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An exact on-line scheme for the Gauss-Newton iterative algorithm for the recursive generalized 
least-squares identification is proposed. Although in some sense close to the Newton-Raphson 
algorithm [ 5], it proves to behave considerably better in a number of cases. 

1. Introduction 

In recursive identification at each instant a new estimate of true parameters is 
required. In practice however, it is important that memory space and com
putation time does not increase with time. This makes it necessary to condense 
the data in certain way and imposes important restrictions upon algorithms. 
Computational difficulties caused that either the Newton-Raphson (N-R) 
algorithm for the recursive generalized least-squares (RGLS) identification 
considered in [2] and the Gauss-Newton (G-N) algorithm proposed in [3] and 
applied to the said problem use robust approximation of gradient and/or 
Hessian. 

In [5] a new variant of N-R algorithm for the RGLS identification was 
proposed. Instead of the said approximations it uses exact recursive formulas for 
gradient and Hessian thus leading to the improvement of identification accuracy. 

In this paper an exact recursive version of G-N algorithm is proposed. 
Numerical tests performed show that this algorithm in many cases gives better 
estimates than N-R algorithm. 
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2. RGLS Identification 

Consider the discrete time asymptotically stable system of the form 

t = 1, 2,... (la) 

where 

(1b) 

(le) 

(1d) 

and q- 1 is backward shift operator, i.e. q- 1 y (t) = y (t - 1), y (t) is a scalar 
output, u (t) - scalar input, e (t) is a zero mean white noise independent with 
u (t). 

The problem is to estimate the vector of true parameters 

ll* - ( * * b* b * * *] T u - at , ... ,a,a, 1 , ... , llb ' cl , . .. ,cllc 

using the observations u (t), y (t), (t = 1, 2, ... ). 
The off-line GLS algorithm which was introduced by Clarke ( 1] can be 

interpreted as the minimization with respect to f) of the following function (4] 

1 I 

v(t, fJ) = 2 k~1 e(k, fJ)2 (2a) 

and 

The structure of polynomials A (q - 1), B (q- 1) and C (q- 1) is the same as 
their counterparts in (1) and 

is the vector of their coefficients. 
The N -R algorithm can be interpreted as follows. Let f) (t - 1) be the estimate 

at timet - 1. By means of a Taylorexpansion of V(t, fJ) around fJ(t - 1), V(t, fJ) 
is approximated by 
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V(t,e) = V(t,e(t-1)) + w;u,ecr-1))]T [e-e(t-1)] + 

+ ~[e-ecr-1)]T v;'(t,e(t-1)) [e-e(t-1)] 

cv; (t,.) as well as all the gradients in the paper are column vectors). 
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(3) 

As a result of minimization of expression (3) with respect to e the new 
estimate is obtained 

e(t) = ecr-1)- w;'(t,e(t-1))]- 1 v; (t,e(t- 1)) (4) 

Formula (4) defines the general N-R algorithm. It can be put into recursive 
form in a way explained in [5], or using the approximating scheme given in [2]. 

Another common way of approximating V(t, e) is to exploit the idea of 
replacing s (k, e) in (2a) by its Taylor expansion around e (t- 1) 

s(k,e) ~ s(k,e(t-l))- [t/l(k,e(t-1))]T [e-e(t-1)] 

where t/1 (k, e) = -f,~ (k, e). 
This results in the following approximation 

1 I 

V(t, e)= 2 k~1 [s(k, e(t-1))-[t/J(k, e(t-1))JT[e-e(t-1)]]2 (5) 

The last expression is a function quadratic in e. It is minimized by 

. -1 

e(t) = e(t- 1) + [kt1 tjl(k, e(t- 1)) t/J(k, e(t- ))TJ 
I 

·I t/l(k, e(t-1))s(k,e(t-1)) 
k=1 

(6) 

The above algorithm is called Gauss-Newton (G-N) algorithm for nonlinear 
regression. In the next section it will be shown how e (t) can be recursively 
calculated. 

Notice that most often the following version of G-N algorithm is proposed 
(i.e. [3]) 

e(t) = e(t-1)+Lt
1 

t/J(k,e(t-1))1/;(k,e(t-))T]-1. 

tjl(k, e(t- 1)) s(k, e(t- 1)) (7) 
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Recursive version of (7) can be realized using the well known matrix inversion 
lemma. It turns out that the moderate difference in going from (7) to (6) makes 
important improvement in the' algorithm's behaviour. 

3. G-N algorithm 

To establish the main result let us introduce the following notation 

cp (t) = [-y (t- 1), ... , - y (t - na - ne), u (t- 1), .. . , u (t- nb - ne)F (8a) 

A (8) = 

R(t) = R(t - 1) + cp(t)cp(t)T R(O) = 0 

r(t) = r(t - 1) + cp(t)y(t) r(O) = 0 

r-
1 c .. 0 c 

1 . ne 

0 
1 c 0 

.. c 
1 ne 

1 c .. 0 c 
1 , ne 

0 

1 a .. ·a 
1 , lla 0 b .. 0 b 

1 . nb 

1 a .. ·a 
1 na 

-

a (8) = [cl, ... , cne' 0, ... , oy 
na + nb + 2ne 

b (8) = [al'" ' ' ana' bl'"'' bnb' 0, ... , ov 
na + nb +ne 

Then the theorem holds: 

(8b) 

(8c) 

-

-

(8e) 

(8f) 

(8g) 

THEOREM. Let 8 be any fixed vector. Then the componets of the algorithm (6) 
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I 

g(t, 8) = L t/f(k, 8(t - 1)) e(k, 8(t - 1)) 
k = 1 

and 

I 

H(t , 8) = L t/J(k, 8(t - 1)) t/J(k, 8(t - 1)) T 
k=1 

can be recursively computed using the following formulas: 

g(t,8) = A(&) (r(t) - R(t)x(8)) 

H(t,8) = A(8)R(t)AT(&) 

Proof. The function e (k, 8) can be rewritten as 

e(k, 8) = T(x(8)) 

where 

T(x) = y(k) - cpT(k-l)x 
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(9) 

(10) 

and x(8) given by (8g) is the vector of coefficients of A(q- 1) C(q - 1 ) and 
B(q - 1) C (q - 1). 

The gradient t/1 (k, 8) of - e (k, 8) is given by 

t/1 (k, 8) = A (8) grad T(x) = A (8) cp (k) 
X 

where A ( 8) is the transposed Jacobian matrix of the vector function x ( 8) (8g) 
with respect to e. It is easy to see that it is given by (8d). 
Now 

I 

H (t, e) = L t/1 (k, e (t)) t/1 (k, e (t)) T = A(&) R (t) AT (e) 
k=1 

and 

I 

g (t , 8) = I A (8) cp(k) (y (k) - cp T(k) x (8)) = A (8) (r (t) - R (t) x (8)) 
k= 1 

This ends the proof. • 
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This is clear that the formulas (8), (9) and (10) make it possible to evaluate the 
next estimate in a recursive mapner. The resulting one step of the algorithm 

H (t, e (t - 1)) /). (t) = g (t , e (t- 1)) (11a) 

e (t) = e (t- 1) + /). (t) (11 b) 

is in fact equivalent to the appropriate step of G-N stationary algorithm. Since 
the minimized function changes slightly in each instant both Hessian and 
gradient depend explicitly on t. This also constitutes the main difference between 
the stationary on-line G-N algorithm and the one described in the paper. 

Note that there is only a slight difference between the final form of the G-N 
(11) and the N-R [5] algorithms, but as it will be shown in the next section this 
difference has an important influence on the transient behaviours of the 
algorithms. 

4. Numerical example 

To compare the behaviours of G-N and N-R algorithms we have repeatedly 
tested them. 

The system simulated has the form (1) where 

and u (t) ~ N (0, 1) , e(t) ~ N (0, a2 ), a = 0.4 

To improve the convergence in initial iterations the algorithms are started up 
in the following way: for the first K instants the estimates of A* (q- 1 ) and 
B* (q- 1) are calculated via the recursive least-squares algorithm while the 
estimates of C* (q- 1 ) are assumed to be zero. R (t) and r ( t) are of course 
constantly updated. In addition 

A* (q - 1) = 1 - 1.5q-1 + 0.7q-2 , No = 70 for example 1 

I - 1.5q-1 + 0.7q - 2 , No = 60 for example 2 

1 + 1.5q-1 + 0.7q- 2 , No = 60 for example 3 

Several such tests were conducted. The typical results are given in Figs. 1, 2, 3. 
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5. Conclusions 

This paper presents an exact version of Gauss-Newton algorithm for the 
recursive generalized least-squares identification. As compared to the existing 
G-N algorithms [3] at each step it evaluates gradient and Hessian of (5) exactly 
instead of approximating it. A relationship with the exact version of New
ton-Raphson algorithm [5] is presented and their numerical comparioson is 
given. It appears that in most cases G-N algorithm is better than N-R being less 
vulnerable to the initial estimates. In some cases N-R algorithm doesn't converge 
due to the initial oscillations, while G-N algorithm doesn't converge due to the 
initial oscillations, while G-N algorithm does. When both algorithms converge 
a striking similarity of their behaviour is observed. 
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Por6wnanie algorytm6w Gaussa-Newtona i Newtona-Raphsona dla rekurencyjnej 
uog6lnionej najmniejszej sumy kwadrat6w 

Przedstawiono dokladnl! wersj~ algorytmu Gaussa-Newtona dla rekurencyjnej identyfikacji 
w sensie uog6lnionej najmniejszej sumy kwadrat6w. Przedstawiony algorytm jest w jakims sensie 
podobny do algorytmu Newtona-Raphsona zaproponowanego niedawno przez autor6w, jednak 
wykazuje znacznie lepsze wlasnosci numeryczne. 

Cpasueuue anropHTMOB raycca-HbiOTOHa H HbiOTOHa-Pa~coua ,r:t:JIH peKyppeHT
uoii · o6o6meuuoii uauMeHLmeii CJMMLI KBa,npaToB 

IIpe,n:cTaBJieH TO'!HblH aJITOpHTM raycca~HbiOTOHa ,n:Jil! peKyppeHTOHOH H,n:eHTH<fmKaiJ;HH 
B CMbiCJie 0606IIJ;eHHOH HaHMeHbWeH CyMMbi KBa,n:paTOB. flpe,n:CTaBJieHHbrn aJITOpHTM B KaKOM-TO 
CMbiCJie aHaJIOTH'ieH aJITopHTMY HbiOTOHa-Pa4JcoHa He,n:aBHO rrpe,n:JioJKeHHOMY aaTopaMH, o,n:HaKo 
OTJIH'!aeTCl! 3Ha'!HTeJibHO JIY'iWHMll. Bbl'iHCJIHTeJibHbiMH CBOHCTBaMH. 


