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In this paper we investigate whether the
class of nonsingular M-matrices is invariant
under multiplication and addition with matrices
that are in some sense closely related to
M-matrices. We also discuss this topic by
considering special kinds of sums and products
that are different from the usual one, deriving
some theorems on such matrices. Finally we
illustrate the applicability of the previous
theorems to a classical economic model.
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1. Introduction

The class of nonsingular M-matrices 1is extensively
used in economic theory, bioclogical sciences, numerical
analysis and many other fields. Its great Iimportance has
led us to explore some matrix operations that can be
performed on them especially in wview of their economic
applications.

The aim of this paper is to investigate whether the
class of nonsingular M-matrices is invariant under
multiplication and addition with matrices that are in some
sense closely related to M-matrices. We also discuss this
topic by considering special kinds of sums and products,
which will be defined later on, that are different from the
usual ones.

More precisely, in section 2 we give some basic
definitions and derive some theorems on such matrices.

Section 3 is concerned with a special subclass of
M-matrices (namely the Stieltjes matrices) and its
properties. Finally, in section 4, a classical economic
model is considered to illustrate some meaningful
applications of the previous theorems.

2. Main theorems

We begin this section by introducing some definitions
that will be used throughout the paper.
A real-valued square matrix A = [aij] is called:
1) positive if ajy >0 for each i and 7 ;
nonnegat;va if a;j 20 for each i and 7 ;
semipositive if a;y 2 0 for each i and j and A # [0] ;
2) Z-matrix if ajj £ 0 for each i # 7 ;
3) nonsingular M-matrix (or briefly M-matrix) if it is a
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Z-matrix which admits a semipositive inverse (or
equivalently, if is a Z-matrix and a P-matrix or if is a
Z-matrix and all its leading principal minors are
positive).

4) positive definite if it is symmetric and all its leading
principal minors are positive;

5) Stieltjes matrix if it is a symmetrix M-matrix;

6) P-matrix if all its principal minors are positive;

7) inverse-M-matrix if it is nonsingular and its inverse is
an M-matrix;

8) inverse-semipositive (positive) if it is nonsingular and
its inverse is semipositive (positive).

Let us denote the sets of Z,P and M matrices of
size nmxn by zn'Pn'Mn respectively.

After these preliminary definitions, we now give a
theorem that exhibits the invariance of Mn under the
usual product by some of the matrices defined before.
THEOREM 2.1. Let M be an M-matrix, the following are also
M-matrices;

A1) cM, where ceR .

A2) MD,EM,EMD where E and D are any two diagonal matrices
with positive diagonal elements.

A3) MB,BM, where B 1is nonsingular and semipositive such
that B 'z M.

Ad4) MN, where M,NEMH and hmEzn.

A5) PMP' where P 1is a permutation matrix.

Proof.

Al) Trivial.

A2) Obviously both MD and EM are Z-matrices and M,D and
E admit a semipositive inverse. It follows that MD,EM
‘and EMD, being inverse-semipositive, are M-matrices.

A3) (B '-M)>0 and M '2[0] implies M ‘(B '-M)2[0]. It follows
that Mlp a1 and thus (BM) '2[0]. Furthermore,
B(B'-M)=I-BM > [0] implies that BM is a Z-matrix, being
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BM<I. Hence the proof is complete. Similarly it can be
proved that MB belongs to Mh.
A4) Trivial.

A5) PMP° is obviously a Z-matrix and also admits a
semipositive inverse. In fact, since every permutation
matrix is orthogonal, we have: (PMP') ‘=pM 'P'2(0].

Then PMP'EMH. [

A very special kind of matrix product is Mr, r being

any positive integer. This matrix power can be generalized
to include also rational exponents. If r is a positive

integer, we define hﬁ/r as the matrix B such that Bf = M

Finally we define M(k)= £mk]. being k0 and integer.

Now we shall state the following.

THEOREM 2.2. Let M be an M-matrix. Then the following are
also M-matrices:

B1) Mr,where r is any positive integer and MF is a zZ-matrix.
B2) MP, for p=1/r.
B3) M(k}, where k is any odd integer and M is a P-matrix.
Proo £f.Bl) Since (M) '=(M")%2[0] and M is a Z-matrix
then it is an M-matrix.

(k)

B2)To prove that Mp is an M-matrix let us use its
Taylor series expansion. We can assume that M=sI-A, being

Az[0] and s>r(A)>0, where r(A) denotes the spectral
radiug of A so that MP=sP(1-a/s5)P. Hence applving the
Taylor expansion to (I—A/s)p. since the spectral radius
of A is less than 5, we obtain:

p
MP=5P(1-Tc, AF) where ck=[ ] =175k gF
k

But 0<{p<1 implies Ckko, from which it follows weasily that

MP is a Z-matrix. Finally, (Mp)_1=(hf1}p2[0] completes the
proof of B2).
B3) Obviously M{k} is a Z-matrix, because any odd

exponent doesn't change the sign pattern of M. 'Since
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H(k)

ePﬂ. the thesis follows. - ]
We shall now consider, as indicated earlier, the
invariance of Hn under Fan, Hadamard and Direct Product and

Sum with Mh and with other classes of matrices.

The "Fan-product” is defined by:

—ajjbjj for i#j
c=a°.5'tcjj]a c.fj= (2-1}
aijbfj for i=j

The "Hadamard-product" is defined by:

CEA*B=[cjj]. cjj=[ajjbjj]. (2.2)

The "Direct Product", sometimes referred to as the
Kronecker product of matrices, is defined by:

=Ab

cjj (2.3)

CEANB=[cjj], 1y
where A and B are respectively mxn and 1rxs matrices and C is
an mrxns matrix.

The "Direct Sum" is defined by:

A 0
C=A®&B =

where A and B are respectively mxn and nxn matrices and ¢
is a (mn)x(mn) block diagonal matrix.

From these definitions, we can deduce the following
theorem:
THEOREM 2.3. Let A,BEMH and let D be a nxn diagonal matrix
with positive diagonal. Then the following are also
M-matrices:
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Cl) A-B.

C2) AxN, NxA, where N is an inverse M-matrix.

C3) AxD, DxA.

C4) AxD, DxA.

CS)‘AXG, where G 1Is a semipositive matrix with positive

diagonal elements such that its inverse is also
semipositive.
C6) A®B.

Proof.

C1) See [4] and Theorem 5.3 in [1].

C2) See Proposition 3 in [5].

C3) The result is an immediate consequence of (2.3) and of
the following relationship:

(axB)'=a"'x B, (2.4)

C4) This follows from (2.2) and (2.4).

C5) GB being semipositive,we obtain from (2.3) that AXGEZH.
Since G ' is also semipositive, then AxG admits a semi-
positive inverse and thus it is an M-matrix.

C6) Clearly C is a Z-matrix. Since ¢ '=Aa"'¢ B! and a™! and
B! are both semipositive, then also ¢ '2[0].

Therefore C is an M-matrix. - ]
Next we shall investigate whether the properties of

Mn are preserved also by matrix addition (from D1) to D7) )

or by a convex linear combination of two M-matrices ( D8) )

or finally by performing on it two or more operations
previously defined ( D9) ).
To this purpose we state the following

THEOREM 2.4. Let M be an M-matrix. Then the following are

also M-matrices:

D1) M+D, where D 1is a diagonal matrix with positive
diagonal.
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D2) M+T, where M and T are both lower (upper) triangular
M-matrices.

D3) M+T, where M and T are both lower (upper) triangular
so . that rM¥T)€2n and M+T has positive diagonal
elements.

D4) M+N, where NEMn and there exists an n-vector w>0 such

that Mw>0 and Nw>O.

D5) M+N, where NEMn and there exists an n-vector w such
that Mwz0 and NwzO.

D6) M-B, where Bx[0] and riM'BI<1, r(M 'B) being
the spectral radius of M 'B.

D7) M-B, where (M—B)ezn and [I-M 'B] is inverse-semi-
positive.

D8) aM+(1-a)N, where AEMH such that NeM and O<a<l.

D9) M-D-(M-A)*(D-B), where A,B,D € Mn such that MzA,I=B.

Proof DI1) MtD is obviously a Z-matrix. Since M is a
P-matrix, it follows -immediately that M+D is also a
P-matrix and thus it belongs to Mn' )

D2) Since M+T is a triangular matrix with positive
diagongl elements, its leading principal minors are
positive. M+tT is also a Z-matrix and thus the thesis
follows.

D3) See the proof of C2).

D4} Obviously MtN is a Z-matrix. Since Mw>0 and Nw>0
we have that (M+tN)w>0. Thus, as is well known, the
existence of such a vector is a necessary and sufficient
condition for the Z-matrix M+N to be an M-matrix.

D5) As before LM+N)EZn. Hence if we prove that all
leading principal minors of MN are positive, we get
M+NEMR. Let M[k]l] and NI[kl, k=1,...,n, the kxk leading
principal minors of M and N, respectively.

Furthermore, let wlkl] be the k-vector
obtained by taking the first k components of W.
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Obviously M[klwlkl2[0] and N[klwlkl2[0]. Applvying to Mkl
and N[kl a slightly modified version of Markham's
determinant inequality due to R.L.Smith [12] and recalling
that M[k] and N[k] are both M-matrices, we obtain:

0< det M[k] + det NI[k] < det (M[k1+N[k}) for k=1,...,n.
Thus, all leading principal minors of M+N being positive,
the thesis follows.

D6) Clearly, M-B is a Z-matrix. We can write
(M-B) " '=(M(I-0""'B)) " = (1-M B T
Since hypothesis assures that (I-M 'B) is also an
M-matrix,and being M '2[0],we get (M-B) '2[0].
This completes the proof of D4).

D7) We can write (M-B) '[I-M'BI "M '.But since (M-B)
is a Z-matrix, M and [1-»'B] are both
semipositive-inverse, the thesis follows.

D8) Cc=aMt+(1-a)N is a Z-matrix. Since MM and 0<a<l,
we get immediately CzM. Hence, by Theorem 4.2 in [6], it
follows that € is an M-matrix.

D9) See Corollary 5.3 in [1]. |

3. A special class of M-matrices

We shall now discuss some Iinvariance properties

(under the operations defined above) of a proper subset of

Mn' i.e the Stieltjes matrices or the symmetric M-matrices.

Before establishing the next theorem, it is useful to

point out the property of a Stieltjes matrix to be positive

definite. More precisely the following can be easily
proved:

THEOREM 3.1. A necessary and sufficient condition for a

Z-matrix to be a Stieltjes matrix is for it to be positive

definite.
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It is easy to verify that the class of Steltijes
matrices is closed under the operations performed in
Al),A5), B1),B2),B3),B4), cC1),C2),C3),C4),C5),C6), D1),
D4),D5),D7),D8).

This is not true for A2),A3),Ad4),D2),D3).

The next theorem exhibits a new set of properties

satisfied by Stieltjes matrices.In fact the following holds:

THEOREM 3.2.Let A,B be two nxn Stieltjes matrices. Then the
following are also Stieltjes matrices:

El) A+B;

E2) ZaA;, where {Aj}j=1,k} is a collection of nxn
Stieltjes matrices and {aj} is a set of positive scalars.

Proof. El) A+B  is obviously a Z-matrix. Since
(A+B)'= A'+B =A+B, it follows that (A+B) is symmetric.
By taking 0#xcR” we obtain x' (A+B)x=x'Ax+x’'Bx>0 and thus
the result follows,by Theorem 3.1.

EZ) By A1) ajAj is a Stieltjes matrix. Since
by D1), the sum of Stieltjes matrices is also a Stieltijes
matrix, the thesis follows ]

4.Some economic applications

In this section'we illustrate the applicability of
the previous theorems to economics. To this purpose, let us
point out that nonsingular M-matrices appear mostly in
linear production models such as the classical Leontief
input-output open model. Currently,hovewer, this model is
being applied in many other areas as, e.g. studies of
environmental pollution, some cost evaluation problems and
copperative planning problems.

Now, let us consider an open Leontief input-output
model that, as is very well known, can be described by the
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following equation:
[I-A]l x==d {d.1)

where A is the nxn technological coefficient matrix (also
called input-output matrix), x is the n-vector denoting the
gross output of each industry and d 1is the n-vector
representing the final demand. The problem here 'is to
determine under which conditions a solution x2[0] exists
for every d=[0].

The economic model 3just described also has an

associated dual model (the price-valuation system)
described by:

p' [I-Al=V (4.2)

where p denotes the price vector of the commodities,
supposed labour-commanded and v is the value added vector.

From the economic point of view, the solvability of
(4.1) ((4.2)) in the nonnegative unknown x=[0] (p2[0])
means that the technology is productive (or profitable).

To this purpose, the theory of nonnegative matrices
shows that as long as M=[I-A] is a nonsingular M-matrix,
(4.1) and(4.2) have the required solution.

Now, a typical problem often arising in input-output
dnalysis concerns the effects of technological changes on
the price system defined by (4.2).

In fact, after technological change, (4.2) will
appear as:

p' [ I-(A+44) )=V (4.3)

where AA is the nxn matrix describing the variation of the
input-output coefficients.

Hence one of the main gquestions is whether A+AA is
still profitable or not. This is equivalent to testing
whether [I-(A+AA)] is a nonsingular M-matrix.
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Depending on the technological change, the resulting
matrix M'=I-(A+AA)=M-AA can take different patterns as
those exhibited in A1), A2Z), D1), D3), D6) and D7).

Next we show the interpretations of the above

mentioned theorems in term of the open Leontief model:
Al) In this case we have M=cM, c being a positive real
number. Then, this could be interpreted as a new technology
affecting proportionally all input-output coefficients.
There will be a technological progress if 0<ec<l and a
regress if c¢>»1, but, by theorem 2.1 Al), the resulting
technology will be, in any case, feasible.

A2) If we consider, for instance, M =MD, then the technical
change influences the input-output coefficients of the
industries in the same way.

D1) M’ =M+D shows a technological progress that perturbates
only the diagonal coefficients, i.e. those expressing the
amount of the ith commodity needed as input in industry 1.
Clearly, we deal with a progress because the technological
coefficients decrease.

D3) As in D1), the technical change influences only some
coefficients. More precisely, those lving over (under) the
main diagonal. Let us point out that D3) has a meaningful
economic interpretation, whenever the input-output matrix
can be transformed into a lower triangular matrix. As is
well known, the triangularization exhibits a whole
hierarchical correlation. This implies that industry i buys
inputs from industry (i+k) (k=1,n-Ji) and sells outputs to
industry (i-h) (h=1,1i-1).

The above described transformation, if it exists, can
be easily performed by multiplving the matrix [I-A] by P on
the right and P' on the 1left, P being a suitable
permutation matrix. Owing to theorem 2.1, AS5), the
resulting matrix will be also an M-matrix.

Therefore, in this case, as long as M-T is a
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Z-matrix, the new technology will be still feasible.

D6) and D7) generalize the previous propositions by taking
into account technological changes involving all
industries. More precisely, D6) refers to a progress while
D7) is concerned with arbitrary changes of the input-output
coefficients.

) Finally C6) can be interpreted in terms of industrial
interdependence. In fact C6) shows that if the industries
can be aggregated in two independent and productive blocks
A and B then the whole technology is itself productive.
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UWAGI O OPERACJACH NA M-MACIERZACH I ICH ZASTOSOWANIACH
EKONOMICZNYCH

W artvkule rozwaza sie zagadnienie czy klasa M-macierzy
jest inwariantna wzgledem mnozZenia i dodawania z
macierzami, ktére w pewnym sensie sa blisko 2zwiazane =z
M-macierzami. Zagadnienie to Jjest roéwniez rozwazane dla
specjalnych rodzajéw sum i iloczyndw, réznych od
standardowych, i dla tych warunkéw udowodniono odpowiednie
twierdzenia. W zakonczeniu pokazano zastosowanie
udowodnionych twierdzen w klasycznym modelu ekonomicznym.

3AMEYAHKA OB ONEPALKAX HA M-MATPHUAX H KX NOPHMEHEHHAX B
SKOHOMHKE

B ctarbe paccHaTpEBaeTcs BoONpoc: ABNReTCA NE  Knacc
M-maTpEll HMHBAPDHAHTHHM NO OTHONEHED K NepenHOXEeHED "
CNOXEHHD C MATPHUAMH, KOTOPDHE B HEKOTOPOM CHHCNE HBRADTCH
G6nasxo CBA3aHHHHUN c M-naTpruamns. JtoT Bonpoc
paccmaTpEBaeTcs TakKkEe AnA  cnyYas ocoOMX PBHOOB CYMM H
npoua3BeneHufi, OTARYADUMXCHA OT CTAHAAPTHHX, W AN aTux
ycnoss#i [oOXa3aHM COOTBETCTBYDNR® Teopend. B 3axnoycHmn
NoKasaHO MNpEMEHeHNe JOKa3aHHNX Teopen B KnaccHieckod
9KOHOMHYECKOR nMonens.






