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1. Introduction 

The class of nonsingular M-matrices is extensively 

used in economic theory, biological sciences, numerical 

analysis and many other fields. Its great importance has 

led us to explore some matrix operations that can be 

performed on them especially in view of their economic 

applications. 

The aim of this paper is to investigate whether the 

class of nonsingular M-matrices is invariant under 

multiplication and addition with matrices that are in some 

sense closely related to M-matrices. We also discuss this 

topic by considering special kinds of sums and products, 

which will be defined later on, that are different from the 

usual ones. 

More precisely, in section 2 we give some basic 

definitions and derive some theorems on such matrices. 

Section 3 is concerned with a special subclass of 
M-matrices (namely the Stieltjes matrices) and its 
properties. Finally, 

model is considered 

in section 4, a 

to illustrate 

classical economic 

some meaningful 
applications of the previous theorems. 

2. Main theorems 

We begin this section by introducing some definitions 

that will be used throughout the paper. 

A real-valued square matrix A= [a 1 jJ is called: 

1) positive if a 1 j > 0 for each 1 and j 

nonnegatlve if a 1 j ~ 0 for each 1 and j 

semipositive if a 1 j ~ 0 for each 1 and j and A~ [0] 

2) Z-matrlx if a
1

j s 0 for each 1 ~ j ; 

3) nonsingular M-matrix (or briefly M-matrix) if it is a 
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Z-matrix which admits a semipositive inverse (or 

equivalently, if is a Z-matrix and a P-matrix or if is a 

Z-matrix and all its leading principal minors are 

positive). 

4) positive definite if it is symmetric and all its leading 

principal minors are positive; 

5) Stleltjes matrix if it is a symmetrix M-matrix ; 

6) ~matrix if all its principal minors are positive; 

7) inverse-~matrix if it is nonsingular and its inverse is 

an M-matrix; 

8) inverse-semipositlve (positive) if it is nonsingular and 

its inverse is semipositive (positive). 

Let us denote the sets of Z,P and M matrices of 

size nxn by Zn,Pn,Hn respectively. 

After these preliminary definitions, we now give a 

theorem that exhibits the invariance of Hn under the 

usual product by some of the matrices defined before. 
THEOREM 2.1. Let M be an M-matrix, the following are also 

M-matrices; 

All eH, where cER •. 

A2l HD,EM,EHD where E and Dare any two diagonal matrices 

with positive diagonal elements. 

A3l HB,BH, where B is nonsingular and semipositive such 

that B- 1~ H. 

A4) HN, where 

AS) PHP' where 

Proof. 

H,~Hn and H~Zn. 

P is a permutation matrix. 

All Trivial. 

A2) Obviously both MD and EH are z-matrices and H,D and 

E admit a semipositive inverse. It follows that HD,EM 

'and EMD, being inverse-semipositive, are M-matrices. 

A3) -1 -1 -1 -1 
(B -M)>O and M ~[0] implies M (B -M)<!:[Ol. It follows 

-1 -1 -1 that M B ~I and thus (BM) ~[0]. Furthermore, 

B(B-
1
-Ml=I-BM <!: [0] implies that BM is a Z-matrix, being 
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B~I. Hence the proof is complete. Similarly it can be 

proved that MB belongs to M . n 
A4) Trivial. 

AS) PMP' is obviously a Z-matrix and also admits a 

semipositive inverse. In fact, since every permutation 

matrix is orthogonal, we have: (PMP') - 1 =PM- 1 P'~[0]. 

• Then PMP' EMn. 

A very special kind of matrix product is ~. r being 

any positive integer. This matrix power can be generalized 

to include also rational exponents. If r is a positive 
integer, we define M11r as the matrix B such that Br = M 

Finally we define M<k)= [mk], being ktO and integer. 

Now we shall state the following. 

THEOREM 2.2. Let M be an M-matrix. Then the following are 

also M-matrices: 

Bl) ~.where r is any positive integer and~ is a Z-matrix . 

B2) ~. for p=l!r. 
B3) M(k), where k is any odd integer and M(kJ is a P-matrix. 

Pro o f.Bl) Since (~)- 1 =(M- 1 )r~[0] and~ is a Z-matrix 

then it is an M-matrix. 

B2)To prove that ~ is an M-matrix let us use its 

Taylor series expansion. We can assume that 

A~[O] and s>r(A)>O, where r(A) denotes 
radius of A so that ~=sP(I-A/s)P. Hence 

M= si-A, being 

the spectral 
applying the 

Taylor expansion to (I-A/s)P, since the spectral radius 

of A is less than s, we obtain: 

But O<p<l implies Ck~o. from which it follows easily that 
~is a Z-matrix. Finally, (~)- 1 =(M- 1 )P~[O] completes the 

proof of B2) . 

B3) Obviously M(k) is a Z-matrix, because any odd 

exponent doesn't change the sign pattern of M. 1Since 
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M(k)EP the thesis follows. 
n' 
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• 
We shall now consider, as indicated earlier, the 

invariance of Mn under Fan, Hadamard and Direct Product and 

Sum with M and with other classes of matrices. n , 

The "Fan-product" is defined by: 

{ 
-aijbij for U.j 

C=Ao B• [ c i j] , cij= 

aijbij for i=j 

( 2. 1) 

The "Hadamard-product" is defined by: 

( 2 . 2) 

The "Direct Product", sometimes referred to as the 

Kronecker product of matrices, is defined by: 

( 2 . 3) 

where A and Bare respectively mxn and rxs matrices and C is 

an mrxns matrix. 
The "Direct Sum" is defined by: 

where A and Bare respectively mxn and nxn matrices and C 

is a (m+n)x(m+n) block diaqonal matrix. 

From these definitions, we can deduce the following 

theorem: 
THEOREM 2.3. Let A,BEMn and let D be a nxn diagonal matrix 

with positive diagonal. Then the following are also 

M-matrices: 
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Cl) 

C2) 

C3) 

C4) 

CS) 

A.TORRIERO 

AoB. 

A*N, N*A, where N is an inverse M-matrix. 

AxD, DxA. 

A*D, D1<A. 

AXG, where G is a semipositive matrix with positive 

diagonal elements such that its inverse is also 

semipositive. 

C6) AillB. 

P r 0 0 f. 
Cl) See [4] and Theorem S.3 in [ 1J. 

C2) see Proposition 3 in [ s] . 

C3) The result is an immediate consequence of ( 2. 3) and of 
the following relationship: 

( 2. 4) 

C4) This follows from (2.2) and (2.4) . 

CS) 

C6) 

GB being semipositive,we obtain from (2.3) that Ax~z . 
n 

Since G-
1 is also semipositive, then AxG admits a semi-

positive inverse and thus it is an M-matrix. 

Clearly c is a Z-matrix. Since C-
1
=A- 1

ill B- 1 and A- 1 and 

B-
1 are both semipositive, then also c- 1~[0]. 

Therefore C is an M-matrix. • 

Next we shall investigate whether the properties of 

Mn are preserved also by matrix addition (from Dl) to D7) 

or by a convex linear combination of two M-matrices ( DB) 

or finally by performing on it two or more operations 
previously defined ( D9) ) • 

To this purpose we state the following 

THEOREM 2.4. Let M be an M-matrix. Then the following are 

also M-matrices: 

Dl) M+D, where D is a diagonal matrix with positive 
diagonal. 
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D2) M+T, where M and Tare both lower (upper) triangular 

M-matrices. 

D3) M+T, where M and 

so that (M+T)EZn 

elements. 

T are both lower (upper) 

and M+T has positive 

triangular 

diagonal 

D4) M+N, where NEM and there exists an n-vector w>O such n 

that Mw>O and Nw>O. 

D5) M+N, where NEMn and there exists an 

that M~O and N~O. 

n-vector w such 

D6) M-B, where ~{0] and r{M- 1 Bl<l, 
-1 the spectral radius of M B. 

being 

D7) M-B, where (M-B)EZn and {I-M- 1 Bl is inverse-semi-

positive. 

DB} aM+(1-a)N, where NEMn such that ~M and O<a<1. 

D9) MoD-(M-A)*(D-B), where A,B,D E Mn such that ~A,~B. 

P r o o f Dl) M+D is obviously a Z-matrix. Since M is a 

P-matrix, it follows ·immediately that M+D is also a 

P-matrix and thus it belongs to Mn. 

D2) Since M+T is a triangular matrix with positive 

diagonal elements, its leading principal minors are 

positive. M+T is also a Z-matrix and thus the thesis 

follows. 

D3) See the proof of C2). 

D4) Obviously M+N is a Z-matrix. Since Mw>O and Nw>O 

we hav:e that (M+NJ w>O. Thus, as is well known, the 

existence of such a vector is a necessary and sufficient 

condition for the Z-matrix M+N to be an M-matrix. 

D5) As before (~N)EZn. Hence if we prove that all 

leading principal minors of M+N are positive, we get 

M+NEMn. Let M[k] and N[k], k=l, ... , n, the k><k leading 

principal minors of M and N, respectively. 

Furthermore, let w[k] be the k-vector 

obtained by taking the first k components of w. 
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Obviously M[k] w[k]~[O] and N[k] w[k]~[O]. Applying to M[k] 

and N[k] a slightly modified version of Markham's 

determinant inequality due to R.L.Smith [12] and recalling 

that M[k] and N[k] are both M-matrices, we obtain: 

0< det M[k] + det N[k] ~ det (M[k]+N[k}) for k=l, ... ,n. 

Thus, all leading principal minors of M+N being 

the thesis follows. 

06) Clearly, M-B is a Z-matrix . We can write 

(M-B)- 1 = [M( I-M- 1 B)]- 1 = (I-M- 1 B)- 1 M- 1 . 

positive, 

Since hypothesis assures that (I-M- 1B) is also an 
-1 M-matrix, and being M ~[0] ,we get (M-Bl- 1~[0]. 

This completes the proof of 04). 

07) We can write (M-B)- 1 [I-M- 1B]- 1M- 1 . But since (M-B) 

is a Z-matrix, M and [ I-M- 1 B] are 
semipositive-inverse, the thesis follows. 

DB) C=aM+(l-a)N is a Z-matrix. Since ~M and 
we get immediately GaM. Hence, by Theorem 4.2 in 

follows that c is an M-matrix. 
09) See Corollary 5.3 in [1]. 

3. A special class of M-matrices 

both 

0 <a< 1, 

[6], it 

• 

We shall now discuss some invariance properties 
(under the operations defined above) of a proper subset of 

Mn' i.e the Stieltjes matrices or the symmetric M-matrices . 
Before establishing the next theorem, it is useful to 

point out the property of a Stieltjes matrix to be positive 

· definite. More precisely the following can be easily 
proved: 

THEOREM 3.1. A necessary and sufficient condition for a 

Z-matrix to be a Stieltjes matrix is for it to be positive 
definite. 
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It is easy to verify that the class of Steltjes 

matrices is closed under 

Al) ,AS) I Bl) ,B2) ,B3) ,B4) I 

D4) ,DS) ,D7l ,DB) . 

the operations performed in 

Cl) ,CZ) ,C3) ,C4) ,CS) ,C6) I Dl) I 

This is not true for A2) ,A3) ,A4l ,DZJ ,D3). 

The next theorem exhibits a new set of properties 

satisfied by Stieltjes matrices.In fact the following holds : 

THEOREM 3.2.Let A,B be two nxn Stieltjes matrices. Then the 

following are also Stieltjes matrices: 

El) A+B; 

EZ) La.A., where {A . ji=l,kl is a collection of nxn 
1 1 1 

Stieltjes matrices and {ail is a set of positive scalars. 

Proof. Ell A+B . is obviously a Z-matrix. Since 

(A+Bl'= A'+E' =A+B, it follows that (A+B) is symmetric. 

By taking OtxERn we obtain x'(A+Blx=x'Ax+x'Bx>O and thus 

the result follows,by Theorem 3.1. 

EZJ By All aiAi is a Stieltjes matrix . Since 

by Dl), the sum of Stieltjes matrices is also a Stieltjes 

matrix, the thesis follows • 

4.Some economic applications 

In this section ·we illustrate the applicability of 

the previous theorems to economics. To this purpose, let us 

point out that nonsingular M-matrices appear mostly in 

linear production models such as the classical Leontief 

input - output open model. Currently,hovewer, this model is 

being applied in many other areas as, e . g . studies of 

environmental pollution, some cost evaluation problems and 

cooperative planning problems. 

Now, let us consider an open Leontief input-output 

model that, as is very well known, can be described b~ the 
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following equation: 
[I-A] x=d 

~ A. TORRIERO 

( 4. 1) 

where A is the nxn technological coefficient matrix (also 

called input-output matrix), xis the ~-vector denoting the 

gross output of each industry and d is the n-vector 

representing the final demand. The problem here is to 

determine under which conditions a solution x~[O] exists 

for every ~[0]. 

The economic model just described also has an 

associated dual 

described by: 

model (the price-valuation system) 

p' [I-A] =v' ( 4. 2) 

where p denotes the price vector of the commodities, 

supposed labour-commanded and v is the value added vector. 

From the economic point of view, the solvability of 
(4.1) ( (4.2)) in the nonnegative unknown x~[O] (~[0]) 

means that the technology is productive (or profitable). 

To this purpose, the theory of nonnegative matrices 

shows that as long as M=[I-A] is a ' nonsingular M-matrix, 

(4.1) and(4.2) have the required solution. 

Now, a typical problem often arising in input-output 

analysis concerns the effects of technological changes on 
the price system defined by (4.2). 

In fact, after technological change, 
appear as: 

(4.2) will 

p' [I-(A+l1A)]=v' (4.3) 

where l1A is the nxn matrix describing the variation of the 

input-output coefficients. 

Hence one of the main questions is whether A+l1A is 

still profitable or not. This is equivalent to testing 
whether [I-(A+l1A)] is a nonsingular M-matrix. 
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Depending on the technological change, the resulting 

matrix ~=I-(A+8A)=M-8A can take different patterns as 

those exhibited in All, A2), Dl), D3), D6) and D7). 

Next we show the interpretations of the above 

mentioned theorems in term of the open Leontief model: 

All In this case we have M0 =cM, c being a positive real 

number. Then, this could be interpreted as a new technology 

affecting proportionally all input-output coefficients. 

There will be a technological progress if O<c<l and a 

regress if c>l, but, by theorem 2.1 A1), the resulting 

technology will be, in any case, feasible. 

A2) If we consider, for instance, M0 =MD, then the technical 

change influences the input-output coefficients of the 

industries in the same way. 

D1l ~=M+D shows a technological progress that perturbates 

only the d i agonal coefficients, i.e. those expressing the 

amount of the ith commodity needed as input in industry i. 

Clearly , we deal with a progress because the technological 

coefficients decrease. 

D3) As in D1), the technical change influences only some 

coefficients. More precisely, those lying over (under) the 

main diagonal. Let us point out that D3) has a meaningful 

economic interpretation, whenever the input-output matrix 

can be transformed into a lower triangular matrix. As is 
well known, the triangularization exhibits a whole 

hierarchical correlation. This implies that industry i buys 

inputs from industry (i+k) (k=1,n-i) and sells outputs to 
industry ( i-h) ( h= 1, i-1). 

The above described transformation, if it exists, can 

be easily performed by multiplying the matrix [I-A] by P on 

the right and P' on the left, P being a suitable 

permutation matrix. Owing to theorem 2.1, AS), the 

resulting matrix will be also an M-matrix. 

Therefore, in this case, as long as M-T is a 
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z-matrix, the new technology will be still feasible. 

06) and 07) generalize the previous propositions by 

into account technological changes involving 

taking 

all 

industries. More precisely, 06) refers to a progress while 

07) is concerned with arbitrary changes of the input-output 

coefficients. 
Finally C6) can be interpreted in terms of industrial 

interdependence. In fact C6) shows that if the industries 

can be aggregated in two independent and productive blocks 

A and B then the whole technology is itself productive. 
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UWAGI 0 OPERACJACH NA M-MACIERZACH I ICH ZASTOSOWANIACH 
EKONOMICZNYCH 

w artykule rozwaza sle zagadnienle czy klasa M-maclerzy 
jest lnwariantna wzgledem mnozenia 1 dodawanla z 
macierzaml, kt6re w .pewnym sensie Sq blisko zwiqzane z 
M-maclerzaml. Zagadnienle to jest r6wnlez rozwazane dla 
specjalnych rodzaj6w sum i iloczyn6w, ~6znych od 
standardowych, 1 dla tych warunk6w udowodnlono odpowiednie 
twierdzenia. W zakonczeniu pokazano zastosowanie 
udowodnlonych twierdzen w klasycznym modelu ekonomlcznym. 

3AMEqAHM~ OB OUEPAUM~X HA M-MATPMUAX M MX DPMMEHEHM~X B 
3KOHOMMKE 

B CTaTbe paccftaTpasaeTcR sonpoc: RBnReTcR na Knacc 
M-ftaTpMU HHBapMaHTHYft DO OTH0.9HMD K nepeftHO.eHBD H 
cno•eHHD C ftaTpBUaMH, KOTOpWe B H9KOTOpOft CMYcne RBnHDTCR 
6nB3KO CBR3aHHYftHH c M-ftaTpauaftB. 3TOT sonpoc 
paccftaTpasaeTCR TaK•e ~nR cny~aR oco6wx BH~OB cyMK a 
OpOM389~9HHI, OTnH~aD~BXCH OT CTaH~apTHWX, H ~nR 3THX 
ycnOBBI ~OKa3aHW COOTB9TCTBYD.Me T90p9KW. B 3aKnD~9HHB 

DOKa3aHO OpBft9H9HB9 ~OKa3aHHWX T90peK B KnaCCH~9CKOI 

3KOHOftM~9CKOI ftOR9nH. 




