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The time-optimal control computation presented
in [4] for the linear time-invariant wundisturbed
systems is extended to the case, where also the
effects of deterministic external disturbances are
considered. It was shown that, if they do not
depend directly on state wvariables and some
additional assumptions concerning the reachability
of the final state are wvalid, an effective
numerical procedure can be applied in order to
find the switching instants of the bang-bang
control.
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1. Introduction

In [4] the computational method of determining the
time-optimal control for some linear time-invariant
undisturbed systems was presented. The procedure applied
there was based on the known general solution of the state
equation.With the fundamental matrix obtained 1like in [3]
the set of switching times, corresponding to the minimum of
final error's norm can be found by an effective computation
procedure.

This paper deals with the time-optimal control problem
for the linear time-invariant system  subject to
deterministic external disturbances, described by the state
equation

x(t)=Ax(t)+Bul( t)+Gz(t) (1)

where x(-),u(-),2(') are state, control and disturbance
vectors of dimensions nx 1, r =1 and p x 1 respectively,
A,B,G are constant matrices of appropriate dimensions, t |is
time. We accept the following assumptions (like in [4])

- the state vector is unconstrained,

- the control belongs to the closed, bounded admissible
set

u(t)eU, 4 (2)

with all components of wu(t) being functions of bounded
variation on any bounded interval of time

lu )]s o O AR (3)

Uk max'

- the state matrix A is simple and all its elgenvalues

5 I=1,...,n are real negative

Re 51<0 (4)

Im 51=0

- the system satisfies the normality condition of the
time-optimal control
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A""bk];eo; (5)
k=1r LI ] -1‘

where bk is the k-th column of the matrix B.
Additionally we assume that the disturbance vector
belongs to the compact set Z in RrP

z(t)ez (6)

and all components zh(t], h=1,...,p of z(t) are functions of
bounded variation on any bounded interval of time.

The existence of the time optimal problem solution
with the performance index

t

I =[] dt= min {1
%
is for the considered system subject to disturbances

related to the reachability ([1],[2],,[6]) of the final
state.

We denote analogously like in [1] by F(t,xb,tu,uad.zl
the reachable set in R" which consists of all the states Xg
to which the system subject to the disturbance z(.)€Z can be
transferred from x, at t, in the finite time tzt, by the
admissible control u{-)EUad:

F(t,xa,uad,z)={xf: Butto,tJ € Uﬁd such that
?{t‘u(to,tl' z{to,t]’xb] = xf} (8)
oE Ry v R

where T(t'u{to,t]’z{ta,tB’xo) is the solution of the state

equation with the initial condition x, at €.
By F}{t'xu‘to'uad‘Z] we denote the closed subset
of states in R" which our system subject to the disturbance

z(.)€Z attains from X, at tu in the finite time tztu by
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application of the single control component uk{t). | B

Fk(t,xo,tD,Uad.ZJ E {xf: 3uk(tn.t] € U _— such that
W{t’uk{to,t]’z{to,t]’xu) = xf} (9)
for u, = Uy ® i My o W M 4 ™ oio U, = O'z(to,tlez'
The intersection Ff of all subsets F}, R=1y v apil
Fo# Fy 0T Woo oo B Fy (10)

is the set of final states, which for =z(.)eZ is reachable by
application of any single control component uk[.l.
k=1,2,...,r satisfying the condition (3).

In order to extend the numerical procedure
presented in [4] for =z(.)=0 to the case of the system
subject to disturbances, we assume that the final state Xge
which must be attained in the minimal time belongs to the
set Ff from (10)

Xg € Ff (11)
2. Formulation of the result

We shall prove the

THEOREM. In the case where the disturbance z(.) does not
depend on state x(.) and the conditions (2), (3), (4), (5)
are satisfied, the time optimal control of the system (1) is

of the bang-bang type and the number of switching
intervals is at most n.

Proof. The Hamiltonian corresponding to the performance
index (7) is given by

Hix(t),a(t),ult)z(t)) = 142" (t)Ax(t) + A" (t)Bult)
(12)
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+ AT(t)Gez(t) -

where A(t) is the costate vector of dimension nxli.

We denote by x (t),A"(t) the state and costate vectors
corresponding to the time-optimal control u“(t), and from
the necessary condition

HOxX™(8) A% (8), u (), z())sH(X () , A% (), ule), z(E)) (13)
we obtain
*1'
u(t) = - U sign (A" (t)B} (14)
where
T
U= 80 e Oping vos o0 1% (15)

Hence u (t) ‘is of the bang-bang type and its components are
given by

T
u;{t) = U sign(A* (t)b,, (16)

k max k
We observe that the canonical costate equation does not
depend directly on the disturbance, hence

e 4
Rlt) = = e ™ = AKX (t) (17)

and we conclude (Ref. [5]) that in the case where all the
eigenvalues of the matrix A are real the number of switching
intervals for each uk[tl. k=1,2,...,r is at most n. That
completes the proof. - ]

The above result enables us to extend the procedure of
time-optimal control computation (presented in [4]) on the
system described by the equation (1). The general solution
is given by
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¢
x(t)= ¢(t-t Ix(t ) + J ¢(t-t)Bulr)dr

to

(18)
t
+ [ o¢{t-1)6z(t)dr.

t

2 At
The fundamental matrix ¢(t)=¢ in the case where the state
matrix A is simple can be obtained directly by computation
like in [3].

First we shall consider the single-input system

- replacing the control vector by the scalar u(t) satisfying

the condition Iu(t)lsuhax. For the first computation we

assume that the number of switching intervals is equal to n

and choose the switching instants tI’tII""'tn and the sign
o of u(t) in the first interval tu'tI‘ Next for the control
0 £E< I‘:0
g Urnax tE[to, tI)
- o Umax tE[tI,tIIJ
u(t) = 3 (19)
n=-1
(e telt ;. t)
! 0 tZtn

we compute the state vector at switching instants

x(tp) = o(At ) x(t )4D(ALL)S Umax+p(r1)

X{tIIJ = ¢{ﬂtII)x{tI]+D{AtII](-1]0UmaX+w(tII)

>(20)

= = n-1
x(t ) = oAt Ix(t _ )+D(AL )(-1) 0 Uy Folit)

where
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AtI = tI~t
Atry ™ *y3%g
. (21)
At = b g j
By D(At) we denote the nxr matrix
At
(At) = [ ¢(9)B(8)ds (22)
0
whose elements are given in [4]
n n f!jl sjﬁt
d, (At)=E b (e - 1)b (23)
iq j=1 I=1 L jq
j=1|21---an q=1121'0'|r
where
pjjcofpjj
£i31° " det P (24)

and P is a nonsingular modal matrix (whose columns are
eigenvectors of A).

By ¢{tj), i=1,2,...,n we denote the value at t=t1 of
the third term on the right hand side of (18)
£
¢{t1)= J ¢(tf— T)Gz(t)dr. (25)
tj_1

For the known z(t) we can compute ¢(tj) by the iterative
method from the formula

o(t,)=M(AT) 2(t, ) (26)

at instants

t1=t°+ﬁt. t2=t1+ﬁr,..., t =t +AT
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(choosing the sufficiently small value of At).
The elements qu{ﬁt} of the n x p matrix M(At) are

n n fjjj sjhr
m, (Ar)=E E (e - 1g (27)
iq J=1 I=1 jq

o

I=1, 2 vawydty 181,208 =Ll 2iisewm @ Ladseeias
Knowing the deterministic disturbance z(t) for tzt, we find
p(t) from (26) for a chosen time interval [tu,tz] with tot,
and store the obtained results. That enables us to extend
plt), w(tII},....p(tn} from computer's memory and to
introduce them into (20). For the state x(tn) we find the
norm N(tn) in Rr" representing the distance between x{tn) and
prespecified final state Xg

n 2

N(tn}="xf-x(tn}" — J
If this norm is bigger than a positive value £ corresponding
to the desired accuracy we repeat the computation applying
the minimization of N{tn) as function of switching instants.
We accept as optimal switching instants t:,t:l,...,t; those
corresponding to

N(t;J £ g (29)

In order to check the choice of ¢ we repeat the above
procedure for the opposite value of 0. After the comparison
of obtained results we fix o definitely.

For a multiple-input system we find first the
switching instants for all cases where only one of r control
components is applied.We proceed like for the single-input
system.The values of € k=1,2,...,r corresponding to the
desired accuracy can be chosen bigger than € imposed for the
multiple-input system.

Next we consider the case where two control components
ua(t}. ub(t! are applied and compute the switching instants
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tra'txla"“'tna’tlb’tlxb""’tnb corresponding to the
accuracy given by the value aab.rt can be bigger than ¢
(imposed for the multiple-input system with all uk(tl.
k=1,2,...,r being active) and smaller than €27 €p in previous
computation where only ua(t) or ub(t) were applied;
ab(sazeb'

In further procedures we increase consecutively the

e<e

number of applied control components and finally obtain the
switching instants in the case where all r of them are
applied. In order to investigate the implication of the
disturbance on the system, we can compute also the switching
instants for z(t)=0.

EXAMPLE. The system from the example in [4] where

= g 3 0
- 0.2
S - B* 12 & 4
= ol 3
5, = -1, 5, = -2 83 = =3 54 = -4
%me 1.5, %me A %me=8
Pl 0 26 t-26721 ]
0 Pl LR TRl LRI P L P
¢(t) = _
0 0 e 0
| 0 0 0 et "
is subject to the disturbance
ﬁlr ﬁlt
zy max(l—e I Z19€
z(t) = th th (30)
z, max(l-e 1 I Zy0@
where %y 255 2o may = 3:5% Zi0 = %y = 0
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B,=-4.5:1 B,=-5.5.

The matrix G in (1) is

.5

o W = O
o B N

This system must be transferred in the shortest time from
the initial state x,
x=[20 ~-10 40 =-303%

[¢]
to the final state xf:o with the accuracy corresponding to
£=1-10_2. Tables I and II show the results computed by both:
undisturbed (found in [4]),and subject to the disturbance -
(30) - systems.

TABLE I

* * * *

k : z(t) tI tII t111 tIV

u =x1.5| 0 0.5590975 |1.1071200 |1.3475340 [1.3890230

o, =1 from [0.8035849 |1.4960260 |1.9527250 |1.9688400

(30)
u,=x7 0 0.6151865 |1.1260130 |1.3168710 |1.3890230
o =1 from |0.9961923 |1.8065360 |1.8505530 {1.9688410
(30)
u, =x8 0 0.7521554 |1.110476 1.3513780 |1.3890230

o =1 from [1.0820740 |1.5749200 |1.8961510 |1.9688410

| % (30)
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TABLE II
X * * * x * * * X X
z(t) x1{t1v) xzttlv} xattlv} x4(t1v) xs{tlv)

0 -0.3997028|-0.6423354|-0.242306|~-0.1702905|0.8124561

from

(30) -0.3912095| 0.6266915|0.2216495|-0.6167312|0.9875592

all values .10 2

3. Conclusive remarks

In the case where the deterministic disturbance does
not depend on state variables and all the above accepted
assumptions hold - the presented computational procedure
enables us to find effectively the time optimal control of
the bang-bang tvpe. In order to <choose appropriately the
initial data for the described numerical procedure it can be
useful to compute first the switching instants for the
undisturbed-system (with =z(-)=0).
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NUMERYCZNA METODA WYZNACZANIA STEROWANIA CZASOWO-OPTYMALNE-
GO DLA PEWNYCH UKLADOW LINIOWYCH PODDANYCH DZIALANIOM
ZAKLOCEN

Podana w [4] numervczna metoda wyznaczania sterowania
czasowo-optymalnego dla inwariantnych w czasie 1 niezakio-
conych uktadéw liniowych zostala rozszerzona na przypadek,
gdy ukiady te sa poddane dzialaniom zdeterminowanych zaklé-
cen. Wykazano, ze jezeli =zaklécenia te nie sa funkcijami
zmiennych stanu oraz sa speinione dodatkowe zalozenia
dotvczace osiagalnosci stanu koncowego to mozZna =zastosowad
procedure numeryczna umozliwiajaca wyznaczenie chwil
przetaczen przy sterowaniu typu bang-bang.

YWCNEHHHA METO[l ONPEJEJNIEHHS BPEMS-ONTHMANIBHOT'O YIIPABJIEHKS
ONngd HEKOTOPHX NUHEAHWX CHCTEM NMONBEPTAEMHX BO3IEACTBHI0 MOMEX

IpuBeneHHud B [4] YHCNEeHHHHA HeTon onpegeneHus
BPEHSs —ONTHMANbHOrO YNpaBNeHHS [ON9 MWHBAPDHAHTHWX MO BDEMEHH #
6e3 BosfaedcTBHd nonex NHHelHWX cHcTen OWn pacuupeH QOns

cnyvas, Korga OSTH CHCTeNnn nogBepxeHn BO3EeACTBHD
onpefeneHHNX nonex. lTokasauo, YTO echnn 3TH noMexn He
ABNADTCA QYHKUMSNHE NEepPeMeHHHX COCTOSSHHSA H YOoBNeTBOpAKOTCH
AOCNONHHTEeNbHNE NpeAnochikH, Kacabunecs OOCTHIaenocTh

KOHEYHOro COCTOSHHS, TO MOXKHO NPHHEHHTbL YHCNEHHYD nNpouenypy
NOo3B0ONADMYD ONpenensTbh MOMEHTH NepeknouiYeHHldi nNpH ynNpaBneHHH
Tuna 6Gaur-6aur.




