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i. Introduction

The Czochralski technique is one of the most popular
methods for the growth Iof high temperature semiconductor
monocrystals of large and medium diameters and good
microstructure (distribution of impurities, inner stresses
etc.).

A cylindrical crucible filled with molten
semiconductor material is slowly rotated and lifted, while
at the same time a vertical rod is rotated and slowly pulled
upwards in such a way that its lower end, equipped with
crystal seed, continuously touches the melt surface. An
appropriate heating of the crucible creates necessary
conditions for crystallization from the melt and crystal
formation around the seed. The latter strongly depends on
the position of the melt/solid interface (the phase change
surface) and on the melt/gas interface (the meniscus formed
by the melt touching the crystal walls).

Although the Czochralski crystal growth is a very slow
process, it still reguires a large gradient of temperature
(due to difference between the crucible and ambient). It
turns out that the heat transfer mechanism dominates all the
changes during the whole process duration, i.e. geometrical
change - melt volume fall, solidification, heat conduction,
thermal convection, Marangoni convection. It has been
observed that the above processes can be distinguished from
each other and, for the semiconductor materials studied
here, they refer to different time scales. The first two are
classified as long-time scale processes, while the other -
as short-time scale ones.

The main features of Czochralski process, similar to
other phase transition processes, are its instability and
irregular development in time, which give rise to dendritic
formation, over-stresses in the.crystal. non-uniform crystal
shape, etc. Better understanding of the process dynamics
would not only improve prediction of its evolution, but alsc
would show a way of controlling it. 1In practice, the main
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would show a way of controlling it. In practice, the main
problem, no matter to what extent the process is automatic,
is to choose an appropiate criterion or a - combination of
criteria by which the instabilities could be controlled.
Modern methods use crystal diameter monitoring during the
growth process and feedback control laws - some of the
process parameters such as pulling rate or heater power are
modified when the crystal diameter deviates from its desired
value.

The crystal radius deviatons are caused by melt volume
changes and by the solidification mechanism 1itself, hence
they are observed in the long-time scale. In turn, the
crystal ripples are due to the convective and turbulent
fluctuations in heat transfer and can be treated within the
short-time scale [4]. '

In this paper we propose a strategy for control of the
crystal radius exploiting a steady-state two-dimensional
model within the conduction time scale (when no geometrical
or solidification changes are observed and convection is
ignored). The dynamic control will be performed discretely

for different melt volume values, (some other geometrical
parameters, such as crystal length and three-phase
equilibrium curve, could also be used). The steady-state

model at a fixed melt volume is based on mass and energy
balance laws, with conduction dominating. The model is
formulated over a domain with free boundary (unknown crystal
length, meniscus shape, melt/crystal interface).

Section 2 contains the construction of a mathematical
model of the Czochralski crystal growth in dimensional
form. Various approaches are discussed for different time
" scales.

Section 3 contains an enthalpy formulation of the
classical steady-state Stefan problem. An approximation via
smoothing is proposed for the obtained problem.

The equation of capillary statics (determining
meniscus shape) and the energy balance equation with
smoothed coefficients are solved numerically by
finite-difference implicit schemes which are described in
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In section 5 an optimization problem is discussed in
the stationary case.The crucible temperature and the ambient
temperature are taken as control variables. An algorithm is
proposed for determining the constraint points and - the set
consisting of these points is approximated a posteriori.
From this approximation, forecasting of the constraint set
evolution can be obtalned for different melt volumes.

In section 6 results of the numerical experiments for
two different semiconductor materials - gallium arsenide and
germanium - are discussed.

2. Problem statement

We shall consider a cylindrical crystal of radius b
grown from a cylindrical crucible of radius a. The melt
volume is Voftl and the total mass of the melt and crystal
is M(t)-Mo. A cylindrical symmetry is adopted further and a
cylindrical coordinate system (r',9',2') 1is introduced.
Because we restrict ourselves to pure materials only, mass
transfer effects could be ignored.

Fig. 1 gives a schematic representation of our
prototype system where Glﬁt) denotes the melt region, Gztt}-
the crystal region, Po{t) - melt/crystal interface, Fl(tl -

melt/gas interface, F2(t) and F3{t) - melt (crucible)
boundaries, F4(t} and FS(t) - crystal walls exposed to the
ambient gas, r6(t) - symmetry axis. The outer normals to the
surfaces are nj{t) (i=0,6).

The governing equations of energy balance in both
regions are:

Pi Cpi

[ 95— +(U. 901 =9. (A, %) (2.1)
where i=1,2 - denote the melt and the crystal, respectively
(the notations are given in Appendix).

To the energy balance, Navier-Stokes equation. in the
Boussinesq approximation and the continuity equation are
added for the melt region Gj{t)
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R —-B-wvzu + Bgle-o_)e_ (2.2)

vu=20 (2.3)

At the phase change surface Fo{t)=z'=HB (r',t),
corresponding to the isotherm

®=9 , (2.4)
the mass and energy balance laws are:

aﬂb aHb
p,(U-—e).n, [ = (U - —=—)(n, .e_)| (2.5)
1 at o Pa p at o Z" 2
o O ;
A (n ve)|2= pzﬁf(ll _at ) {no.azl " (2.6)
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Fig.1l. Schematic illustration of Czochralski crystal growth
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The axial symmetry at r'=0 is expressed as:

B8 w0 (2.7)
ar’
Uniform heating is applied to the crucible walls:

e =8 ' (2.8)
cr

Cooling is performed by radiation and convection from the
crystal surface and from the melt surface to the ambient gas

. 4 4
-lj(nj.ﬂe}=a (e—ea}+eja(e —ea} (2.9)

J
The total length 1'(t) of the melt-crystal system is
defined from the mass conservation law

b
P V,(t) + 2Mp, j (1'-H)r' dr'=M, (2.10)
0

For our model the equation of capillary statics is
sufficient to determine the melt/gas interface
tht)zz =H}{r o

1 1
q(pi-paas){HI-T )=0m{ y + ) on Fl(tl {2.11)
x
1 2
with
BH} GH}
_ = ctg ¥ and — =0 (2.12)
ar’ 'r'=h ar’ r'=a

expressing the meniscus contact with the crystal at the
three-phase boundary with a prescribed angle ¥ (the change
of this angle causes changes in the crystal radius [2] and
its perpendicular contact with the crucible wall (in fact
this angle 1is slightly different, but it turns rather
difficult to measure it accurately). The unknown reference
value ¥’ is defined from the condition of the melt volume
preservation in the crucible
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b a
J' Hy r' dr' + j Hy r'dr'=v,(t) /20 (2.13)
) b

The continuity condition

Hyl oop = Hol pocp (2.14)

makes the problem overspecified. However, this does not
follow from any physical reason, but is a consequence of our
mathematical construction. In order to guarantee unigueness
of the solution, some of the process parameters have to be
considered as variables e.g. crystal radius, melt volume,
crucible temperature, ambient temperature, etc.

The initial conditions for wvelocity and temperature

are

u’ (?'.z'.0}=Ub (' ,2")

e'(r',z ,0)=e'(r, 2') ’ (2.15)
where Uo, 8y € CZ(G(OIJ-

As it has been mentioned in introduction, it |is
convenient to use multiple time scaling. With the following
character parameters; a - length, 11 - thermal conductivity,
em - tampariture, Ma —:nelt volume, pI - density, Py vl /a-
pressure, t - time , U - velocity, equations (2.1), (2.2),
(2.4), (2.6) in the dimensionless form (the primes being
dropped) are:

a ar 11

- [— +(V.V)T]= *v.{k_,vr) in Gi(r) {2.16)
t U at chpJaU

a oV vVp v 2 Bga ©

= m
—y w— (VM) Y - = e ¥ V+——2—-(T—1)e
tu a Ua Ua a %
in Gj{r) {2:47)

r=1 on TO(T} and (2.18)
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*
- P figal u, a 3H,
kj(no.VT]iz = (—== s ) (ny.e,) (2.19)

119m u tu ar

a

In the geometrical time scale, t*=t = Y 0{1045303,

g Up

_ p,c_.al U _a
U*=I}p"' o( 10 4cm/secl,Pep=-j—191—P << 1, Rep=——§-(< 1,

1
He ey
=B T > 1, Pe _S.0(1) when neglecting o( 1) .terms,
pi~nf 1 p
(2.16), (2.18), (2.19) reduce to!
V.[ij T)=0 (2.16")
1 9H,
kf(no.?T)[2= Peps (1—z;:1 (n,.e)) (219"
2
% a Hf pz
In the solidification time scale, for t =t ==——"_. 0ot ),
B JL1 9m 7

a.similar approach is available with a slight difference in

the right-hand side of the phase-change condition, which

BHO

then takes the form (PepS - ) (n.. ez}. In such a way,

o
art
the problem in both time scales remains quasistationary

(stationary equations in variable domain U G(t), where
T € [0,1]

Glv) = ({6, v) U G0 U_ (T (x))} ! te [0,1]1cE).
i=0,6 #

However, in the conduction time scale,

2
* 8 sy Py 2 x
t = tc = ~ 0 (10 “sec) and U = Up, the charac-
A
1

ter non-dimensional numbers are of the same order as in the
above case which leads to another form of equations (2.16),
t2.19)1
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ar
ar

= v.(ijT) (2.16"")

1_ ‘o
kl.(no.vr)[ = Pe, S(nye) on z=H, (r,0)=H,(r) (2.19"")

2 (0]
aH .
The last equation follows from (2.19) where = 0, due
ot

to S»>1.

So we have come to the fixed-domain case within the
conduction time scale (G = G (tj}. where T, is any discrete
time moment from the long-time scale). If all the data
entering equations and boundary conditions are kept fixed
during this short time, then with the above restrictions
(neglecting all the O(l)-terms in equations and in boundary
conditions) the temperature distribution satisfying
(2.16""), (2.19"") will be stationary and (2.16"') reduces

to, [11],

v .{kj v =20 (2.20)
As it is seen from (2.17'), convection has to be
o
treated in the convective time scale. t*=t - ~ O(1 sec),
cg ch

1/2

where U*=ch={89 a eml ~ 0 (1 cm/sec). However, in the

limits of the present approach the velocity does not affect
the temperature distribution and we are thus not going to
take it into account further. Then, we shall try to solve
(2.20), (2.19"") together with the remaining boundary
conditions (2.7) - (2.14) in dimensionless form:

AL o 0 onr=20 (2.77)
ar
T = Tcr on Tz u T3 (2.8°)

4 4
—kjtnj.VT) = BIJIT%TEJ + Ra_(T —Ta} on Fj.(j=1,4,5}

J
(2.9")

R

Vb+ 292101 I {1—Holrdr = Mb/plﬂa
0

3 (2.10")
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EO(HI— ) = dIVCHI on FI: z=H1{r) (21791 )
v
where C =
[1+le2]1/2
er.CHJ = cos ¥, on GFI. (i=1,2) (2.127)
where v, = M+p, ¥ 0, ari"IFI’ r=R, r=1}

R 1
IHor dr+Ile dr = V,/2 (2.13")
o R
H1= HO at r = R (2.14°)

3. Enthalpy formulation of the model

The further treatment of the above classical
stationary Stefan problem will be based on its generalized
formulation, in terms of the enthalpy function H(T) -
discontinuous and multivalued at T=1 [1], [2], [5]1, [81]:

{0 T< 1
H(T) = € [0,1] T=1
‘ ; i (3.1)

Then, the temperature function has to satisfy in G the

equation
PepS (ez.v JH = V(k¥T) (3.2)

where

k2 I<1
k() = {E [kz.k‘!] =1 (3.3)

kI ™1

On the singular surface Toz z=Ho(r} the conservation form of

(3.2) yvields exactly the boundary conditions (2.19"°) and
12.18), while away from TO in the melt and in the crystal
region (3.2) coincides with (2.20).
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The boundary I's U I'j is Lipschitz continuous almost
i=1,6
everywhere, except at the three-phase point (R.Hl{rl} where

the outer normal to I' does not exist (if the wetting angle
p#0). In order to completely determine I', a smoothing of the
boundary at this point is performed during the numerical
procedure. According to [6], [7], if the coefficients are
bounded in G, the problem has a unique solution in cz{é\ro)
and (2.19°°) holds on Fo in the integral sense. Moreover,
this solution is a strictly increasing function of the
boundary data Pip and T, (the maximum principle is valid for
(2.20)). Here we are going to apply the numerical technique
given in [9], which 1is based on the construction of a
smoothed counterpart of (3.2) dependent on some parameter

at, such that k(T)=1lim k(T,At},
A —o
it
H(T)=1lim H{T.Atl. where k(T.at} and H(T,ﬁt) has the form:

Af»u
91 Tsl—At

Q{T,ﬁt) = { h{T) l—atSTKHAt (3.4)
92 T>14A

t

with ¢ 9 being constants and h(T) € S (R).
4. Numerical methods

In order to solve (3.2) with (3.4), (2.7°)-(2.13")
(the way of accounting condition (2.14") will be discussed
in the next section) we shall define the current domain G by
an iterative scheme.

The one-dimensional quasilinear equation of capillary
statics (2.11') in terms of H/H ¥:

1
N * 1/2
wix - TZ =0, x€ [ R, Bo ] (4.1)
*f
x okt XH
WI{X’H.I'HI} . *'2 1,2
{1+H1 )

*

* *
TZ{X,HI,HI ) = XHI
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R =rBo?’?
The boundary conditions (2.12"):
*
¥ | * =-R cos ¥
g (4.2)
?1|x=30112 =0

and y is obtained from (2.13").
A non-1linear finite-difference scheme over a

1/2

non-uniform grid ;=[Rr=xo,x1....,xL=Bo } is applied to

(4.1); the scheme is linearized by the simple iteration
method of the implicit type, resulting in the system of
equations

Yer 17 ¥k

B '-——_Ec— +¢Yk=f. (k=0,1,...), (4.3)

v, H (Jc). where y, is the grid function, ©_, is the
iteration parameter, B and # are difference operators [10].
Equations (4.3) are solved by the Gaussian elimination
method. 71 and Tz are continuously differentiable with

* *x !
respect to Hl and HI' The error and the iteration number

estimations independent of the grid parameters are shown in
[10].

The thermal problem (3.2), (3.4), (2.7°)-(2.9") is
solved numerically by a fully implicit conservative

finite-difference scheme. A space grid o={w X o .1 is

nl n?
introduced in the region G. Let the grid functions
u={ujj]€H(5} be defined. This stationary problem is treated
as a limit of an appropriate nonstationary problem (with
boundary conditions constant in time) when time tends to
infinity and the method of fractional steps is used
involving an implicit difference scheme for both geometrical

directions:
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u - u” e o
=A,u +A,u (4.4)
0.5t
t
nl -
u oy O =
- AI T AZ nt+l
0.5t
t
where T, is a fictitious time step, n=0,1,... The solutions
u? converge to wu in the norm HIML when n—x, An
2
integral-interpolation method is used in order to
approximate the nonlinear operators 21 and 22 with
order O(hjax} and at every fictitious time step a
linearization by the simple iteration method 1is applied
[91, [11]. The iteration procedure in each of the two

directions is continued till the relative difference between
two successive iterations in ﬂ-ﬁc becomes of O(héax}~order.
Again the Gaussian elimination is applied.

Here the crystal radius R, the melt volume Vb. the
crucible temperature Tcr and the ambient temperature Ta are
assumed fixed. An outline of the solution algorithm is as
follows:

1) The meniscus shape 1is calculated from (2.11°),
(2,42

2) The melt/crystal interface is set Ho{rJBHI{R);

3) y is defined from (2.13");

4) The height I is determined from (2.10");

5) The temperature field is calculated from (3.2),
(3.4), (2.7°)=(2.9% )%

6) The position of FO is redefined as the isotherm T=1
and the melt region wvolume is recalculated. Using the
former H,(r), a new Ho(r)=HO(r)+(H1(R}—HO(R)) is set. Then
return to 3) and the iterative process is continued until
the melt wvolume ?b is achieved with an absolute error
~ O(hmax]‘

The idea of the algorithm consists in 1lifting or
falling of the crucible height when the recalculated melt

volume is larger or less than 56. If the crucible height is
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lifted then the heat flow through the crucible walls will be
increased. In this case, because the temperature function in
the melt region is an increasing function w.r.t. Tcr or the
heat flow through the crucible walls, it follows that the
melt region volume will be lifted up, too. It occurs, that
the sequence of the absolute values of crucible height
changes is monotonously decreasing, which confirms the

convergence of the proposed algoritm.
5. Optimization model

As it has been shown in section 2 some of the process
parameters have to be treated as variable; with this we
shall look for a solution that satisfies (2.14"), too. Here
we restrict ourselves only to the crucible temperature Tcr
and ambient temperature Ta as unknowns, while the c¢rystal
radius R, the wetting angle w, etc. are assumed fixed and
the change of the melt volume (or system height) corresponds
to different discrete times from the long-time scale
interval. A suitable, for practical purposes, choice of the
values of unknowns would be given by solutions of the
optimization problem including (2.14°") as an additional
constraint.

We introduce a k-dimensional vector p=(p1.p2,....pkl €
Lg (I') as a control function with the unknown parameters as
its components, and the cost functional

I(p) = | p—p*ﬂi Eirs (5.1)
2
where p* is a given k-dimensional vector € Lg{r).

The optimization problem we are going to consider is
to minimize I(p) over p, subject to T(r,z,p) being solution
of (3.2), (3.4), (2.7")-(2,13") and (2.14") in the form:

F(p) = Fj(p) = T(R.HI{R)rp] - 1 =0 (5.2)

Let us recall that the constraint vector function F(p)
consists of more than one element, if some additional
restrictions are imposed on temperature (e.g. . some
distributions of temperature on the boundary or on some part
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of it, some temperature gradient distributions in the domain
G\I', etc.). Of course these constraints could be added to
the cost functional with appropriate weight coefficients
[8l.

Because p and p* are vectors with components active on
op ON TI=r U T,
), on the remaining parts of I we

different parts of T (e.g. in our case p=T
- 2_
pz—ra on T —FJ u F4 1] FS
shall define them as vanishing. The model can be simplified
* *
in the case where Tcr and p, are constant on r‘. TE and p,

are constant on Tz. Then (5.1) is transformed into

) = (oo % wrh + (ppyZur? (5.1°)
where ytrjl is the Lebesgue measure of I‘j in T.

We have to find a solution of the optimization problem
in £ - a k-dimensional cube :={{p}: p€ [p, p 1}, where p
and p are the lower and the upper boundaries of p. -

If Q:=0, where Q!QICE :’f}=0. then the optimlzatifn
problem has no solution. If p €0, then the solution is p=p .

We are going to construct an algorithm for determining
Q, based on the dichotomic line-search using the properties
of temperature distribution shown in section 3.

In case of two wvariable parameters the set Q is
approximated linearly by the least-squares method. The

obtained line ! corresponding to @, is such that |F(p)|se

ol
2
on it, where ¢ is of order O(h max}‘ Then the solution p of

the optimization problem exists and satisfies the relation

-vI(p) =anj(;) at i=0, where n is a coefficient and

bys Fg*0 (5.3)

In order to follow the evolution of the constraint set
as well as that of the optimal solution at different melt

volumes ?j (for different discrete times from the long time
scale), it turns out useful to introduce the parametrization

1,0 tp=p° + st + £V VOB, 0=0,1,... (5.4)

where s € R , f{ﬁo— Fjl is a function of [?b—?I), t and 7
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are the unit tangent and normal vectors to IO, respectively.
The representation (5.4) describes a one-parameter family of

parallel lines and it turns out convenient to take f(ﬁb —?jl

linear:

(V.~-V.) with a ~const. (5.5)

6. Numerical results and discussion

Based on the algorithms given in sections 4-5, a
computer realization was implemented on IBM PC-AT.
Calculations were performed for two semiconductor materials:
Ge and GaAs.

All the physical and geometrical parameters for the
two matérials are given in the Appendix. The geometrical
mesh sizes are h_. ~ 5.10°%, h .~ 10 3and the remaining

min max ~1 2 -3
parameters are: t©,” 0(h ¥ T ~ 10 °, L~ 0(10%), €710 -,

g t min c
ALY 10 7.

t
In the GaAs and Ge cases, the crystal radius is fixed

- R=0.75 and 5b=1. 31=0.5 and Eé=0.3 are taken as ?j, and

p~1.01, 51=1.1. p,=0.85, 52=0.99—as parameters boundaries.

In Fig.2 and Fig 4 the line of approximated constraint IO
and its propagation due to (5.4) are shown for both cases.
If for GaAs and Ge case p* are csnstant for diffarent*?j and
have the corresponding values p =(1.067, 0.954), p =(1.04,
0.954), then the optimal solutions are ;(ib)=(1.043. 0.94)
and ptVb)={1.01&, 0.95). From the parametrization (5.4)

the solutions for different ?i are p(?l} = (1.039, 0.933),

; ?é}=[1.035.0.93] in the first case and ;(§E)=(1.013,0.949).

,;(ﬁé}=[1.01,0.948} in the second case.

These points are marked with asterisks and the isotherms
related to them are plotted (Fig. 3a,b,c and Fig.
5a,b,c.).The isotherms are incremented by 11°k.
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The above results are derived for the propagation
(5.4) approximated by a family of parallel lines

a ~0,024, n'=(-0.803, -0.596) (for the GaAs case) and

a 0,011, n =(-0.979, -0.202) (for the Ge case).

0,95

0.9

Ter
Fig. 2. Constraint set and optimal solution propagation for

ﬁj, i=0,1,2 in the GaAs case
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The numerical experiments performed for other values

of the crystal radius show that the space in the cube EGaAs

and in EGe is decomposed into two half-spaces: E+ and I
corresponding to such pef for which the temperature is
calculated at (R>0.75, ﬁb=1l or (R=0.75, Eb<1) and at

(R<0.75, ﬁbﬁl) or {R=0.75, 3b>1), respectively (Fig.2,
Fig.4). The difference between the two materials (GaAs and
Ge) is evident - the lower conductivity of GaAs leads to
higher Bi and Ra and this explains the GaAs tendency to
create thicker crystals. This tendency is confirmed by the

results obtained in [3], [4] using finite element
techniques.

Fig. 3. Temperature distribution of the optimal solution
points for the GaAs case
a)Tcr=1.048, Ta=0.94, R=0.75, Ebal
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b) Ter=1.039, Ta=0.933, R=0.75, v1=u_5

c)Tcr=1.035, Ta=0.93, R=0.75, V,=0.3

The optimal propagation model based on the solution of
the stationary Stefan problem for discrete times over fixed
domain which we have considered, yields prediction of the
temperature distribution as well as contributes to
constant-radius control through discrete changes of the melt
volume. This model could be used as a starting point to a
more comprehensive one, including convection, some
improvements on the boundary conditions that correspond to
a more realistic technological situation, impurities
distribution, surface tension on the phase change boundary,

etc.

The author would like to express her gratitude to
M.Niezgdédka (Systems Research Institute, Polish Academy of

Sciences,.  Warsaw) for his valuable comments and suggestions.
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T, §
0.99
vO=1
P !1 =O.5
—— - 7230.3
»
0,95
0.9

1.05 1¢1 Top

Fig.4. Constraint set and optimal solution propagation for

91, i=0,1,2 in the Ge case
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b)
2.5[
a) |
2.0 2,0 | 2.0[
1.5 L 1.5[
w0l ™= 1.0 isail
0.5 |
0.0 .
0.0 0.5

Fig.5. Temperature distribution of the optimal solution
points for the Ge case

a)Ter=1.018, Ta=0.95, R=0.75, iro=1

b)Ter=1.013, Ta=0.949, R=0.75,l_’1=0.5

c)Ter=1.01, Ta=0.948, R=0.75, irz=o.3
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notations Used values

- crucible radius [cm] =5 cm

- Biot number for Fj =0.025(GaAs) ;0.0042(Ge)
- Bond number =370(GaAs) ;225(Ge)

heat capacity [J/g °r1

unit coordinate vectors

gravitational constant [cm/seczl

grid steps in r, z direction

heat of fusion [J/g]

thermal conductivity k2=0.5{GaAsi;0.338{Ge)
ratio k1=1

total mass [g] =3468(GaAs) ;3340(Ge)
pressure [¢/cm sec2]

=0.1(GaRAs,Ge)

dimensionless crystal radius

radiation number for Pj =0.4(GaAs);0.14147(Ge)
time [sec]

dimensionless temperature

velocity vector

crystal pull rate [cm/sec]

dimensionless velocity vector

dimensionless melt volume

‘melt volume [cm3]

heat transfer coefficient for Fj[HVsz OK]

volume expansion coefficient [1/deg]
principal curvature radii

thermal conductivity [W/cm °KI

melt viscositg [Cm215903

]

melt surface tension [dyn/cm]

density [g/cm

2 0.4

Stefan-Boltzmann constant [W/cm K']

emissivity of surface Tj
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- temperature (°K

e
ea - ambient temperature [°K]

B e - crucible temperature (°x1

em - melting temperature (°k =151é°K(GaAs):é210°K(Gel
P - equilibrium wetting angle = 15 (GaAs); 8 (Ge)

T - dimensionless time
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30 S.5.TABACOVA

O DWUWYMIAROWYM MODELOWANIU NUMERYCZNYM PROCESOW TECHNICZ-
NYCH W PROCESIE WZROSTU KRYSZTALU CZOCHRALSKIEGO ZE STOPIO-
NEJ MASY

W pracy przedstawiono dwuwymiarowy stacjonarny model
matematyczny, oparty przede wszystkim na przewodzeniu
ciepta: proceséw cieplno-kapilarnych wzrostu krysztatu
Czochralskiego. Na podstawie tego modelu sformulowano
zadanie optymalizacji. Temperatury: naczynia i otoczenia sa
uzywane jako parametry sterujace. Funkcjonal kosztu zalezZny
od wektora sterowan ma postaé¢ kwadratowa. Warunek stalego
promieniowania krysztalu stanowi dodatkowe ograniczenie.
Wyznaczono ‘rozwiazanie optymalne i warunki ograniczen dla
réznych dyskretnych objetosci stopionej masy. Eksperymenty
numeryczne 2zostaly przeprowadzone dla dwéch réznych
materiatéow poéiprzewodnikowych.

O NBYXMEPHOM YHCIIEHHOM MOJENHPOBAHWH TEXHHYECKHX NMPOLECCOB
B MPOLECCE POCTA KPHCTANNA YOXPANbCKOT'O H3 NNABIKERCY MACCH

B pabore npepcTasneHa OByxmnepHas CTalKWoOHApHad
maTenaTHyeckas Mopenb, OCHOBAHHAs#i Ha TENNONpPOBOOMMOCTH:
TEeNnno-KanknipHHX npoueccoB pocTa kpucranna Yoxpanbckoro. Ha
OCHOBE 3TOR MoOOenH dbopnynupyercs sapasa ONTHHHBALNK.
TennepaTyps: cocyma W oOKpyxapbued cpefgM HCNONb3YDTCH B
KayecTBe napaneTpos ynpaBneHns. dyHKUHOHAT saTpar,
3aBHCAMHRA oT BeKkTopa ynpaBneHHu# HHeerT KBaOpaTHNA
Bua. Ycnoeue NOCTOAHHOr O paguyca KpucTanna ABpnaeTcs
NONONHHTENbHHN OrpaHHYeHHEeM [Nd PasHNX [OHCKPEeTHHX o06benos
nnapamedcs Macch. YHCNEeHHHEe 3KCNepHMeHTH NPOBOOKWNMCD® AONd
ABYX PpasHHX NONYNPOBOOHHKOBHX MATEpPHANOB.




