation: 

A 
Ae 
et q 
D~. D~ 
E; 
Fbe 

Me 
n (r, t) 
No 
R 
R~, R~ 

Re 
s 
T 
ub. ue 

uo 
u,f 
V 

w 
We 
win•wout 
(j 
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Modelowanie matematycme iea.kcji gaz-cialo stale w przypadku zgazowania w~la w zlo:Zu tluidaJnym 

Og6lny model reakcji gaz-cialo stale przedstawiony w [ 8] zastosowano do procesu zgazowania 
w~gla w zlozu fluidalnym. Zaprezentowano schematy numeryczne i wyniki obliczen dla modeli 
usrednionego isotermicznego i rozlozonego isotermicznego. Wyniki por6wnano z pomiarami 
laboratoryjnymi zamieszczonymi w [ 7]. 

MaTeMaTnqecKoe MO,ll.eJinpooanne peaK~H ra3-TBep,ll.oe TeJio o cJiyqae ra3H$HK­
aQHH yr JIH B KHDHIQeM CJIOe 

IIpep;cTaBJieHHall B [ 8] 06Illall MO,ll;eJib peaK~HH ra3-TBepp;oe TeJIO npHMeHl!eTCll ,li;Jlll OTIHCaHHll 
npo~ecca ra3H<I>HKa~HH yrnll B KHTillllleM cnoe. IIpep;cTaBJieHbi qncneHHhie anropHTMbi H pe3yJibTa­
Tbi BblqHcJieHHH AJ!ll ycpep;HeHHOH H30TepMHqecKOH H pacnpep;eJieHHOH H30TepMHqecKOH MO,ll;eJieH. 
Pe3yJihTaThi cpaBHHBaFOTCll c na6opaTOpHbiMH H3MepeHHliMH, rrpep;cTaBJieHHbiMH B [ 7]. 


