CONTROL
AND CYBERNETICS

VOL. 18 (1989) No 3-4

OPTIMAL DISCOUNTED CONTROL OF THE BILINEAR b
DIFFUSION PROCESS AND ITS APPLICATION TO ECONOMICS

by

TADEUSZ BANEK

Department of Applied Mathematics
M. Curie-Sklodowska University
20-031 Lublin, Poland

We solve the following stochastic control prob-
lem: to maximize the discounted total benefit
o
J(x,ul=E [ exp (-rt}fxtut-¢(utl]dt,
0
subject to

dxt=xt[(A -But]dt+6dwt],x;=x > oy osutsu,réo,

where {wt,tZO} is a Wiener process and ¢(-) is a

nonnegative increasing concave,continuous function on
[o,ul. All bounded, measurable and nonanticipating
functionals u(x) of the state process x are admissible
as controls. Optimality of the bang-bang control is
proved and the switching point is found. Applications
of this result might include production policy of a
firm aiming to maximize the expected profit
J(x,u) ,where u,is the production rate'and x, is the

price of the qgod produced. ¢
1
Mathematical results were obtained by the author himselfl
while application to economics was widely discussed with

O0.Gedymin. Thus this part of the paper is a common contribution.
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i. Introduction

We consider the problem of optimal control of the bi-
linear diffusion process

dxt=xt[(a—ﬁut}dt+adwt], x,=x, t20 (1.1)

where o, B>0, 0>0 are constants and {wt.tzﬂi is a Wiener pro-
cess on an appropriate probability space. There is a cost

¢(ut) per unit time for using control Uy where ¢(-) 1is a

nonnegative, increasing, c¢oncave, continuous function on

[o,ul. The controller has to choose a law ut(x) as a non-

anticipative, measurable functional of the state process

with values in [o,ul to maximize the discounted total

benefit

41]
J(x, u)=E [ e'rt[xtut-df(utl]dt (1.2)
o]

This problem has a potential application to economics: ut
being the factory production rate at time t and X, being the
price of the good being produced (see section 5).

The economically obvious rule for our model is to pro-
duce with full capacity if Xy is bigger than some <critical
price 6, and to exert no control at all if xt<5. Optimality
of this law is proved and the cutoff point & separating both
regions of the price values is characterized in terms of
parameters of the system.

General existence results for the problem of dis-
counted stochastic control were given by Kushner , [1], and
Bensousson, [2]. Bened, Shepp and Witsenhausen, [3]1, and
Karatzas, [4], proved the optimality of the bang-bang law
for the control of the Wiener process, while Bensousson,
Sethi, Vickson and Derzko, [51, showed that an optimal feed-
back solution exists for the LQG problem with control non-
negat!viéy constraints.

This paper is organized as follows: we state the con-
trol problem in Section 2. An explicit solution of the Bell-
man equation is given in Section 3. Optimality of the bang-
bang law is proved in Section 4. An economic application is
presented in Section 5.
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2. Stochastic control problem

Consider, as a basic probability space , the space
C(R*) of continuous, real—valﬁed functions in R', and Ilet
St, tz0, denote the o-algebra generated by {xs: sst}, XEQ .,
Consider also the o-algebra M generated by the Borel subsets
M of R*xC(R*), with the property that each t-section of ‘Mt
of M belongs to 5t and each x-section Hx of M is Lebesgue
measurable. A function g : R*xc(R*) — R is M-measurable iff
glt,') is ft
measurable for any x€C(R*).

An admissible nonanticipative control u is an

-measurable for any t20 and g(-,x) is Lebesgue

#A-measurable function

u : R'xC(R*) > [o,1], ®Wo.
The class of such controls is denoted by U%. For any control
law uell and any x>0 we can construct, by means of the
Girsanov theorem, a probability space (Q,%,P) and a pair of
stochastic processes (yt.wtl on it, such that {wt; t20} is a
Wiener process with respect to P and the SDE

2
dy,= @+ - Bu,)dt + 8dw,, y=In x, (2.1)

t=
is satisfied.Such a weak solution of (2.1) is known to be
unique in the sense of the probability law (see [6]).

Now, from Ité's formula we see that X ,=exp yt' is a unigque
weak solution of the SDE

dxt=xtr(a—ﬂu)dt + adwt], x =x>0. (2.2)

The control problem consists in finding a law el that

maximizes

@
Jx,u)= E J e'rt[xtut-Mut)]dt (2.3)
0

when we start at x and use the control u, over all usl, x>0.
Here, E denotes expectation with respect to the probability
measure P, r>o is the discount factor, ®(-) is the running

cost of control.

Now let u, = v = const, velo,ul, and let xt=x: when the
control v is applied. Then Exg = x exp{a-pv)t and
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- t ®  (r-asBWt
Jx,vi=E [ e T ivx¥ -o(v)ldt=xv [ & %~ dt-

t

0 0
XV d(v) .
r-asfv - r if
+o, for ve(0, "%‘" ) if

thus in the following we assume r > A.
3. The Bellman equation

To solve the Bellman equation

2
rV-ixav"H AxV'+ sup

5 [xu-®cw-BuxVv']
o=usu

v

r

> K

r< A

(3.1)

we look for a number & > O and solution V¥, |Vix |sM(1+]|x|),

to
LV Z(h—zmxv._ zrzv_ 2(@-;:.?} ¥ A e
) 5 8
o-0 [
X{1-BV") > —— ' x> 3 ®(o)=do
u
xzvo + 2“ XV'- 21‘ ": 2¢0
2 2 2
o o o
x(1-pv) <« , 22y

u

which meet smoothly at x=6 to order 1.

As a particular solution to (3.2) we find

ux
r+Bu-A

Hlol

Now, let

(3.2)

(3:3)

(3.4)
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To get the general solution of (3.2) we add to (3.4) a
solution

of the homogeneous equation

v +—L2(“; o xV‘———zi vV=o0.

o g

Since v»*>1 for rzee, the linear growth condition
implies c:-O, and we solve (3.2) by

v(n=cx’ + 2L -2 s, (3.5)
= r
r+u-o
A similar argument solves (3.3) as
+
sl A bo
v,(x)=c,x’ = 0sx<5 (3.6)
Let us denote viw™ , p2pt.
Then we see that v<0 and r>« implies
2
1 o 1 o r-o 1 o 1
Pt el (Fr) 2Bl L ey
o o] 4] o 6

We want the derivatives V; and V; to be egual to

0 - 22 ) at x=5, and V,(8)=V,(5)
ud
This determines §, c;, c; as

(r-o+pu) [(p-v) r+pupr] (-0,)
& =

rul(p-v) (r-a)+gw (p-1)1 £2.71
- (r-a)é -9 0
c, 4 ¢, = L —iit _0 5 (3.8)
Bv r-a+fu u
+ A e 4 _ 8-%o -p
et & o, = [5 - ] 5 (3.9)

To verify that the function (3.5), (3.6), (3.7), (3.3}.{3.91
solves (3.2) and (3.3), we have to show that the following
inequalities hold
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BxViy>x - 2% in 0sx<3 (3.10)
u

xvicx -2 i w5, (3.11)
u

But

va'z = [a - —Q-:ﬂ] {_6&)9)*- = & for x small enough
u

and the equation
5 -2 | (HHP o g 200
u u
has one positive solution x=6. Thus (3.11) holds.
Now

1

x v-1 T-do F-0o
r-a+Bu u

BxV'l = [ﬁa.ﬁir—alx(—a) ] - — (X -

since {%)”‘lq for x>5.

4. Optimal control

THEOREM 4.1. Let r>x. The optimal control for the problem
(2:2); (2:3) is

. 0, If x';«s _
u, = " e (4.1)
u, if xt>6 ;

where & is given by (3.7) and'x: solves

dx; - x;[(u—ﬂuzldt+6dwt]. X =X. , (4.2)
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Proo f. Introduce the process M, 8 e-rtvtxt) +

+

(=R N

e_rs[xsus—ﬂus)]ds. Jté's formula vields the representa-

tion for 0O=<s=st

t 2
-rt| o - ¥
Mt‘”s + ,L e [—-2~ xtv’ (xt) +. xr(c: Butlb"{xtl +

(4.3)
t
e 19
- xrur-ﬁ(url*rV(xtl]dt+o £ e XTV‘(xrldwr
Taking conditional expectations relative to f}a{w,r,tss} and
using (3.1) we see that E(Mtlleﬂus and EMtSEH;. But for s=0

t
=gkt -rs ir =
EM =e EV(XL_H-E{)' e [:rsus Musl]dsSEMo Vix). (4.4)
The linear growth condition for the Bellman function

| vix)|smM(1+ |x|), implies

E|v(x,) |<M(1+x exp at) (4.5)

and lim e_rtV{xtl=0.
ta+@

Thus letting t»® in (4.4) we get

(53]
EJ e " [xu,-0(u)]dtsvix),
0

This shows that the expected benefit of %tsing wel is not
bigger than V(x).Consider now the law u*€ 1. The integral
following Ms in (4.3) has =zero conditional expectation
relative to the past of w, M is a martingale, and EMt=V(x).

*
so that x, achieves V. In other words, u*

¢ ¢ is optimal. @

5. Application to monopolistic price adjustment under
uncertainty2

Consider a firm which produces a homogeneous
nonstorable commodity. We assume that the firm has a certain
degree of monopolistic power and it makes price and output

2
For related problems see [9], [10].
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decisions to maximize its discounted profit over time, while
demand for its product is perturbed by the fluctuations of a
haphazard nature. Our problem now is to build the price-out-
put planning model and to find the optimal solutions.
Proceeding in the spirit of Merton [7] we shall try to
determine the equation describing the price dynamics.

Assume that the relative price rate (xt+dt—xt11xt, for
t fizxed, is a random variable S, such that (i) § 1is a sum
n
of a large number n of random variables 5 S=k§1 Sp

(ii) 5, are stochastically independent, (iii) it 1is highly
probable that each variable 5p is sufficiently small.Taking
into account the above assumptions, and applying the central
limit theorem, we obtain an asymptotical Gaussian
distribution of the relative price rate,which has a mean
b(t)dt and variance o>(t)dt. Then passing to the limit as
. n= ® wWe may write S'=b(t}dt+c(t}dwt , where {wt, t20} is
a Wiener process defined on an appropriate probability
space, and finally the prida dynamics equation is given by

dxt=xt{b(t}dt+a(t}dwt] (5.1)

We are going now to specify the functions b(-), o(-) in the
case when the process (5.1) is to be controlled.

In the theory of the monopolistic firm it is wusually
accepted that the firm faces a price-output relation (demand
curve) which 1is downward-sloping (see [8],[12]1).0ne of
the possible variants of such a relation (in the mean) could
be given by the equation

§£-=(a—ﬁu}x. alo (5.2)
dt
where xt=Ext.
Comparing (5.1) and (5.2) we obtain equation
(1.%Y,
We assume that the production cost @&(u) is a
nonnegative, increasing, concave, continuous function on

(0,ul, where u denotes the maximum production capacity of
the firm.Thus the profit maximization problem for the firm
can be stated as follows
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lan]
sup EJ e_rt[xtut—ﬁ(ut}dt
uell 0

subject to
dxt=xt[{u—ﬁut)dt+adwt]. xb=x>0.

The set U of admissible controls is defined in section 2.
6.Conclusion

(i) In the present paper a closed-form solution is
given for the problem of controlling a bilinear SDE with
control variable constraints.We used methods which follow
the spirit of Benes [3] and Karatzas [4].It turns out that
the method originated by Benes and his collaborators [3] can
be adapted to the maximization problem studied in this
paper.

(ii) From the economic point of view, this paper =stu-
dies the optimal dynamic behaviour of the monopolistic firm
under uncertainty. Theorem 4.1. shows <that the bang-bang
control, which is in fact the event planning (in
terminology of Intriligator and Sheshinski, [11]), is
superior to all nonanticipative controls, including time
planning.
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STEROWANIE OPTYMALNE Z DYSKONTEM BILINIOWEGO PROCESU DYFUZJI
I JEGO ZASTOSOWANIA EKONOMICZNE

W artvkule rozwigzuje sie zadanie sterowania
stochastycznego, w ktorym maksymizuije sie catkowity
zdyskontowany zysk:

[+
Jlu,u)=E [ exp(—rt)[xtut~¢(ut)]dt

L]

przy ograniczeniach

dxt=xt[{A~ButJdt+6dwt], x =x0, Osutsu, o,

gdzie {w,, t20 jest procesem Wienera, za$ ¢(:) jest nie-
ujemng rgsnaca. wklesta i ciagla funkcja na [0, ul .
Wszystkie ograniczone, mierzalne i niewyprzedajace

funkcjonaly ut{x) stanu procesu X, sa dopuszczalnymi

sterowaniami. Dowodzi sie optymalnosci sterowania typu
bang-bang i determinuje sie punkt przeltaczenia.

Zastosowania przedstawionyvch wynikéw moga dotyczyé np.
planéw produkcyjnych firm zmierzajacych do maksymalizacji
oczekiwanego zysku J(x,u), gdzie u, jest intensvywnoscia

produkciji a X, jest ceng produktu.
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ONTHMANBHOE YNPABNEHHE c OHCKOHTHPOBAHUEM BUNHHERHOTO
MPOLECCA NH®®Y3HH W ETO NMPHMEHEHHS B 3KOHOMHKE

B cTaThe peHaeTcd 3afjava CTOXACTHYECKOro YnpaBlieHHS, B
KOTOPOA MaKCHMHZHPYETCA NONHAS AHUCKOHTHPOBAHHAR NPHOWND:

[11]
Jlu,u)=E [ axp{—rt)[xtut-¢(utlldt

[+]

NPA OrpaHHEYEHHAX

dxt=xt[(A-But}dt+5dwt], x;=x>0, Osutsu, o,

ruoe: {wt, t=0 ABNAeTCd BHHEPOBCKHM nNpoleccon, a ¢C -2

ABnaeTcs HEeOoTpHLUaTenbHOR _  ,BOo3pacTabued BOTHYTOR B
HenpepwBHOoR ¢yHxuued Ha [0, u 1. Bce orpaHnyeHHHEe, H3MepaeMHe
B HeonepexabWie GYHKLMOHANH utho COCTOAHMA npouecca x,

ABNADTCH NONYCKaAEHHMH YNpaBneHHany. lokxaswBaeTcs
ONTEMANbHOCTh YNpaBneHus Tuna Baur-6aHr W onpepensercs TOYKa
nepeKknoYeHns.

lpprneHenns NpefcTaBNEeHHHX Pe3ynbTaToOB MHOr'yT KacaThbcd
HanpuMmep TNPOR3BONCTBEHHMWX NnnaHoB $HpH CTPEeHAuUBXcH K
HAaKCHMH3ALKNE oxHpOaemodr npubunn J (Cx,w), rpe u, saBndaercs

HWHTEHCHBHOCTLD NPOR3BONCTEBA, a Xt LeHa NpoOykTa.






