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A stationary two-dimensional heat conduction 
dominated mathematical model of the thermo-cap­
illary processes in Czochralski crystal growth 
is developed. On its basis, an optimization 
problem is formulated. The crucible and the 
ambient temperatures are used as control 
parameters. A cost functional depending on the 
control vector is assumed in the quadratic 
form. Constant crystal radius condition is 
taken as an additional constraint. An optimal 
solution and constraint set propagation for 
different discrete melt volumes are determined. 
Numerical experiments were performed for 
gallium arsenide and germanium crystals as 

. test materials. 
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1. Introduction 

The Czochralski technique is one of the most popular 

methods for the growth of high temperature semiconductor 

monocrystals of large and medium diameters and good 

microstructure (distribution of impurities, 

etc. l. 

inner stresses, 

A cylindrical crucible filled 

semiconductor material is slowly rotated and 

with · mol ten 

1 i f t ed , wh i 1 e 

at the same time a vertical rod is rotated and slowly pulled 
upwards in such a way that its lower end, equipped with 

crystal seed, continuously touches the melt surface. An 

appropriate heating of the crucible creates necessary 

conditions for crystallization from the melt and crystal 

formation around the seed. The latter strongly 

the position of the melt/solid interface (the 

depends on 
phase 

~urfacel and on the melt/gas interface (the meniscus 

by the melt touching the crystal walls). 

change 

formed 

Although the Czochralski crystal growth is a very slow 

process, it still requires a large gradient of temperature 

(due to difference between the crucible and ambient). It 

turns out that the heat transfer mechanism dominates all the 

changes during the whole process duration, i.e. geometrical 
change- melt volume fall, solidification, heat conduction, 

thermal convection, Marangoni convection. It has been 

observed that the above processes can be distinguished from 

each other and, for the semiconductor materials studied 

here, they refer to different time scales. The first two are 

classified as long-time scale processes, while the other 

as short-time scale onss. 

The main features of Czochralski process, similar to 

other phase transition processes, are its instability and 

irregular development in time, which give rise to dendritic 

formation, over-stresses in the crystal, non-uniform crystal 

shape, etc. Better understanding of the process dynamics 

would not only improve prediction of its evolution, but also 

would show a way of controlling it. In practice, the main 
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would show a way of controlling it. In practice, the main 

problem, no matter to what extent the process is automatic, 

is to choose an appropiate criterion or a ·combination of 

criteria by which the instabilities could be controlled. 

Modern methods use crystal diameter monitoring during the 

growth process and feedback control laws some of the 

process parameters such as pulling rate or heater power are 

modified when the crystal diameter deviates from its desired 

value. 
The crystal radius deviatons are caused by melt volume 

changes and by the solidification mechanism itself, hence 

they are observed in the long-time scale. In turn, 'the 

crystal ripples are due to the convective and turbulent 

fluctuations in heat transfer and can be treated within the 

short-time scale [4]. 

In this paper we propose a strategy for control of the 

crystal radius exploiting a steady-state two-dimensional 

model within the conduction time scale (when no geometrical 

or solidification changes are observed and convection is 
ignored). The dynamic control will be performed 

for different melt volume values, (some other 

parameters, such as crystal length and 

equilibrium curve, could also be used). The 

discretely 

geometrical 

three-phase 

steady-state 

model at a fixed melt volume is based on mass and energy 

balance laws, with conduction dominating. The model is 
formulated over a domain with free boundary (unknown crystal 

length, meniscus shape, melt/crystal interface). 

Section 2 contains the construc~ion of a mathematical 

model of the Czochralski crystal growth in dimensional 

form. Various approaches are discussed for different time 

scales. 

Section 3 contains an enthalpy formulation · of the 

classical steady-state Stefan _problem. An approximation via 

smoothing is proposed for the obtained problem. 

The equation of capillary statics (determining 

meniscus shape) and the energy balance equation with 

smoothed coefficients are solved numerically by 

finite-difference implicit schemes which are described in 
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In section 5 an optimization problem is discussed in 

the stationary case.The crucible temperatu~e and the ambient 

temperature are taken as control variables. An algorithm is 

proposed for determining the constraint points and· the set 

consisting of these points is approximated a posteriori. 

From this approximation, forecasting of the constraint set 

evolution can be obtained for different melt volumes. 

In section 6 results of the numerical experiments for 

two different semiconductor materials - gallium arsenide and 

germanium - are discuss.ed. 

2. Problem statement 

We shall consider a cylindrical crystal of radius b 
grown from a cylindrical crucible of radius a. The melt 

volume is v0 Ctl and the total mass of the melt and crystal 

is M(t)•M0 . A cylindrical symmetry is adopted further and a 

cylindrical coordinate system (r' .~· ,z') is introduced. 

Because we restrict ourselves to pure materials only, mass 

transfer effects could be ignored. 

Fig. 1 gives a schematic representation of our 

prototype system where a1Ctl denotes the melt region, a2 Ctl­

the crystal region, r 0 (t) -melt/crystal interface, r 1Ctl 
melt/gas interface, r 2c-tl and r 3c tl melt (crucible) 

boundaries, r 4Ctl and r 5 Ctl- crystal walls exposed to the 

ambient gas, r 6ctl -symmetry axis. The outer normals to the 
surfaces are n

1
Ctl {i=0,6l. 

The governing equations of energy balance in both 

regions are: 
ae 
1ft + (U. V')e l = v. C'A

1 
vel ( 2. 1) 

where 1=1,2 - denote the melt . and the crystal, respectively 

(the notations are given in Appendix). 

To the energy balance, Navier-Stokes equation . in the 

Boussinesq approximation and the continuity equation are 

added for the melt region a
1
c tl : 
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VU= 0 

At the phase change surface f 0 ( t) :z'=H~ (r', t), 

corresponding to the isotherm 

e = em , 
the mass and energy balance laws are: 

oH' 
p (U - --0-l ( n' . e

2
) 1

2 2 P at o 

RADIATION AND CONVECTION 
z' 
1' 11 f5 ...... ---:-----=----, 

Latent 

r4 
---t c) RADIATION AND CONV:EDTION 

CRUCIBLE 
TEMPERATURE 

11 

( 2. 2) 

( 2. 3) 

( 2. 4) 

( 2 . 5) 

( 2. 6) 

Fig.l. Schematic illustration of Czochralski crystal growth 
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The axial sy~~etry at r'=O is expressed as: 

oe 
-- = 0 ( 2. 7) 
or' 

Uniform heating is applied to the crucible walls: 

e = e 
er 

( 2. 8) 

Cooling is performed by radiation and convection from the 

crystal surface and from the melt surface to the ambient gas 

( 2. 9) 

The total length ]'( t) of the melt-crystal system is 

defined from the mass conservation law 

b 

p 1v0 <tl + 2llp 2 J (J'-H0Jr'dr'=M0 
0 

( 2. 10) 

For our model the equation of capillary statics is 

sufficient to determine the melt/gas interface 

r 1 ( t l : z' = HJ. ( r' I t l I 

1 1 
<J(P -p l CH' -r' )=a ( -- + -- l on 

1 gas 1 m x x 
1 2 

( 2. 11) 

with 

oH' I 
--

1 = ctQ 1/J 
or' r'=b 

and o}{1 I 
=0 

or'· r'=a 
( 2. 12) 

expressing the meniscus contact with the crystal at the 

three-phase boundary with a prescribed angle 1/J (the change 

of this angle causes changes in the crystal radius [2] and 

its perpendicular contact with the crucible wall (in fact 

this angle is slightly different, but it · turns rather 

difficult to measure it accurately). The unknown reference 

value r' is defined fro~ the condition of the melt volume 

preservation in the crucible 
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b a 

J H' 
0 

r' dr' + J HJ. ·r' dr'=v0 c tl 12n (2 • 13) 

0 b 

The continuity condition 

( 2. 14) 

makes the problem overspecified . However, this does not 

follow from any physical reason, but is a consequence of our 

mathematical construction. In order to guarantee uniqueness 
of the solution, some of the process parameters have to be 

considered as variables e.g. crystal radius, melt volume, 

crucible temperature, ambient temperature, etc . 

The initial conditions for velocity and temperature 

are 

u· er· ,z' ,Ol=U0 er' ,z' l 

a' (r' ,z' ,O)=e' (r', z') ( 2. 15) 

where U
0

, e0 E c?c G( 0)). 

As it has been mentioned in introduction, it is 

convenient to use multiple time scaling. With the following 

character parameters: a- length, 1 1 - thermal conductivity, 
3 * a - temperature, na -melt volume, p 1 - density, p

1 
vU la-

m * * pressure, t -time, U -velocity, equations (2.1l, (2.2), 

(2 . 4), (2.6) in the dimensionless form (the primes being 

dropped) are: 

d oT 1 1 --,*--:-*. [- + (V. V) T] =---=--*.V. ( k 
1
VT) in G i ('r:) 

t U 81: p 1cp
1
au 

( 2. 16) 

a ov vvp v 
2 

f3<;a a m 
* * . -- + ( V. V) V = - -*-- + -*- V V+ 2 ( T- 1) e Z 

t u 81: u a u a u* 

( 2. 17) 

T = 1 on and ( 2. 18) 
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( 2. 19) 

"' a 4 In the geometrical time scale, t =t =- - 0( 10 sec), 
9 uP 

"' _4 p 1cp 1aup ~a 
U =up- 0(10 cm/secl,Pep= ~ << 1, Re= << 1, 

"1 p V 

» 1, Peps_o( 1l when neglecting o( 1) .terms, 

(2.16), (2.18), (2.19) reduce to: 

V. (k.V T)=O (2.16') 
1 

"' In the solidification tlma scale, for t =t s 

( 2. 19') 

a .slmilar approach is available with a slight difference in 

the right-han-d side of the phase-change condition, which 
BH

0 then takes the form (PePS - --- l ( n
0

. e
2

l. In such a way, 
a. 

the problem in both time scales remains quasistationary 

(stationary equations in variable domain U G("L), where 
L E [ 0 I 1 J 

However, in the conduction time scale, 

2 

"' t = t c 
a cp1 P 1 

_ 0 (10 2secl and U * charac-
A.1 

ter non-dimensional numbers are of the same order as in the 
above case which leads to another form of equations (2.16), 

( 2. 19): 
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(2.16") 

k . < n0 . v Tl I 1 
1 2 

(2.19") 

oH
0 The last equation follows from (2 . 19) where---= 0, due 

to S» 1. 
a-r 

So we have come to the fixed-domain case within the 

conduction time scale CG = G <• 1 >, where "J is any 
time moment from the long-time scale) . If all 

discrete 
the data 

enteri~g equations and boundary conditions are kept fixed 

during this short time, then with the above restrictions 

(neglecting all the 0(1)-terms in equations and in boundary 

conditions) the temperature distribution satisfying 

(2.16"), (2.19") will be stationary and (2.16") reduces 

to I [ llJ I 

V • (k. V T) = 0 
1 

(2.20) 

As it is seen from (2.17'), convection has to be 

treated in the convective time 

* t/2 where U =U
09

=CP9 a em) - 0 ( 1 

* <X 
scale. t =t

09
=-u-- _ 

C9 
cm/sec). However, 

0( 1 sec), 

in the 

limits of the present approach the velocity does not affect 

the temperature distribution and we are thus not going to 

take Lt into account further. Then, we shall try to solve 
(2.20), (2.19") together with the remaininq 

conditions (2.7) - (2.14) in dimensionless form: 

oT 
or 

0 on r 0 

T = Tcr on r 
2 

u r 
3 

R 

v0+ 2P/P 1 J < 1-H0 lrdr 

0 

boundary 

( 2. 7') 

( 2. 8') 

( 2. 9') 

( 2. 10') 
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Bo(HF ll = divCH1 on r 1: z=H1(rl ( 2. 11') 

'il 
where c = 

[l+lvl21112 

er.cH1 = cos '~'t on ar 11 ( i= 112) ( 2. 12') 

where 111 1 = fl+W1 lP = 0 2 I ar {=If 1: r=RI r=ll 

R 1 

I Hcf dr + I H1r dr = v0
12 ( 2. 13') 

0 R 

H1= Ho at r R ( 2. 14.) 

3. Enthalpy formulation or the model 

The further treatment of the above classical 

stationary Stefan problem will be based on its generalized 
formulation, in terms of the enthalpy function HIT) 

discontinuousandmultivaluedat 7'=1 [1], [2], [5], [8]: 

H( T) = { : [ 0 , 1] 
T< 1 
7'=1 
T>1 ( 3. 1) 

-
Then, the temperature function has to satisfy in G the 

equation 

Peps (e
2

.V lH = 'ii(KVT) ( 3. 2) 

where 

{ k2 T< 1 

kiT) = E [k2,k1] 7'=1 

kl T>l 
I 3 . 3) 

On the singular surface r 0 : z=H0 (r) the conservation form of 

(3 . 2) yields exactly the boundary conditions (2.19") and 

(2.18) 1 while away from r
0 

in the melt and in the crystal 

region 13.2) coincides with 12.20). 
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The boundary f= JL[ i is Lipschi tz continuous almost 
i = 1, 6 

everywhere, except at the three-phase point (R,H
1
(r)) where 

the outer normal tor does not exist (if the wetting angle 

~~0). In order to completely determiner, a smoothing of the 

boundary at this point is performed during the numerical 

procedure. According to [6), [7], if the coefficients are 

bounded in G, the problem has a unique solution in c2 <G\r 0 > 

and (2.19'') holds on r 0 in the integral sense. Moreover, 

this solution is a strictly increasing func~ion of the 

boundary data Tcr and Ta (the maximum principle is valid for 
(2.20)). Here we are going to apply the . numerical technique 

given in [9], which is based on the construction of a 

smoothed counterpart of (3.2) dependent on some parameter 

t:.t' such that k(T)=lim k(T,t:.t)' 
tJ. --+0 

t 

H(T)=lim H(T.t:.t), where k(T,tJ.t) and H(T,tJ.t) has the form: 
tJ. --+0 

l 

TS 1-tJ. t 

1-tJ.tSTSl+tJ.t 

~l+tJ.t 

with 9 1, 9 2 being constants and h(T) E C
00

(R). 

4. Numerical methods 

In order to solve (3.2) with (3.4), 

( 3. 4) 

(2.7')-(2.13') 

(the way of accounting condition (2.14') will be discussed 

in the next section) we shall define the current domain G by 

an iterative scheme. 

The one-dimensional quasilinear equation of capillary 
* statics (2.11') in terms of H
1
=H

1
-y: 

'I' 1x - 'I' 2 = 0 ' x E [ R* , Bo 11 2 ( 4. 1) 
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R* =RBo 112 

The boundary conditions (2.12'): 

* =-R cos tp 
( 4. 2) 

and 1 is obtained from (2.13'). 

A non-linear finite-difference scheme over a 

* 112 non-uniform grid w={R =x0 ,x1, ... ,xL=Bo } is applied to 

(4 . 1); the scheme is linearized by the simple iteration 

method of the implicit type, resulting in the system of 

equations 

'B 
-re 

f, (k=0,1, ... ), ( 4. 3) 

the grid function, -re is the 

iteration parameter, 'Band~ are difference operators [10]. 

Equations (4.3) are solved by the Gaussian elimination 

method. W 
1 

and w
2 

are continuously differentiable with 

* *' respect to H1 and H1 . The error and the iteration number 

estimations independent of the grid parameters are shown in 
[ 10] . 

The thermal problem (3.2), 

solved numerically by a fully 

(3.4), (2.7 ' )-(2.9') is 

implicit conservative 

finite-difference scheme. A space grid w={w X w 
2

1 is 
h 1 h 

introduced in the region G. Let the grid functions 

u={uij}E~(w) be defined. This stationary problem is treated 
as a limit of an appropriate nonstationary problem (with 

boundary conditions constant in time) when time tends to 

infinity and the method of fractional steps is used 
involving an implicit difference scheme for both geometrical 

directions: 
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0. 5 r t 

n+ 1 u - u 

0. 5 r t 

where r t is a fictitious 

n+ 1 A
1

u+A
2

u 

time step, n=O,l, ... 

19 

( 4. 4) 

The solutions 

un converge to u in the norm IHIL
2
when n -+ro, An 

integral-interpolation method is used in order to 

approximate the 

order 0( h~ax l 
linearization by 

nonlinear operators A1 and 

and at every fictitious time 

the simple iteration method is 

A2 with 
step a 

applied 

[9], [11]. The iteration procedure in each of the two 

directions is continued till the relative difference between 

two successive iterations in ll•llc becomes of O(h~axl-order. 
Again the Gaussian elimination is applied. 

Here the crystal radius R, the melt volume V 0 , the 

crucible temperature Tcr and the ambient temperature Ta are 
assumed fixed. An outline of the solution algorithm is as 
follows: 

1) The meniscus shape is calculated from (2.11'), 

( 2. 12') i 

2) The melt/crystal interface is set H0<rl=H1<Rl; 
3) r is defined from (2.13'); 

4) The height 1 is determined from (2.10'); 

5) The temperature field is calculated from (3.2), 
(3.4), (2.7')-(2.9'); 

6) The position of r 0 is redefined as the isotherm T=1 

and the melt region volume is recalculated. Using the 
former H0 <rl, a new H0 (rl=H0 <rl+<H1<RJ-H0 (Rll is set. Then 

return to 3) and the iterative process is continued until 
the melt volume v

0 
is achieved with an absolute error 

- O( hinax l · 
The idea of the algorithm 

falling of the crucible height when 
consists in lifting or 

the recalculated melt 
volume is larger or less than v

0
. If the crucible height is 
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lifted then the heat flow through the crucible walls will be 

increased. In this case, because the temperature function in 

the melt region is an increasing function w.r.t. Tcr or 

heat flow through the crucible walls, it follows that 

the 

the 

melt region volume will be lifted up, too. It occurs, that 

the sequence of the absolute values of crucible height 

changes is monotonously decreasing, which confirms the 

convergence of the proposed algoritm. 

5. Optimization model 

As it has been shown in section 2 some of the process 

parameters have to be treated as variable; with this we 

shall look for a solution that satisfies (2.14'), too. Here 

we restrict ourselves only to the crucible temperature Tcr 

and ambient temperature Ta as unknowns, while the crystal 

radius R, the wetting angle ~. etc. are assumed fixed and 

the change of the melt volume (or system height) corresponds 

to different discrete times from the long-time scale 
interval. A suitable, for practical purposes, choice of the 

values of unknowns would be given by solutions of the 

optimi~ation problem including (2.14') as an additional 

constraint. 

We introduce a k-dimensional vector p=(p
1
,p

2
, ... ,pk) E 

L~ (f) as a control function with the unknown parameters as 
its components, and the cost functional 

I(p) p-/112 k 
L

2 
(f) 

where p* is a given k-dimensional vector E L~(f). 

( 5. 1) 

The optimization problem we are going to consider is 

to minimize I(p) over p, subject to T(r,z,p) being solution 

of (3.2), (3.4), (2.7')-(2,13') and (2.14') in the form: 

( 5. 2) 

Let us recall that the constraint vector function F(p) 

consists of more than .one element, if some additional 

restrictions are imposed on temperature (e.g. some 

distributions of temperature on the boundary or on some part 
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of it, some temperature gradient distributions in the domain 

G\f, etc.). Of course these constraints could be added to 

the cost functional with appropriate weight coefficients 
[ 8] . 

* Because p and p are vectors with components active on 

different parts of r (e.g. in our case p 1=Tcr on r 1=r p r 3 , 

p
2
=Ta on r 2=r 1 U r 4 U r 5l, on the remaining parts of r we 

shall define them as vanishing. The model can be simplified 
* 1 * in the case where T and p 1 are constant on r , T and p 2 2 er a 

are constant on r . Then (5.1) is transformed into 

* 2 1 * 2 2 I(p) = (pFp1) 11(f ) + (p[p2) 11(f ) ( 5. 1' ) 

where 11<ril is the Lebesgue measure of ri in r. 

We have to find a solution of the optimization problem 

in E-a k-dimensional cube :={{p}: p E [p, p ]}, where p 

and pare the 1 ewer and the 
If 0:=0, where Q=0

1
cE 

problem has no solution. If 

upper boundaries of p. 

: F
1
=o, then the optimization 

* * p EQ, then the solution is p=p . 

We are going to construct an algorithm for determining 

Q, based on the dichotomic line-search using the properties 

of temperature distribution shown in section 3. 

In case of two variable parameters the set Q is 

approximated linearly by the 

obtained line 1
0

, corresponding 
2 

least-squares method. The 

to Q, is such that IF(p) 1~£ 

on it, where£ is of order O(h max). Then the solution p of 

the optimization problem exists and satisfies the relation 

-VI(p) = ~VJi(p) at i=O, where ~ is a coefficient and 

( 5. 3) 

In order to follow the evolution of the constraint set 

as well as that of the optimal solution at different melt 

volumes Vi (for different discrete times fr?m the long time 

scale), it turns out useful to introduce the parametrization 

( 5. 4) 

and 
.... 
n 
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are the unit tangent and normal vectors to 1
0

, respectively. 

The representation (5.4) describes a one-parameter family of 

parallel lines and it turns out convenient to take f(V0 -Vi) 

linear: 

( 5 . 5) 

6. Numerical results and discussion 

Based on the algorithms given in 

computer realization was implemented 

sections 

on IBM 

4-5, a 

PC-AT. 

Calculations were performed for two semiconductor materials: 

Ge and GaAs. 
All the physical and geometrical parameters for the 

two materials are given in the Appendix. The geometrical 
-4 -3 

mesh sizes are hmi~- 5.10 , hma~ ~~ and the remaining 
parameters are: 1: t O(hmin), "c 10 , L- 0( 10 2 ), e:-lo- 3, 
!:.. - 10- 3 . 

t 
In the GaAs and Ge cases, the crystal radius is fixed 

- R=0.75 and v0=1, v1=o.s and v2=o . 3 are taken as vi' and 

p 1=1.01, p1=1.1, p 2=0.B5, p2=0.99-as parameters boundaries. 

In Fig.2 and Fig 4 the line of approximated constraint 1
0 

and its propagation due to (5.4) are shown for both cases. 
* If for GaAs and Ge case p are constant for different V. and 

* * 1 have the corresponding values p =(1.067, 0.954), p =(1.04, 

0.954), then the optimal solutions are p(V0 )=(1.048, 0.94) 

and p(V0 )=(1.018, 0.95)~ From the parametrization (5.4) 

the solutions for different vi are p!V
1

l = !1 . 039, 0.933), 

p v2)=(1.035,0.93) in the first case and p(V2l=(1.013,0.949), 

. p!V2l=(1.01,0.948) in the second case. 

These points are marked with asterisks and the 

related to them are plotted (Fig. 3a,b,c 

Sa,b,c.).The isotherms are incremented by 11°K. 

isotherms 

and Fig. 
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The above results are derived for the propagation 

(5.4) approximated by a family of parallel lines 

a
1
=0,024, n-+=(-0.803, -0.596) (for the GaAs case) and 

a
1
=0,0ll, n .... =(-0.979, -0.202) (for the Ge case). 

0.95 

0.9 

___ v
0

=1 

-----· v 1 =0.5 
-·_,_'V 2:0.3 

z:.-

• 'fer 

Fig. 2. Constraint set and optimal solution propagation for 

Vi' i=0,1,2 in the GaAs case 
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The numerical experiments performed for other values 

of the crystal radius show that the space in the cube EG.aAs 

and in EGe is decomposed into two half-spaces: Et and E 

corresponding to such pEE for which the temperature is 

calculated at <R>0.75, v0=1l or CR=0.75, v0<1l and at 

(R<0.75, v
0
=1l or {R=0.75, v

0
>1l, respectively (Fig.2, 

Fiq.4l. The difference between the two materials (GaAs and 

Gel is evident - the lower conductivity of GaAs leads to 

higher Bi and Ra and this explains the GaAs tendency to 

create thicker crystals. This tendency is confirmed by the 

results obtained in [3], 

techniques. 

a) 

o.o 0.5 1,0 

[4] using finite element 

Fig. 3. Temperature distribution of the optimal solution 

points for the GaAs case 

alTcr=1.048, Ta=0.94, R=0.75, v
0

=1 
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b)Tcr=1.039, Ta=0.933, R=0.75, v1=0.5 

c)Tcr=1.035, Ta=0.93, R=0.75, V~=0.3 

25 

The optimal propagation model based on the solution of 

the stationary Stefan problem for discrete times . over fixed 

domain which we have considered, yields prediction of the 

temperature distribution as well as contributes to 

constant-radius control through discrete changes of the melt 

volume. This model could be used as a starting point to a 

more comprehensive one, including convection, some 

improvements on the boundary conditions that correspond to 

a more realistic technological situation, impurities 

distribution, surface tension on the phase change boundary, 

etc. 

The author would like to express her gratitude to 

M.Niezg6dka (Systems Research Institute, Polish Academy of 

Sciences, . Warsawl for his valuable comments and suggestions . 
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Ta 
0.99~------------------------, 

0.95 

\\ 
. ' \\ . ' 
\\ . ' 
\ ',, 0.9 

\\ 
. ' 
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Appendix 
Basic notations Used values 

a 

BJ j=a. ja!A 1 
Bo=gp 1a

2 
la m 

cpi 

er' ez 
9 
h1, h2 

Hf 
ki 

MO 

p' 

Peps 

R 

Ra Fa£ jae~ 
t 

T 

u 

uP 
V 

vo 
vo 
a . 

J 
fJ 
X. 

1 
>... 

1 
V 

pi 
(J 

m 
(J 

£ • 
J 

!Ai 

- crucible radius [cm] =5 cm 

-Blot number for rj =0.025(GaAsl;0.0042(Ge) 

-Bond number =370(GaAs);225(Ge) 

- heat capacity [J/9 °K] 

- unit coordinate vectors 

- gravitational constant [cm/sec 2J 

- grid steps in r; z direction 

- heat of fusion [J/91 
- thermal conductivity 

ratio 

- total mass [9] 

pressure [9/cm sec 2J 

k2=0.S(GaAsl ;0.338(Gel 

k 1= 1 

=3468(GaAs);3340(Ge) 

=0.1(GaAs,Ge) 

- dimensionless crystal radius 

-radiation number for r j =0.4(GaAsl;0.14147(Ge) 
- time [sec] 

- dimensionless temperature 
-velocity vector 

- crystal pull rate [cm/sec] 

- dimensionless velocity vector 

- dimensionless melt volume 

-melt volume [cm 3J 

- heat transfer coefficient for r j[W/cm 2 °K] 

- volume expansion coefficient [1/deg] 

- principal curvature radii 

- thermal conductivity [ W/cm ° K] 

-melt viscosity [cm2tsecl 
- density [9/cm 3J 

-melt surface tension [dyn/cm] 

- Stefan - Bol tzmann constant [ Wlcm 2 ° K 4J 

- emissivity of surface r j 
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e 
e 

a 
e er 
e m 
1/) 

- temperature [0 KJ 

- ambient temperature [°KJ 

- crucible temperature [°Kl 

-melting temperature [°Kl =1511°K(GaAsl ;1210°K(Ge) 

- equilibrium wetting angle= 15°(GaAs); 8°(Ge) 

- dimensionless time 

References 

(1] CROWLEY A.B. On the weak solution of moving boundary 
problems. J.Inst. Math. Applic.l 24 (1979)143-57. 

[2] CROWLEY A.B. Mathematical modelling of heat flow in 
Czochralski crystal pulling. IMA J.AppJ.Math. 30 
( 1983) 1 173-189, 

[3] DERBY J.J. 1 BROWN R.A. Thermal-capillary analysis of 
the Czochralski and liquid encapsulated Czochralski 

[ 4] 

crystal growth. !.Simulation. J.Crystal Growth 74 
( 1986) 1 605-624 • 

DERBY J.J. 1 BROWN R.A. Thermal-capillary 
the Czochralski and liquid encapsulated 
crystal growth. !!.Processing strategies. 
Growth 75 (1986)1 227-240. 

analysis of 
Czochralski 

J.Crystal 

(5] MEHPMAHOB A. M .. 3aJJa'la CTe<PaHa. HoaocM5MpCK, HayKa 1986. 

(6] onEHHKK O.A., KPYqKoB C.H. 0 HSKOTopwx HSflMHe~HWX 
3aJJa'lax JJn~ ypaaHeHM~ 3nnMnTM'IecKoro TMna. YCnEXK MAT . 
HAYK,T.XV, Bbln.5 (1960.), 203-206. 

[7] OTIEHHHK 0. A. 05 OJIHOI'I J'leToJJe pelleHM~ o611'1e~ 3aJJa'IM 
CTecllaHa. llOKTIAllbl AH CCCP, T.135, Bbln. 5 (1960), 1054 
1057. 

[8] PAWLOW I. Analysis and control in free boundary 
problems. Bulletin of the Faculty of Education, Chiba 
Univ. 36, Feb. 1988 . 

[9] CAMAPCKKH A. A., MOKCEEHKO 6. ll. EKOHOI'IM'IHall cxe11a 
CKB03Horo c'leTa Jlfl~ I'IHorol'lepHoa 3aJJa'IM CTe<PaHa. IBMM~ 

5 ( 1965), 816-827. 

[ 10] CAMAPCKKH A. A. , HKKOTIAEB E. C. MeTOJibl pelleHM~ ceTO'IHWX 
ypaaHexM~. MocKBa, HayKa 1978. 

[11] TABACOVA s.s. Finite-difference numerical analysis of 
the thermal-capillary two-dimensional Czochralski 
crystal growth. Theor. and Appl. Mechanics, 19 (1988), 
No.1, 70-80 

Received, December 1988. 



30 S.S.TABACOVA 

0 DWUWYMIAROWYM MODELOWANIU NUMERYCZNYM PROCES6W TECHNICZ­
NYCH W PROCESIE WZROSTU KRYSZTALU CZOCHRALSKIEGO ZE STOPIO­
NEJ MASY 

W pracy przedstawlono dwuwymiarowy stacjonarny model 
matematyczny, oparty przede wszystkim na przewodzeniu 
ciepla : procesow cieplno-kapilarnych wzrostu krysztalu 
Czochralskieqo. Na podstawie teqo modelu sformulowano 
zadanie optymalizacji . Temperatury: naczynia i otoczenia s& 
uzywane jako parametry steruj&ce. Funkcjonal kosztu zalezny 
od wektora sterowan ma posta6 kwadratow&. Warunek staleqo 
promieniowania krysztatu stanowi dodatkowe oqraniczenle. 
Wyznaczono·ro~wi&zanie optymalne 1 warunki oqraniczen dla 
roznych dyskretnych objetosci stopionej masy. Eksperymenty 
numeryczne zostaly przeprowadzone dla dwoch roznych 
materialow polprzewodnikowych. 

0 llBYXMEPHOM qKCflEHHOM MOllEflKPOBAHKK TEXHKqECKKX llPOUECCOB 
B llPOUECCE POCTA KPKCTAflflA qQXPAflbCKOfO K3 nnAB~lERC~ MACC~ 

B pa6oTe npencTaBneHa nsyxnepHa~ CTaUHOHapHa~ 
naTenaTHqecKa~ nonenb, ocHoBaHHa~ Ha TennonposonHnocTH: 
Tenno-KanHn~pHWX npoueccos pocTa KpHCTanna qoxpanbcKoro. Ha 
ocHoBe aToi nonenH ~opnynHpyeTc~ 3anaqa onTHHH3aUHH. 
TennepaTypw: cocyna H oKpy~aD~ei cpenw Hcnonb3JDTC~ s 
KaqecTBe napaneTpos ynpasneHM~. ~JHKUMOHan 3aTpaT, 
3aBMC~·Mi OT BeKTOpa ynpasneHMi MH99T KBanpaTHWi 
BMn. YcnosHe nocTo~HHoro panHyca KpMcTanna ~Bn~eTc~ 
nononHMTenbHWH orpaHHqeHH9H nn~ pa3HWX nMCKpeTHWX 06b9HOB 
nnas~•eic~ naccw. qHcneHHwe 3KcnepMneHTW nposonMnMcb nn~ 
nsyx pa3HMX nonynposonHMKoswx naTepHanos. 


