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1. Introduction

the deep
relaxation
techniques and the well known Dantzig-Wolfe

Linear

In this paper we are dealing with a large scale linear

programming problem having a block-diagonal

coupling constraints. Such problems (P) are of the form

structure

with
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(P) can also be written
K
min Z=¢cx= £ ¢, X
k=1 kKK
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Xp € Xk Y o RS o

where Xk;{xk | Dkxkgdk' xkzo [}, or in more compact form

min 2 = cx
Ax = b
¥ s X
where X = {x | x=(x, ..., %), X€X,, XEX, ... X EX].

For the sake of simplicity, we assume that the convex
polytopes Xk are bounded and not empty. Extensions to more
complicated situations are straightforward.

The purpose of this paper is to show that the
classical Dantzig-Wolfe decomposition method as for instance
presented in Lasdon [1], 1is Jjust a Lagrange relaxation
approach.

In section 2 we decompose the problem (P) applving a
Lagrange relaxation method, thus obtaining K subproblems
(linear programming preblems) and an unconstrained
maximization problem of a concave (dual) function. This last
problem can be solved using a subgradient method, or, as
shown in section 3, using linear programming. The
application of generalized linear programming to the dual of
the last mentioned linear programming problem gives the
theoretical basis for the development of the Dantzig-Wolfe
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decomposition algorithm.

We assume that the reader has a previous knowledge of
Lagrange relaxation, generalized linear programming and the
Dantzig-Wolfe method. The main contribution of this paper is
to show the deep connections between these methods.

2. Lagrange relaxation

Let us associate with each coupling constraint "i" of
(P) a dual variable ﬂjeR. We denote by ner™ the row-vector
of dual variables. The Lagrange function will be

K
L (x,11) = ¢x - N(Ax-b) = 0lb + kzltck~ﬂAk]xk

and the dual function will be

L(Il) = min [L(x,N)] = min [(c-NA)x] + Nb =

XeX Xxe X
K
= Ib + z min [(c,- 1A, )x,]
by xex, T K

Then, the computation of the dual function decomposes into
the solution of K subproblems (Skl as

Min ¢, x

KTk
subject to
Dk Xy = dk
Xy 2 0
where ¢, are the reduced costs (ck=ck_ﬂAk)' These

subproblems are linear programming problems of wvery much
smaller size than the original problem, then for given I the
computation of the dual function value is reduced to the
solution of K independent linear programming problems.
The dual problem (D) of (P) is the following
unconstrained maximization problem
max L(I)

ner™

We know from duality theory (see Geoffrion [2] or [3])
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the following properties of (D) (L(M) is a concave function).

If x is feasible in (P) and 11 is feasible in (D) then

L(N) = cx

{xf.ﬂ*) is a saddle point for L(x,N1) if and only if x*

is feasible in (P), " is feasible in (D), and
L(ﬂ*) = cx*

TE ;k denotes an optimal solution to (Sk) for given I,
then the vector K
A = b - kzj Agx, = b - Ax

is a subgradient of L(Il) at the point 0.

Thus the solution of the dual problem reduces to the
search for the maximum of a concave function, for which a
subgradient is known at every point, therefore a subgradient
method can be applied, see [4].

3. Solving the dual as a linear programming problem

Since the optimum of (Sk) is always reached at
a vertex of Xk, the dual function can be expressed as
K
L(m)y = 0b + kEI ?iEY}[(Ck nAk) Yk]
where the finite set Y} contains the vertices of
Xk,k=1,...,K, or in more compact form

L(N) = Nb + min [(c-TA)¥]
yey

where Y contains the vertices of X, with elements
Yy = | yI, yz, ..... vP i
Obviously, the dual problem (D) is equivalent to the

following linear programming problem

L {H*) = max v

v < 0b+ (c-nayt, t=1,2,000,D
which can also be written as

L {H*) = max v

V= H{b—Ayt) < cyt, =Y, 20005 D
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The dual problems reads

p t
min Z (ey') u

u = 0, vV E

This linear programming problem contains (mtl) constraints
and an enormous number of variables. To be able to apply
generalized linear programming, we must know whether there
is an efficient method to find the variable ug such that

cys + H{b*Ays) - v = min {cyt + H[b—Ayt]—v}

That is we are looking for the column s such that

cys + H(b—Ays} = min {cyt+l'l(b-Ayt)}
t

This is equivalent to looking for
Min {Nb+(c-NA)x}
which is equivalent to evaluating the dual function L(Il) at
the point II.

That is our procedure for column generation and it 1is
nothing else but the method to compute L(I) consisting of
solving, for given value of [, the X subproblems e The
solutions thus obtained give an element ys of Y. Now the
well-known Dantzig-Wolfe decomposition algorithm can be
developed as for instance in Lasdon [1].

4. Concluding remarks

In this paper we decompose a large scale linear
programming problem having a block-diagonal structure with
coupling constraints using a Lagrange relaxation method. We
show that two types of algorithms can be developed, the
first one is based on a subgradient approach while the
second one is the well-known Dantzig-Wolfe decomposition
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algorithm. The first approach is of particular interest to
obtain quickly a good approximation to L{H*J and good Ilower
bounds on Z*. This approach has been applied with success to
many large scale problems, see for instance Held et al. [4].
The second approach is recommended when suitable procedures
for column generation are available, for applications see

for instance [1].
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RELAKSACJA LAGRANZIANA A DEKOMPOZYCJA DANTZIGA-WOLFE'A

Celem artvkuiu Jjest wukazanie gtebokich powiazan
pomiedzy technikami odwolujacymi sie do relaksacii
Lagranziana a znanymi metodami dekompozycji Danziga-Wolfe'a.

PENAKCALIHS JNATPAHXHAHA A [OEKOMINO3MUHA NAHUHTA-BOJIb®A

lilenp cTaTbhh COCTOHT B YKazaHHW rnybokMx cBa3en mnexgy
MeTogaMu OTHOCHMHMHCHA K penakcauuu JlarpaHxMaHa, a H3BECTHHMNH
netonanu pAexkonnosuuun [JaHuumra-Bonbda



