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A global existence result for two-phase Stefan problems with oonlinear nux conditions with 
timc-dependem subdifferentials on lhc fixed boundary is established. To this end. special energy 
estimates. holding fo r a large class of initial dala, are proved. 

l. Introduction 

In our previous paper [13) we established a local existence result and 
a comparison result for the following two-phase Stefan problem in one­
-dimensional space: 

{

p(u)1 -Ux .• . = OinQ~(T, ) = {(t,x);O <l<l(t).O<t<T}, 
(1.1) 

and m Q,- (T) = {(t,x); I (t) < x < 1, 0 < t < T}, 

u(O,x) = U
11
(x) for a.e. x E [0, 1], (1.2) 

{ 
uAt, 0+) E obH/u(t,O)) for a.e. I E [0, T], 

(1 .3) 
- u.,.(t, 1-) E ab, (u (t, I)) for a.e. t E (0, T ], 

u(t,l (t)) = 0 for any t E (0, T], (1.4) 

{ 
I'(T) ( = d~~~t)) = - ux (t, l (r) - ) + u,, I (t) +)for a.e. t E [0, T ], 

l(O) = /o, (1.5) 
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whcreu = u(r,x)andx = / (t), O < l(t) < l,aretheunknownfunctionswhich 
are respectively defined on [0, T] x [0, 1) and [0, T] ; p = p (r) is a given increasing 
function on R which vanishes at 0 and is bi-Lipschitz continuous on R; 
{b!} = {b:; t ~0}. i = 0, 1, are given families of proper lower semicontinuous 
(l.s.c .) convex functions b~ 0 on Rand ob: O stand for their subdifferentials in R; 
u, , to are initia l data given in U (0, 1) and in the interval (0, I), respectively. This is 
a tll'o-phase Stefan problem with flux conditions controlled by time-dependent 
subdifferentials ob; 0 on the fixed boundary X = i, i = 0, I 

In the present paper we shall give an energy estimate for u and I by the same 
method as in Evans-Kotlow [4], and show that problem ( 1.1)- ( 1.5) is solvable 
for a larger class of initial functions U

11 
than that treated in [ 13]. Moreover, 

making use of the energy estimate, we shall investigate the behavior of the free 
boundary x = l(t) as t j T*, where T* is the upper end of maximal interval 
where the solution exist. In particular, when b:(·) is independent of timet, i.e. 
b;O = b1('), Stefan problems of the same type as above were completely solved 
by Yotsutani [21, 23]. In the time-dependent case, the energy estimate is of course 
more complicated than in the time-independent one. In fact, it depends 
essentially upon the smoothness of the mappings t -+b;('). 

As to one or two-phase Stefan problems with nonlinear smooth flux 
conditions on the fixed boundary, many interesting results have been established. 
For instance, see Cannon-DiBenedetto [3], Fasano-Primicerio [5], Knabner [14], 
Niezg6dka-Pawlow [16], Niezg6dka-Pawlow-Visintin [17], Pawlow [18], and 
Yisintin [19). Also. see Yotsutani [20, 21 ,] and Kenmochi [11, 12] for related 
one-phase problems, and especially Magenes-Yerdi-Yisintin [14] and Beni­
lan-Crandaii-Sacks [2] for the nonlinear semigroup approach. 

Recently. an interesting problem of the free boundary control was proposed 
and has been studied by Hoffmann-Sprekels [6, 7, 8]. The free boundary control 
is very important from the mechanical point of view, and it can be done by 
controlling the flux of the temperature on the fixed boundary. The boundary 
condition (1.3) may be regarded as a simple mathematical description in such 
a context. though the expression is not so realistic in some practical respects. 

2. Statement of results 

In general, for a (real) Banach space V, we denote by l· lv the norm in V, and use 
the symbols "-+" and "lim" to indicate strong convergence in V, unless otherwise 
stated. 

Throughout this paper, for the s(lke of simplicity of notation we put 

H = U (0, 1) and X= WL 2 (0, I) (c C ( [0, 1]) ). 

We denote by SP = SP (p; {b~}, {b:}, 11
0

, /
0

) on [0, T], 0 < T < oo, the 

problem ( I. I)- (1.5) and say that {u, / } is a solution of SP on [0, T], if 
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u e C([O, T]; H)() W!~ (0, T]); H)() £2(0, T; X) r'l L {~ ((0, T]; X), 

b/'>(u(·, i)) e V (0, 1) r'l L 1~((0, T]), i = 0, 1, (2.1 ) 

I e C ( [ 0, T]) () W~C: ( (0, T ]), 0 < I < l on [0, T], 

and (l.l)- (1.5) are satisfied. Also, we say that for 0 < T' :::; oo, {u, I} is a 
solution ofSP on [0, T ' ), if it is a solution of SP on [0, T] for every 0 < T < T ' in 
the above sense. 
REMARK 2.1. In the above definition of solution { u, I} to SP on [0, T], we 
see from (2.1) that u.J , 0+ ), u.J , 1-) are in L1~c((O, T]), because u.u = 
p(u)1 e L 1~((0, T]; V(!)), I= (0, b) or (1- o,l), for a positive number b with 
b :::; I :::; I - b on [0, T]. Therefore in condition ( 1.5) the relation 

l'(t) = - ux(t, /(t) -) + ux(t, l (t) +)for a.e. t E [0, T] 

is equivalent to 

1 1 I 

I (t) = I (s) + f p (u)(s,x) dx- f 
0 

p(u)(t,x)dx+ f. {ux(r,l - ) - u.(r,O+ )} dr 
0 

(2.2) 
for any 0 < s :::; t :::; T. 

This equivalence can be easily proved with the aid of the formula of integration 
by parts. Moreover, if u e w1.z (0, T; H), then (1.5) is equivalent to 

1 1 I 
/(t) = I 0 + J 

0 
p (u 0 )(x) dx - f 

0 
p(u)(t,x)dx+ f. {u.(r,1 -)- u.(r,O+)} dt 

(2.2) ' 
for any t e [0, T]; 

note that u . .<- , 0+ ), u .. (- , 1-) are in £2 (0, 1) in this case. 
Given two positive numbers C1 , C2 , we denote by r(C1, C2) the class of all 

functions p : R -t R such that p (0) = 0 and 
C1 (r- r'):::; p(r)- p(r'):::; C2 (r- r') for any r, r' eR with r ~ r'. 

Also, given two functions <Xo E W1,~~ (R+), <XI E W1,~; (R+), we denote by B (ao, ~) 
the class of all families { b1

; t ~ 0} of proper l.s.c. convex functions b1 
(·) on 

R having the following property (*): 
(*)For any s, t eR+ with s :::; t and any reD (b·1 ( = {re R; ll (r) < oo }) there is 
re D(b 1

) such that 

lr - rl :S lao (t) - <X0 (s) I( 1 + lrl + lb·' (r)P 12 ), 

b1 Cr) -ll(r) :5 la1 (t)- <X1 (s) 1(1 +lrl2 +lll(r)l). 

For two proper l.s.c. convex functions b1 0 and b2 0 on R we indicate by "b
1 

:5 * b2 on R" that 



10 N. KENMOCI-ll 

b1 (r 1\ r') + b2 (r V r') ~ b1 (r') + b2 (r') for any r, r' ER, (2.3) 

where r 1\ r ' = min {r, r '} and r V r' = max {r, r'}. It is easy to see that (2.3) 
implies 

(rf- ri )(r
1

- r2 )+ 2:: 0 for any r'f E Ob1 (r1), i = 1, 2. (2.4) 

In the existence theorem for SP (p; {b~}, {b:},· u,, In) which we shall prove in this 
paper, we postulate the strong (resp. weak) compatibility condition for the Stefan 
data {bi}, i == 0, l, u

0 
EX (resp. U

0 
EH) and 0 < 1

0 
< 1, which consists of the 

following conditions (2.5), (2.6) and (2.7) (resp. (2.7)'): 

ob~(r) c (- 00, 0) for any t ER+ and r < 0. 

ob{ (r) c (0, + oo) for any t ER+ and r >0. 

(2.5) 

(2.6) 

u
0 

2:: 0 on [0, /,], U
0 
~ 0 on [/

0
, 1], U

0 
(0) E D (b~) and U

0 
(1) E D (b?). (2. 7) 

u,. 2:: 0 a.e. on [0, lul and u0 ~ 0 a.e. on [(,, 1]. (2. 7)' 

The purpose of the present paper is to establish existence and uniqueness 
theorems for SP as well as the energy inequality for the solution under the weak 
compatibility condition for the Stefan data. 

The first theorem is concerned with the existence of a solution to SP. 
THEOREM 2.1. Let p E ree1 , e2 ) , {bn E Bea0 , a), i = 0, 1, U0 EH and 0 < 10 

< I be such that the weak compatibility condition holds. Then, for some positive 
number T, SP (p,· {b~} , {b{}; U

0
, 1

0
) has a solution {u, /} on [0, T] such that 

t112 u' E £2(0, T; H), t1 ' 2 u, E U ' (O, T; H), 

and 

t1 12 I' E £2 eo, T), 

where u' = ed/dt)u. 

The next theorem is concerned with the comparison of solutions to SP 
associated with different Stefan data. ~ 
THEOREM 2.2. Let p E ree1 , e2 ), {b;} E B(a

0
, a1), {b:} E B(a

0
, ~), i = 0, I, U

0 
EH, 

U
0 

E H, 0 < 1
0 

< and 0 < 7
0 

< 1. Suppose 

bi ~ * b: on R for any t E R + and i = 0, I , (2.8) 

~ Futher suppose that Ste.fan data { b:} I i = 0, 1' uo, 10 as well as { b n. i = 0, 1' uo, 
/
0 

satisfy the weak compatibility condition. Let { u, l} and { u, 1} be solutions of 
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SP(p; {b ~}. {b;}; U
0

, 1
0

) andSP(p; {b~}, {bl}, u
0

, 70 ) on [0, T] , respectively. 
Then, for any 0 ~ s ~ t ~ T, 

1 (p (u)(t)- p (u)(t)) -r l 
1 

+ (l(t) -7(t))+ 
L (0,1) 

I 

+ L (u.Jr, 0+) - u_.(t , O+))ao ([u(t, 0) - u(t, O)]+)dt 
(2.9) 

I 

-fs (ux(t, 1 - )-u_.(t, 1 -))a0 ( [u (t, 1) - ft(t , l )]+)dt 

~ I (p (u) (s) - p (u) (s)) +IL1 eo 
1
> + (I (s) - 7 (s))+ 

' 
where 

1 ifr > 0, 
ao (r) = 0 ifr = 0, 

-I ifr < 0. 

In particular, for any 0 ::; s ~ t ::; T, 

I (p (u)(t) - p (u) (t))+l 1 + (I (r) - 7 (c)) + 
L (O,I) 

(2. 10) 
< I (p (u)(s) - p (u)(s))+l 1 + (I (s) - 7 (s)V 
- L (0,1) 

Moreover, ifb ~ = b ;for any t ER+ and i = 0, I , then for any 0::; s::; t::; T , 

I (p (u)(t) - p (u )(t) I 1 + (I (t) - 7 (t) I 
L (0,1) 

(2.11) 
< I p (u)(s) - p (u )(s) I 1 + (I (s) - 7 (s) 1. 
- L (0,1) 

COROLLARY. In addition to the assumptions of Theorem 2.2, assume that u
0 

::; u
0 

a.e. on [0, 1] and 1
0 

::; 7
0

• Then, 

u ~ u on (0, T] x [0, 1] and I ~ 7 on [0, T]. 

The above corollary shows the uniqueness of solution to SP. The inequality 
(2.9) was proved in [13] for the solution { u, I} under the strong compatibility 
condition. It is easily seen that the inequality remains true under the weak 
compatibility condition, too, so that the proofs of Theorem 2.2 and its corollary 
are omitted. 

In this paper we shall establish the following theorem on the energy estimate 
for the solution of SP. 
THEOREM 2.3. Under the same assumptions as in Theorem 2.1, for the solution 
{u, 1} to SP(p; {b~}, {bi}; u0 , 10 ) on [0, T] it holds that 
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} I 2 l I 

X (t, u (t)) + C J.. lP (u)'(t)lu dt + 2 J s 11' (r)p dr _ 
2 

I 

~ x(s, u(s)) + J. la~(•)l(lu_,(r, 0 +)1+1 ux (r, l- )l)y(r, u(r))1 12 dr (2.12) 

I 

+ L la; (r) IY (r, u (r)dr for any 0 < s ~ t ~ T, 

where 

and 

y (t,z) = b~ (z (0)) + b; (z (I))+ B1 (lz (0)1 + lz (1)1) + B2 (~ 0), z Ex. 

with some positive constants 81 , B2 determined only by T, lcx~l 1} , la;l1.t and b ~. 
. 0 h (0.1) (0.7) 
t = , 1. Moreover, we ave 

I I 1 I 

(t - s) X (t,u (t) ) + C L (r - s)lp (u)'(t) I; d T + 2 J s (• - s)ll' (r)l3dr 
2 

+ J: (t - s)lcx; (r)ly (r,u (r))dr for any 0 ~ s < t ~ T. 

REMARK 2.2 In the case the boundary condition (1.3) is of the usual Dirichlet 
type orb: are independent of timet, i.e. b}(·) = b1(-) , the same kind of energy 
inequality as (2.12) was earlier obtained by Evans-Kotlow [4] and Yotsutani [21 ]. 

The next theorem is concerned with the convergence of solutions to SP. 
THEOREM 2.4. Let p, _ p, e r(C1, C2 ), {b}}, {b}.n} E B(cx

0
, a), 

i = 0, I, U0 , uo.n E Hand 10 , 10 _, E (0, I), n = 1, 2, · · · . Suppose that Stefan data { bn, 
U0 , 10 as well as { b;,n}, uo.n• 10 ,, satisfy the weak compatibility condition for each 
n = I, 2, .. ·, and suppose that 

and 

p, --+ p uniformly on every compact subset of R, 
uo.n --+ u0 in H, 
lo,n --+ / 0 in R 

bl.n --+ b; on R in the sense of M osco (cf. [ 13]) for each t e R+ 

as n --+ oo . Furthermore assume that SP = S P (p;{b~}; {b:}; u
0

, /
0

) has a solution 
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{u, /} on an interval [0, T], 0 < T < eo . Then,for large n, SPn = SP(p; {b~.n}, 
{b:.,.}: uo,w lo.n ) has a solution {u,., In} on the same interval [O,T]. Moreover, 

and 

un -+ u in C ([O, T]; H) and in V (0, T; X), 
t l /2 u~ -+ t l/2 u ' weakly in V (0, T; H), 
t l/2 u,_v -+ t 1

'
2 ux weakly * in L 00 (0, T; H), 

In -+ I in C ( [O, T]) 

t113 1;, -+ t 1'3 / ' weakly in V (0, T) 
as n -+ co. 

Finally we shall show the behavior of the free boundary x = I (t). 
THEOREM 2.5. Under the same assumptions as in Theorem 2.1, denote by 
T"' = T * (p; {b~} , {b :}, U0 , l,J, 0 < T * :5 co , so that [0, T *J is the maximal 
interval of existence of the solution { u, I} to SP. Then, one and only one of the 
following cases (a), (b), (c) always holds: 

(a) T * = eo; 
(b) T * < co and limn ro l (t) = 0; 
(c) T"' < oo and /im tf P l(t) = I. 

3. Known results and some lemmas 

First of all we recall a local exis tence theorem for SP under strong 
compatibility condition, which has been proved in [13]. 
THEOREM 3.1 (cf. [13]). Let p E r(C1 , C2 ) , and let {b:} E B(rx

0
, ~), 

i = 0, I , U0 e X and 0 < lo < 1 be such that the strong compatibility condition 
holds. Then ,for some positive number T , SP(p; {b~ }, {b: }; U

0
, /

0
) has a solution 

{u, 1} on [0, T] such that 

u E WL 2 (0, T; H) n L 00 (0, T; X) ( c: C([O, T] X (0, 1]) ), 

b/'> (u(', i)) e £ 00 (0, T), i = 0, 1, 

and 

In fact , it was proved in (13] that a local solution { u, l} ofSP can be constructed 
as that of the problem 

{

p (u) ' (t) + o<l> '1(u (t)) 3 0 for a.e. l e [0, T] , 

(1.2) and (1.5) hold, (3.1) 
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where p (u)' = (dfdt) p (u), $i(·), I ;::: 0, is a proper l.s.c. convex function on 
H defined by 

I 

{ 
-
2 

lz,l ~ + b;(z(O)) +b) (z(l)) 
<I>~ (z) = 

ex:> otherwise, 

if= EX and z(/(1)) = 0, 

and 8<1>/ 0 is the subdifferential of <1>/ in H. Simultaneously it was shown for the 
solution { u, l} that for any 0 ~ s ~ t ~ T 

(3.2) 
I 

~ <I>~ (u (s)) + A2 J.; {la~ ('r)l2 +la~ (r)l + 11' (t) 12 } (<1>/ (u (t)) + A3 ) dt, 

where A;. i = l, 2, 3, are positive constants depending only on p E reel' C2), 
{ bi}, i = 0, I, U

0 
and /0 • From (3.2) it follows that 

for any 0 ~ s ~ T. (3.3) 

REMARK 3.1. As it is seen from checking carefully the construction of a solution 
in [13], the interval of existence of the solution u, can be chosen uniformly in 
p E r ( c,' Cz), {bH E B (aD, tX), i = 0, l' uo E X and 10, as long as luolx, lP; (uo (i )), 
i = 0, I, vary in a bounded subset of R, 1

0 
in a compact subset of(O, 1) and (2.5), 

(2.6) and (2. 7) hold. 
Next we list some useful inequalities in Sobolev spaces: 

lviL~<O ·" < elv,l 2 + C(b,e)lvl 2 , , v E Wt. 2 (0, b), (3.4)' 
·"' - · L (O.~) L (O, o) 

where b, e are arbitrary positive numbers and C (b) (resp. C (o, e)) is a positive 
constant depending only on b (resp. o and e). We note here that C (b) and C (o, e) 
are chosen so as to be bounded in R+, as long as[) and e vary in any compact 
subset of (0, oo ). Inequality (3.4)' immediately follows from (3.4). 

Aubin's compactness theorem, which is stated below, is very useful with 
inequalities (3.4) and (3.4)' in this paper. Let Y

0
, Y

1
, Y

2 
be three reflexive 

Banach spaces such that 

and the injection from Y0 into ~ is compact. We put 

W = {v E L P(O, T; Y
0
); v' (= (d fdt)v) E U(O, T; Y

2
)}, 
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where 0 < T < oo, I < p < oo, I < q < oo are given numbers. The set 
W becomes a Banach space equipped with norm 

lvlw = lviL!'<o.T.Yo> + lv'IL9 co.T;Y
0
f 

Then Aubin's compactness theorem [1] shows that the injection from W into 
LP(O. T; Y) is compact. As a direct application of this result we prove: 
LEMMA 3.1. Let 0 < [J < oo and 0 < T < oo. Then we have: 

(i) if u, -+ u weakly in U (0, T; U (0, o)) as n -+ oo, {u,} is bounded in 
U (0, T; wt. 2 (O,c5)) and { u~} is bounded in U (0, T; W 1• 2 (O,o)), I < q < oo, then 
u, -+ u in L2 (0, T; U (O,o)) as n -+ oo. 

(ii) if 1'11 -+ v weakly in U (0, T; W1· 2 (O,o)) as n -+ oo, { v,} is bounded in 
U (0, T; W2 •2 (O,o)) and { v~} is bounded in U (0, T; U (O,o)), I < q < oo, then v" 
-+ v in U (0, ; w1.2 (O,o)) as n -+ oo. 
Pro o f. Note that W1· 2 (0,<5) c..- U (O,o) c..- w-•. 2 (0,<5) ( = the dual space of 
W~· 2 (0,c5)) and the injection from WL2(0,<5) into U(O,[J) is compact. Hence 
assertion (i) is a direct consequence of Aubin's compactness theorem. Next, let 
{ v"} be as in the statement (ii). Putting u, = v,,_., we see that { u,} satisfies the 
conditions in (i), so that u,-+ u, i.e. v,, ... -+ v, in U (0, T; U (0,<5)) (as n-+ oo ). Thus 
'', -+ v in U (0, T: W1

· 2 (0,<5)), and thus (ii) holds. 

• 
LEMMA 3.2. Let 0 < [J < oo, 0 < T < oo, and {u,} be a bounded sequence in 
W 1

• 2 (0, T; U (O,o)) and in L'r; (0. T; w1.2 (O,b)). Suppose u,-+ u weakly in U (0, 
T; U (O,o)) as n -+ eo. Then, u E C([O,T] x [O,b]) and 

u, -+ u in C([O,T] x [O,b]) as n -+ oo. (3.5) 

In addition, if {u, ... } is bounded in U (0, T; U (0,<5)), then u is in U (0, T; 
wz.z (O,b)), u, -+ u in U (0, T; W 1•2 (O,o)) as n -+ oo, and for any X

0 
in [0, <5], 

(3.6) 

Pro o f. By Ascoli-Arzela 's theorem, we see that u, -+ u in C ( [0, T]; U (O,b)) 
(as n -+ oo). Since u,, E C([O,T] x [0,<5]) for each n, it follows from (3.4) that 

for any t E [0,7] and positive integers n, m. T his shows that {u,} is a Cauchy 
sequence in C([(O,T] x [O,o]), whence (3.5) holds. Moreover, if {u, ....... } is 
bounded in U (0, T; U (0,<5)), then (ii) of Lemma 3.1 implies that u, -+ u in 
U (O,T; W1· 2 (0,<5)). By (3.4), 
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from which (3.6) fo llows. 
Finally we study the sign and comparison properties of solutions to the 

initial-boundary value problems (3.7) and (3.7)' formulated below: 

{ 

p(u),- uxx = 0 _in_ D0 = {(t,x); 0 < t ~ T, X 0 < x < /(t)} , 
u(O,x) - u

0
(x) for a.e. x E [x

0
, x1], 

u,.(l,X0 +) E ob~(u(t,X0)) for a.e. t E [0, 1'), (3.7) 
u(t,x) = 0 fortE (0, T] and l(t) s x s x1 ; 

{ 

p(u),- u.u = 0 in D1 = {(t,x); 0 < t < T. l(t) < x < x1}, 

u (O,x) = u" (x) for a.e. x E [x0 , x1], 

- u.~ (t,xl -) E obi (u(t,x,)) for a .e. t E [0, T ], (3.7)' 
u(t,x) = 0 fortE (0, T] and x, s x s l(t), 

where x = I (t) is a given curve in C ( [ 0, T] ), X
0 

and x 1 (x0 
< x1) are given reals 

such that x0 < I (t) < x1 for any t E [0, T], and u0 is a given initial datum in 
V (x

0
, x1 ) . 

LEMMA 3.3. Let pEr (C
1

, C
2
), {b~} (resp. {b f }) E B(tt

0
, a

1
) andu

0
EV (x

0
, x)such 

that (2.5) (resp. (2.6)) holds together with the following (3.8) (resp. (3.8)'): 

u
0 
~ 0 a.e. on [xu, l (0)], U

0 
= 0 a.e. on [/ (0), x1], (3 .8) 

U
0 

s 0 a. e. on [/ (0), x1], U
0 

= 0 a.e. on [x
0

, l (0)], (3 .8)' 

Let u be a solution of (3. 7) (resp. (3.7)') in C ([0, 1]; L2 (X
0

, x1)) n W1~; ((0, 1]; 
U (X0 ,X1)) n L 1~c ((0, T); W 1•2 (x0,x1)). Then, 

Proof. We prove the lemma for the case u is a solution of (3.7). Since 
p (u), EL 1~ ((0, T]; V (x

0
,x

1
)) and p (u) (t, · ) = 0 on [l (t), x,], it follows that for 

a.e. t E [0, T] 

1 d I X' 2 dt I (- p (u) (t,x))+ l2dx 
xo 

= - (' p (u)1 (t,x) (- p (u) (t,x)) +dx 
xo 

l(t) - J u" (t,x) (- p (u) (t,x))+ dx 
X 

0 
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= - J:u(t.<)<Olu, (t,x)p (u)_, (t ,x)dx + u_, (l,X0 + ) (- p (u) (t,X0 ) ) + ~ 0, 

because 

- J, > 
0
,u,(t,x)p(u)x(t,x)dx 2:: C1J, 1 

l 
01

lu,(t,x)l2dx 2:: 0, 
1u(t.x < ; ,u l.x < 

and by (2.5) 

ux (t,X
0 
+ )(- p (u)(t,x, ))+ ~ 0 for a.e. t E [0, T]. 

Therefore, noting p (uu) 2:: 0 a. e. on [x11 ,x 1] by (3.8), we derive that for any I e [0, 1] 

Thus p (u) (t, · )) 2:: 0 a.e. on [x0 ,x1] for any t e [0, T ], which implies that u 2:: 0 
on 0

0
• 

LEMMA 3.4. Let pEr (C, ,C2), / , {b~} (resp. {b;}), U
0

E L2 (X
0

,X
1

) be as in Lemma 3.3; 

condition (2.5) (resp. (2.6)) and (3.8) (resp. (3 .8)') are as well assumed. Now, let 

1 e C([O, T]) with x" < f < x1 on [0, T], {b~} (resp. {b{}), it, e £2 (X0 ,X1 ), and 

suppose that conditions (2.5) (resp. (2.6)) and (3.8) (resp. (3.8') are satisfied for {b !} 
(resp. {b :}), land u". Further suppose that 

b! ~· b! (resp . b; ~· b{) on R for any r e R +, 

I ~ I on [0, T] 
and 

u,, ~ ut) a.e. 011 [x,,xJ. 

Let u be a solution o.f(3.7) (resp . (3 .7)') and u be a solution o/(3.7) (resp. (3.7)'), 

corresponding top. r u(), (b ~} (resp . {b:} ), in c ( [ 0, T] ; L 2 (x,,xl )) n W\~ ((0, T]; 

L2 (x
0
,X

1 
)) n L 1~ ((0, 1]; WL2 (x1, ,X1)). Then, 

Pr oof. Consider the lemma in the case of problem (3.7). We first note that 
a

0
([p(u)- p(u)]+) = a

0
([u - u]+) for the same function a

0 
in Theorem 2.2, 

and by Lemma 3.3 that [u - ft]+ = 0 on {0 < t ~ T. l(t) ~ x ~ x1 }. 

Therefore, for a.e. t e [0, T] we have 

d f x1 
dt l(p (u) (t,x) - p (u) (t,x)) +ldx 

-'o 
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= (• (p (u),(t,x)- p (u),(t,x))<T0 ([p (u)(t,x) - p (u)(t,x)]+)dx 
·'n 

f
l(t) 

= xo (u .... (t,x) - ii .... (t,x)) <T0 ( [u (1,x) - ii (t,x) ]+) dx. 

Here, we approximate <T0 by a sequence of smooth functions <T,. on R such that 
<T,. (0) = 0, - I ~ <T,. ~ 1, <T; ~ 0 on Rand <T,.--. <T0 pointwise on R (as n --. oo ). 
With this function <T,. we observe that 

= lim J'(r) (u'"' (t, x) - u.u (t. x)) <1
11 

( [u (1 , x) - u (t, x)] ~) dx 
n-.rr.Jro 

= lim { - J
1
<
1

> (u (t, x) - u (1, x) )x 0"11 ( [u (t, x) - u (t, x) ]+)x dx 
n-oc;. Xo 

~ lim - J, > . 
1 01 lu_. (t,x) - ii_. (1, x)l2 <T~ ( [u (1, x) - u (I, x)]+) dx 

1u(t .. T -u(t .. t' > 1 n-oc. 

~ 0 for a.e. t e [0, 1], 

because (11, (t, X
0 

+) - U_, (t , X 0 +)) 0"11 ( [u (t, X
0

) - U (f,X
0
)]+) ~ 0 for a.e. t E [0, 1], 

by (2.4). Therefore, 

d f''l 
dt .. )(P (u)(t,x) - p (u)(t,x))+ldx ~ 0 for a.e. t e (0, 7], 

whence 

(
1 I (p (u)(t,x) - p (u )(t,x))+ldx ~ ( 1 I(P (u

0 
(x)) - p (u

0 
(x)) +ldx = 0 

.~u :<o 

for all t e [0, 1]. This shows that p (u) ~ p (u) a.e. on [0, 1] x [X
0
,xJ 

Hence u ~ u on (0, T] x [ X
0

, X 1]. 

4. Proof of Theorem 2.3 

In thissection,letper(C1,C2),{bHe B (a0,a1),i = 0, 1,0 < 1
0 

< andu
0
eXso 

that the strong compatibility condition holds. Let {u, /} be the solution of 
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SP = SP (p; {b~}, {b{}; u
0

, 1
0

) on [0, T], 0 < T < oo such that u e WL 2 (0, T; H) 
n L""' (0, T; X), bl>(u(·, i)) e U ; (0, T), i = 0, I, and /e W 1• 2 (0, T)(cf. Theorem 
3.1 ). We are going to prove the inequality (2. l 2) for 0 ~ s ~ t ~ T. 

We choose a positive number o in (0, 1) so that 

o < l(t) < I - o for any I E [0, T], 

and so that the functions u (' , o) and u (' , 1 - o) are in W!. 2 (0, T ). For simplicity 
we put 

1o r t) = u (t,o), f. (t) = u (t, 1 - o), 

1 1 
E1 (t) = 2 J 

1
_

6 
luxCt,x)l2 dx + b: (u(t, 1)), 

E(t) = E
0
(t) + £ 1 (t), 

F0 (t) = b~(u(t,O)) + B{ lu(t,O)I + B~ (;:: 0), 

F1 (t) = b:(u(t, I))+B; lu(t,l)l +B~ (~ 0), and 

where B~. B~ are non-negative constants to be determined later. 

The purpose of this section is to prove the following lemma: 

LEMMA 4. I. For any 0 ~ s ~ t ~ T, 

1 I cS I I I 

E(t) + -C J J lP (u)t (r,x)l2 dxdr + -C f f 1_ 6 lP (u)r (r,x)l2 dxdr 
2 

s 0 
2 

A 

I t 

~ E(s) + J I~ (r)l (lu,,(r,O +)I+ lu_.Cr, l -)I) F(r)112 dr + J I a; (r)IF('c) th 
s ·' , 

+ J {ux{r,o)f~(r) -u_. (r,l-o)f;(r)}dr. (4.1) 
s 

For each 2 e (0, 1] and 1 ER+ we consider the Yosida approximation b/i. of bl: 

b;,';. (r) = inf {
2

1
;.1r - r'F + bHr')}. r E R. 

r 'eR • 



20 N. KENMOCH! 

It is known (cf. [9; section 1.5]) that there are positive constants B{, B;, 
determined only by T, the norms of o:~. a~ in D (0, T) and 

Ri (b~) = inf {r 2:: 0; 3 sE D(b7), lsl ~ r, lb'J(s) ~ r}, i = 0, l, (4.2) 

such that 

(i) b;,;_(r)B: ir l + B~ 2:: 0 for any A. E (0,1], t E [0, T], rE R, i = 0,1; 
(ii) for each 2 E (0, 1] and t ER the functions t ~ b~.;. (r), i = 0, 1, are of 

bounded variation of [0, T ] and 

1d 
b},;. (r) - . b1.;. (r) ~ J s dt bj,i. (r) dt for any 0 ~ s ~ l ~ T. 

d 
dt b;,4 (r) ~ lo:~ (t) llob;,, (r)l (b;.;, (r) + B; lrl + B~ )112 

' 
+ lo:; (t) l(b;,, (r) + B; ir I + s;) for a.e. t E [0, T ]. (4.3) 

ln order to prove Lemma 4.1 we approximate u on [0, T] x [0, (5] and [0. T] 
x (1 - fJ, 1] by the function ui. which is the solution of the following problems 
(4.4) and (4.4)': 

p (u;), - U;•.u = 0 in (0, 1) x (0, fJ), 

ll;. (t, 6) = fo (t) for 0 ~ t ~ T, 

u;.x(t, 0+ )=ob:,;.(u;_(t, 0)) for a .e. t E [0, T], 

u;. (0, x) = u, (x) for 0 ~ x ~ fJ; 

p (u), - ui.'·'~' = 0 in (0, 1) x (0-, 6, 1 ), 

u;_(t, 1 - o) = f; (t) for 0 ~ t ~ T, 

- u;. •. .: (t, l - )='Ob{,; . .(t, 1)) for a.e. t E [0, T], 

for 1 - (j ~ x ~ 1; 

According to a result in [9; section 2.8] (or [1 0; Theorem 1.1 ]), problems ( 4.4) and 
(4.4)' have unique solutions u2 in w1.2 (0, T; U (0, <'5)) 11 L <X; (0, T, W 1 · 2 (0, <'5)) 
c C ( [0, T] x [0, <5]) and in w1.2 (0, T,· U (l - <5, 1 )) 11 L oc (0, T; WL 2 (1 - b,l)) 
c C([O, T] X [1 - <'5,1]). 

Next we detive the energy inequalities for the approximate solutions u;_· 
For a.e. t E [0, T] and any sE [0, T] with s ~ t we observe that 
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(~ 

= - J
0 

ui-,.Jr:,x)(u;.(r, x)- U;.,x(s,x))dx + U;.,.Jr:,b)(f0 (t) - j 0 (s)) 

- ui.,x (r,O + )(u2 (r,O) - u1, (s,O)) . 

Using (4.3), we have 

- u2,,(r,0+) (u4 (r,O)-u.;, (s,O)) ::; b~.i. (ui. (s,O))- b~.i. (u; (r,O)) 

= b~.;. (u.; (s,O)) - b~.i. (u;. (r,O)) + b~.J. (u2 (s,O)) - b!,i. (u;. (s,O)) 

::; b~,;. (ui. (s,O)) - b~,;. (u;. (r,O)) 

+ ( 1o;; (o) !lob~.< (u" (s,O)) I (b~.i. (ui. (s,O)) + B{lui. (s,O)I + B~)1 i2d(J 
s 

+ ( la{ ((J)! (b~.i. (u;. (s,O)) + B~lu;. (s,O)I + B~) d(J 

Hence it follows from (4.5) and (4.6) that 

21 

(4.5) 

(4.6) 

r . 

::; J la~ ((J) 11<1b~,i. (u;. (s,O)) I (b~ . .< (u;. (s,O) + B{lu;. (s,O)I + B~)1 12 da (4.7) 
s 

+ f I!X{ (a) I (b~.;. (u.;, (s,O) + B{lu;. (s,O)i + B~) 112 da + u.~...Jr:,o) ifo (r) - fo (s)), 
s 

where 

Note here (cf. [9; Proposition 0.3.5, Lemma 1.21]) that 

and 

lb~.A (u2 (s,O)) - b~,;. (ui. ('r,O))I ::; Ailu;. (s,O)I + lu;. (r,O)I)Iui. (s,O) - u2 (r,O)I 

for every rE [s, t] , where A;. is a constant depending only on A. Therefore, dividing 
(4.7) byr- S, Jettingsj rand noting the relation U;.,, (r,O+) = ob~). (uJr,O)), we 
see that for a.e. r E [0, T] 
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b d 
J p(uJr(-r:,x)u~,Jr:,x)dx + -d E04 (-r:) 
0 ~ 1: . 

where 

it should be noted that E
0

;. is of bounded variation on [0, T] and 

for 0 .::; s .::; t .::; T. 

Hence 
I I 6 

-C J Jo lP (u),l2 dxd-r: + Eo,;. (t) - Eo,;. (s) 
2 .f 

I +J ui. .. ,(-r:,b)f~(-r:) d-e. 
s 

Similarly we can obtain 

1 ( 1 

C J, J
1

_
6 

lP (u;\f~dxd-r: + Eu. (t) - E1.i. (s) 
2 . 

I I 

:5 J ~~ (-r:)ll U;.,x (-r: ,l- )IF1 ,i. (-r:)Wd-r: + J IOC: (-r:)IFt..< (-r:)d-r: (4.10) 
s s 

I - J ui .. x(-r:, 1- b)f't (-r:)d-r:. 
s 

where 

and 

Proof of LEMMA 4.1. Sincelu4 (-r:,O +)I::; C6 (1u4)Lz<0•51 +lfo(b)l)for 
a constant C6 depending only on b, we see that 

t E [0, T ], l E (0, l ], (4.11) 
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with a constant c; independent of A. and t. Besides, since p (u;), = u._u in 
(0, T) x (0, b), we have with the aid of (3.4) 

for a.e. t e [0, T], where e is any positive number. Taking e > 0 smaiJ enough we 
derive from (4.9) together with (4.11) and (4.12) that 

for any A. e (0, l] and 0 ~ s ~ t ~ T, where Ll' ... , L4 are positive constants 
independent of A. e (0, 1] and s, t e [0, T]. Therefore, applying Gronwall's 
inequality to (4.13), we obtain that {u~; 0 <A. ~ I} is bounded in WL 2 (0, T; 
D(O,b)) r. L ri) (O, T ; W1. 2 (0,b)) and {b~·~(u~(·,O)); 0 <A~ 1} is bounded in 
L~ (0, T). Accordingly, by Lemma 3.2 it follows that for a suitable sequence {A..} 
with A.. J 0 (as n -+ oo), 

u~ -+ u in C([O, T] x [0, b)) r. L 2 (0, T; W1•2 (0, b)), 
n 

and 

p (u1 ), --+ p (u), weakly in D (0, T; £2 (O,b)). , 

Also, by some standard techniques in the subdifferential operator theory we may 
conclude that 

b~ .< (u.< (t,O)) -+ b~ (u (t,O)) for a.e. t e [0, T], 
· n n 

lim inf b~,;. (u~ (t,O)) ~ b~ (u (t,O)) for any t e [0, T] 
n -+CO n n 

and 

Taking ). = An in (4.9), we get by passing to the limit inn that 

1 t 6 - J J lP (u)Jdxdr + E0 (t) c2 • o 
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I I 

~ E0 (0)+ J
0 

l~(-r:)llu .• (-r,O+)IF0 (1:)112 dr+ J
0 

la{(-r)IF0 (1:)d-r (4.14) 

I + Jo u_.(-r:,b)f~(-r)d-r for any t E [0, T]. 

Similarly it follows from ( 4.1 0) that 

l I 1 

C J, J
1

_
8 

lP (u), 12 dxdr + E1 (t) 
2 . 

I I 

:s; E1 (0) + J l a~ (-r)ll ux (-r,l - )IF1 (-r)l
12 d-. + J la{ (-r:)IF1 (-r:) d-r: (4.15) 

0 0 
I - J ux(r,l -b).f; (-r:)dr: 
0 

for any t E [0, T]. 

Adding (4.12) and (4.13) yields (4.1) with s = 0 and any t E [0, T]. By taking 
s E (0, T] as the initial time and repeating the same argument as above, we 
obtaing (4.1) for any 0 < s :s; t ~ T. 

• 
5. Proof of Theorem 2.3 (continued) 

For the moment we continue our discussion under the assumptions of section 
4; let {u, 1} and 0 < b < 1 be as in that section. 

First Step. In the first step we assume that p is a smooth function in r ( C
1

, C2) , 

and prove: 
LEMMA 5. I. For any 0 :s; s ~ t :s; T, 

Proof. According to Evans-Kotlow [4; Theorems 1, 2] we see that 

l' E Jl0 ( [s, T]) for any s E (0, T), 

and 
Uxt E U (Q+), Ux 1 E L2 (Q- ), 

for any region Q with Q c (0, T] x (0, 1), where 0 < 0 < 1 and 
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Q+ = Q n Qt(T), Q- = Q n Q/ (T), 

Let us differentiate u (t, I (t)) = 0 with respect to t e [0, T]. Then, 

u,(t, /(t) ±) = - ux(t,l(t) ± )/'(t) for t e (0, T). (5.2) 

Also, we have for any 0 < s ~ t ~ T 

J I I (t) I I (t) 1 I (t ) 

-C J J lP (u),l2 dxd1: :5 J J p (u),u, dxdr = J J uxx u,dxdr 
2

so .ro so 

I I 

+ J s ux (1:,1 (r) - ) u, (1,/ ('r:) - ) dr: - J., uJr:,b) f~ ('r)d1 

1 I (I) 1 I (s) J 1 

= - -
2 
J lux (t,x)l2 dx + -

2 
J lux (s,x)l2dx - -

2 
J luJc,l ('r)- )j2 l' (r:) dr 

~ 0 s . 

We have used (5.2) in order to get the last equality. Thus, for any 0 < s ~ t ~ T, 

I I I (t) 1 I 1 I (t) 

-C J J Jp(u),l2 dxd1+ -
2

J iux(r,/(r) -)l2 / '(t)dr+-
2
J luxCt,x)l2 dx 

2 
s a s 6 

(5.3) 

Similarly, for any 0 < s ~ t ~ T, 

I 1 1 - o 1 t 1 1 - o 
-C J J lp(u).JZdxdr: - -

2
J iux(•,/(1)+)12 1'(1:)dr+ -

2
J lux(t,x)l2dx 

2 
s l(r) s 1 (tl 

Since 

u.~ (r,/(t)- ) 2 / ' (r:)- ux(t,/(r)- ) 2 /'(r) 

= - (- u., (r,/(t)-) + u,(1:,l(r) + ))(uxC1:J(r)-) + uxC'C,/(t) + ))/'(1:) 
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- l/'(-r)l2(uJc,/('r) - ) + uA-r,/(-r) + )) 

for a. e. -r e [0, T ], 

we infer (5.1) for 0 < s .$ t .$ T from (5.3) and (5.4). 
Combining Lemma 4.1 with Lemma 5.1 we see that the inequality (2.12) with 

B1 = B~ and B~ = 2B~ holds for any 0 < s .$ t .$ T. Besides, on account of 
(3.3), (2.12) holds fors = 0, too. 

Second Step. In the general case of p E r(C1 , C2 ) we take a sequence p
11 

of 
smooth functions in r ( C

1
, C2) such that 

Pn --+ p uniformly on each bounded subset of R. 

Now, let {u11 , 111} be the solution ofSP(p,; {b~}, {b{}; U
0

, !
0

) on [0, Tt), where [0, 
Tt) is the maximal interval of existence. In view of the first step we have 

x (t, u" (t)) + Cl { f IPn (un),l2 dxd-r + -
2

1 
{ lt;,ild-r 

2 0 0 0 

I 

.$ x(O, uo) + J la~(-r)l (lull .. <(-r,O + )I + lu • .x (-r,l - )l)y('r,un(-r))1
'
2d-r (5.5) 

0 

I 

+ J la~ (-r)IY (-r,u, (-r))d-r 
0 

for any t E [0, T,";). 

For each n we put 

Tn = sup {t < min {T, r:}; b .$ 1, .$ 1 - b on [0, T]} . 

LEMMA 5.2. There is a constant M 1 ;:::;:, 0, independent of n, such that 

1un1L2<o,r,;XJ .$ M1 , lu"(t)IH .$ M 1 for any T E [0, T11), 

T 
IJ n {b~(u"(-r,O)) + b;(u"(-r,l))}d-rl .$ M 1 • 

0 

Proof. First, choose functions h;E W1• 2 (0, 1), i = 0, 1, such thatb/" (h;0) are 
bounded on [0, T]; in fact; we can take ash; as solutions of h; (t) + ab~(h;(t)) 3 0 
on [0, T] (cf. [8; Chapter 1]). Next, consider the function 
h = h (t,x) on [0, 1J x [0, 1], given by 

h0 (l)(l-~) 
h(t,x) = 0 

hl ( t) ( 1 - ~ + i) 

for (t,x) E [0, T] X [0, o], 

for (t,x) e [0, T] x [b, 1 - b], 

for (t,x) e [0, T] x [1 - b, 1]. 
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Then we observe that for any t E [0, T,) 

I I I /11 (t) I JJ J J p,(u,J,(u,- h)dxdt = J J u,txCu,- h)dxdr+J u,n(u,-h)dxdt 
0 0 0 0 • 0 /

11
(t) ' · 

I 1 I 

= - J
0 

So u,_y (u,_y - h_Jdxdr- S
0 

u,.x(r,O+ )(u,('r,O)- h0 (r))dr 

I - J {b~(u,(r,O)) + b:(u11(r,l))}dr. 
0 

On the other hand, for any t E [0, T,,), 

J1 J1 
p,(u,),(u/1-h)dxdr = J' s' p,(ull),u,dxdr-JI J1 

p,(u,),hdxdr 
0 0 0 0 0 0 

1 I I I 
= S p*(u,(t,x))dx-S p!(u0 (x))dx+S J p,(u,)h, dxdr 

0 11 0 0 0 

1 1 + S p, (u0 (x)) h (O,x) dx- J p, (u, (t,x)) h (t,x)dx, 
0 0 

where 

P! (r) = p, (p, (r)) with p, (s) = ( p,.-1 (u)du. 
0 

Noting that 

for some constants k1 • k2 > 0 independent of n, we have for any 0 ~ t ~ T,, 

I 1 1 
2 

I I J J p, (u,) ,(u,- h) dxdr '2::. k3 J I u, (t,x) I dx - k,J J lu,t dxdr - k
5

, 
0 0 0 0 0 

where k3 , k4 , k5 > 0 are positive constants independent of n and t. Hence, 

for any t E [0, T,), 

where M~ is a positive constant independent of nand t. Also, for any 0 ~ t < T,, 
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b~ (u, (t, 0)) + b; (u, (1, 1 )) ~- B1 (lu, (t, 0)1 + lu, (I, I )I) - B2 

(5.7) 

where k6 , k7 are constants independent of n and t. In order to get the last 
inequality we have used (3.4)'. Accordingly, (5.6) and (5.7) yield an inequality of 
the following form: 

for 0 ~ t < T,, (5.8) 

where k
8

, k
9 

are some constants independent of nand t. Applying GronwalJ's 
inequality to (5.8), we get the desired estimates for a constant M 1 > 0 indepen­
dent of n. • 
LEMMA 5.3. Tlzere is a constant M2 ~ 0 independent of n, such that 

Proof. We use the following inequalities which are derived from (3.4): 

iu,(t,O)I + iu,(t,l)l~ elu,,x(t)IH+ C(e)iu,(t)ln 

and 

+ C (b,e)lu,,x (t) i~ ~ e!p, (u,)' (t) i~ + C (b,c:)iu, ,x (t) i;
1

. 

By the estimates in Lemma 5.2 together with the above inequalities it follows 
from (5.5) that for any t E [0, T,) 

,I 1 1 I 

x(t,u,(t)) + klO J s ip,(u,),l2d.xdr + -2 J l /~('r)l3dr 
0 0 0 

(5.9) 

where kw"·,k13 are positive constants independent of nand 1. It is easy to see 
from (5.9) that the required inequalities hold. • 



Stefan problems with nonlinear flux 29 

LEMMA 5.4. T, = T for all large n. 
Proof. By Lemma 5.3, u,E w1.2 (0, T, ; H) n L .>:: (0, T,; X) and l,E wu (0, T,) 
for each n. We also have 

1, (T,) = o or 1- o, if T, < T. (5.10) 

In fact, if T, < T and b < 1, (T,) < I -b, then u, (T,) = lim , 1 r, u, (t) exists in 
Hand weakly in X. By Lemma 3.3, the data { b;; t 2: T,}, i = 0, I, u, (T, ), 1, (T,) 
satisfy the strong compatibility condition with T, as the initial time. Hence, the 
local existence theorem (Theorem 3.1) yields a contradiction to the definition 
ofT,. 

Next, suppose that T"k < T for a subsequence {nk} of {n}, and T,,k- T' as 
k- oo. w~ then note by Remark 3.1 that T' > 0. On account of Lemma 5.3, 
given e > 0, there exists r; < T' such that 

T' - e ~ r: ~ T,,k, ll,k er: )-L"k (T"k) I~ e for all large k. (5. 11) 

Moreover, in view of Lemmas 3.1, 3.2 and Lemma 5.3 we may assume that 

u"" -ti in C([O, T;]x[O, 1]) and weakly* in L «, (O, r:;X), 

p, (u,)- p(ii) in C([O,T;] x [0, 1]) and weakly in wu (0, T,' ; H), 
" k 

and 

L,s.: -tin C([O, T.' ]) and weakly in wu (0, T,' ). 

By the expression (2.2)' of the free boundary we have 

l,,(t) ~I,+ I; P,,(u,) (x) dx - I; p,,(u,,) (t,x) dx 

+I~ {u"J.· ·'(r,l - )-u"k·x(r,O+)}dt foranytE[O,T4']. 

Letting k - oo in this inequality yields 

- Il I' -/(t) = lo+ op(uo)(x)dx- op(u)(t,x)dx+ 

It - - } {ux ("r.l-)- u-.(t,O +) dt 
0 

------
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for any 1 e [ 0, T,']. Therefore, { ii}} is the solution of SP (p; {b~ }, {b~}; uo, /o} 
on [0, T,'], and by the uniqueness of solution we have 

ii = u on [0, T,'] x [0, I], T = I on [0, T,']. 

Moreover, it follows from (5. I 0) and (5. I I) that 

If (T,') - bl :Se or 1/(T.')- (1- b)l :Se 

for an arbitrary e > 0. But this contradicts that b < I < 1 - b on [0, T ]. 
Q.E.D. • 

From Lemma 5.4 it follows that (5.5) holds for any t e [0 , T] and large n. 
Therefore, the passage to the limit in n yields that (2. 12) is valid for any t e [0, T] 
and s = 0. Repeating the same argument as above in the case of initial time 
sE (0, T), we see that (2.12) holds for any 0 =5 s =5 t =5 T. 

We now accomplish the proof of Theorem 2.3. 

Proof of THE 0 RE M 2.3: On account of Lemma 3.2, we easily see under 
the assumptions of Theorem 2.3 that fors e (0, T), {b:} '~~' i = 0, 1, l(s) and 
u (s) satisfy the strong compatibility condition with s as initial time. Hence by the 
above fact, inequality (2.12) holds for 0 < s .:::; 1 =::; T. 

Next, it should be noted from (2. I 2) that the function t -+ X (t, u ( t)) is of 
bounded variation on each compact subset of (0, T], 

I
t d 

X(t, u (t)) - x(s, u (s)) ~ s dtx(r, u(r)) dr for any 0 <sS t S T 

and 

d 1 2 I 
d-r;x(-r:, u(r)) + c 2 1p(u)'(t) I H + 21/'(-r;) 13 

~ lex ~ ('r)l( lu_,(r, 0+)1 + lu.(-r;, 1-)l)y(-r;, u(t)) 112 + lcx;(-r;)ly(r, u(-r;)) (5.12) 

for a.e. t e [ 0, T ]. 

Multiplying both sides of (5 .1 2) by (-r - s) and integrating them over [s, t], 
0 ~ s ~ t S T, we have (2.13) for any 0 ~ s ~ 1 ~ T. • 

6. Some remarks on one-phase Stefao problems 

One-phase problem is regarded as a special case of two-phase problem. Given 
pe r (C,' C2), {b'} E B(ao' a,), UoE L2 (0, eo) and /0 > 0, we denote by SPO (p; 
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{b' }; U
0

, 1
0

) on [0, T] the problem of finding u = u (t, x) on [0, T] x [0, oo) and 
x = I (t) > 0 on [0, T) such that 

p(u), - u •.• = 0 in Q: (T) = { (l, x); 0 < l < T, 0 < x < l(t) }, (6.1) 
u (0, x) = U

0 
(x) for a.e. x 2: 0, (6.2) 

u,(t, O+)eob'(u(t, 0)) for a.e. te[O, T] , (6.3) 
u(t,x)=O forany te(O,T] and x2:l(t), (6.4) 

{ 
/'(t) = u .• (t, l(t)-) for a.e. te[O, T], (

6
.
5
) 

/(0) = /0. 

A pair {u, !} is cailed a solution of SP
0 

on [0, T], if ueC([O, T]; L 2 (0, 
oo)) n W1 ~·; ((0, T]; L2 (0, oo)) n L2 (0, T; W 1.2 (0, oo)) n L;:c ((0, T] ; wu (0, 
oo)), /eC([O, T])n w;~}((O, T]),b(.)(u(· ,O))e£ 1 (0, T)nL~c ((O, T])and 
(6.1)- (6.5) hold. A solution of SP

0 
on R+ is defined in a similar way to the 

two-phase problem. 
ln view of Lemma 3 .3, it is easy to see that { u, l} is a solution of SPoon [0, T] if 

and only if it is a solution of the two-phase problem SP (p; {b~ }, { b! }; u
0

, 1
0

) , 

with b~ = b' and b! (r) = 0 for r = 0 and = oo otherwise, on [0, T], provided 
that 0 < l < 1 on [0, T] and u

0 
= 0 a.e. on [1

0
, oo). 

In such a sense one-phase problem is regarded as a special case of a two-phase 
problem. Therefore, as far as the local existence and uniqueness of solution to 
SP0 are concerned, similar results to Theorems 3.1, 2.2 and 2.3 are valid, even 
though /

0 
2: 1 and the problem is formulated on the half line [0, oo) of the spatial 

variable x. Moreover, we prove: 

PROPOSITION 6.1. Let per(C1, C2 ) and {b'}e B(a0 , a 1) such that 
ob'(r) c (- oo, O]for any t :50 and r < 0. (6.6) 
Let 10 > 0 and U

0
EL 2 (0, oo) such that 

u
0 

2: 0 a.e. on 0, /
0

] and u
0 

:5 0 a.e. on 10 , oo ). (6. 7) 

Then there exists one and only one solution {u, /} ofSP0 ( p; {b' }, U0 , l
0

) on R + such 
that I is non-decreasing on R+ and 

t113 I ' E L3 (R ) loc + ' 

2 
and such that function t-+ tl u.(t) I L 2 ( 0, oo) is locally bounded on R + and 

Proof. (First Step) In case 



32 N. KENMOCHl 

by Theorems 3.1 and 2.2 problem SP
0 

has a unique solution {u, I} on [0, T*), 
T* > 0, where [0, T*) is the maximal interval of existence. Since u 2:0 on 
Qi (T*) by Lemma 3.3, u<(t, l(t) - )::::; 0 for a.e. tE [0, T*), so that/ ' 2: 0 a.e. on 
[0, T*), that is, I is non-decreasing on [0, T*). We are going to show T* = oo. 
To the contrary, suppose T* < oo. Then, by Theorem 2.3, 

I f' 1 J, Xo(t, u (t)) + C l p(u) '(r)l~2 co. oo) dt +2 ll'(r)l 3 dt 
2 0 0 

and 

::; Xo(O, uJ + f I o:; (r) 11 ux('L, 0+) I Yn ('L, u('t)) 112 a .. + 

+ l 1

la;(r)I Y0 (t , u('t))d't 

1 J, If, 
txo(t, u (t)) + C rlp(u)'(t) l ~2 co. col dr + 2 r l/'(r)l 3 d"L 

2 0 0 

(6.9) 

::; f Xn('L, U ('L) )d't + f "LI o:o' ('L) 11 ux(r, 0+) I )10 (t, u(r) ) 112 dt (6.10) 

+ f"Licx;(,.) IYo('L, u(r))d-r 

for any t E [0, T* ), where 

for z E W 1
• 

2 (0, oo ), and B1 , B2 are positive constants determined by T*, the 
norms of a~, a; in L1 (0, T*) and b0

• Since (0, T*) x (0, D) c Qt (T*) for 
0 < D < !

0
, it follows from (6.9), with the aid of inequality (cf. (3.4)') 

that p(u)'E£2 (0, T*; L 2 (0, oo) ), uEL"' (O, T* ; wu (0, oo)), bo (u (-, 0)) E 

L X! (0, T*) and I E wu (0, T* ). Hence, u (T*) E wu (0, oo ). u (T*, 0) E D (b ,.. ), 
u (T*, · ) 2: 0 on [0, l (T*) ] and u (T*, ·) = 0 on [l (T* ), oo). This implies that 
{u, l} can be extended beyond T*, which contradicts the definition of T*. 
Therefore T* must be infinite. 
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(Second Step) In the general case of u() we take a sequence uo.n satisfying (6.8) 
such that u0, n ---+ U0 in L2 (0, ex:>), and denote by { U11 , 111 } the solution of SP (p; { b'} ; 
U

11
, !

0
) on R • . We note that the free boundary x = In (t) admits the representation 

(cf. (11]): 

and inequality (6.10) holds for each n. Also, just as in Lemma 5.2, we can prove 
that { U11 } is bounded in L~c (R+ ; L 2 (0, ex:>)) and in L1~c (R+ ; W 1• 

2 (0, eo)). 
Therefore, using the above expression for the free boundary, we see by a slight 
modification of the proof of Theorem 1.1 in [11] that there is a subsequence of 
{n}, denoted by {n} again, such that 

u
11
-+u in C([O, T]; V(O, eo)) and in V(O, T; wu(O, oo)) 

and 
ln-1 in C([O, T]) 

for every finite T > 0, and the limit { u, I} is the solution ofSP o (p; { b'}; u
0

, !
0

) on 
R + having the desired properties. • 

Employing the same technique as in the second step of the proof of Proposition 
6.1, we can prove: 

PROPOSITION 6.2. Let p, { b' }, u0 and /0 be as in Proposition 6.1. Also, let 10 , 11 > 0 
and uo," EL 2 (0, oo) such that for each n = 1, 2, ... , the same type of condition as 
( 6. 7) holds and 

/ 0 ,11---+/0 and U 0 , 11 -4 U
0 

in £2(0, ex:>) (as n---+ ex:>). 

Then, the solutions { U11, 111 } of SP o ( p; { b'} ; Uo , "' lo. ") on R+ converge to the 
solution {u, l} ofSP

0
(p; {b'}; U

0
, 1

0
) on R+ in the sense that 

and 
1,---+l in C([O, T]) 

for every finite T > 0. 
In the proof of Theorems 2.1 and 2.5, we need another one-phase Stefan 

problem. Given per(Cp C2 ), {b'}eB (a
0

, a 1), U
0
EL 2 (- oo, 1) and 

1
0 

< 1, SP1 (p; {b 1
}; U

0
, 10 ) on [0, T] is the problem of finding u = u(t, x) on 

[0, T] x (- oo, 1] and x = l(t) < 1 on [0, T] such that 
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p(u), - u .u = 0 in Q /(T) = { (t, x);O < t < T , i(t) < x < 1 }, 
u (0, x) = U

0 
(x) for a.e. x :::; 1, 

-ux(t, - l)eob 1 (u(t, l)) for a.e. te[O, T], 
u(t, x) = 0 for any te(O, T] and x:::; l(t) , 

{ 
l'(t) =u,. (t,/(t)+) for a.e. te[O, T], 
/(0) = 10 • 

N. KENMOCHI 

(6.1)' 
(6.2)' 
(6.3)' 
(6.4) ' 

(6.5)' 

We say that {u, !} is a solution of SP1 on [0, T], if ueC([O, T]; L 2 (-oo, 
l))n W1!·z ((O, T]; L2 (-oo, 1))nL2 (0, T; wu(- oo, l)) n L~c ((O, T); 
Wu(-oo, 1)), b <·>(u(-, l))eL1(0, T)nL~c ((O, T]), leC([O, T])n W1!·.? 
( (0, T]) and (6.1) ' - (6.5)' are satisfied. A solution of SP1 on R+ is defined in 
a way similar to the problem SP

0 
on R+. 

As for problem SP1 we have: 
PROPOSITION 6.1 '. Let pEr (C1 , C2 ) and {b 1

} E B((X
0

, (X 1) such that 

0 b I (r) C [0, 00) for any ( ~ 0 and /' > 0. 

U
0

:::; 0 a.e. on 1
0

, 1) and U
0 

= 0 a.e. on (- oo, 1
0 

]. 

Then there exists one and only one solution {u,!} of SP1 (p; {b1
} ; u

0
, /

0
) on R+ 

such that I is non-increasing on R+ and t 113 /' E L~oc (R+ ), and such that the/unction 

t--+ t I ux (t) I ~2 (- oo, 
1
) is locally bounded on R+ and t 1/

2 u ' belongs to L~oc (R+; 

L 2 (- oo, 1)). 
Concerning problem SP 1, the convergence result similar to Proposition 6.2 

holds, too. 

7. Proofs of Theorems 2.1, 2.4 and 2.5 

We begin with the following lemma. 
LEMMA 7.1. Let p, { bH, i = 0, 1, fo and U

0 
be as in Theorem 2.1, and let { u, i'} be the 

solution of SP (p; {b~}, {b;}; U0 , 10 ) on an interval [0, T0 ), 0 < T
0 

< oo. Suppose that 

0 < inf /(t) s sup l(t) < 1. 
1 e [0. T

0
) 1 e [0. r,>) 

Then we have 

{ 

u E WI.Z(T
0
-6,T

0
; H) n L'n(T

0
-e,To; X), 

lE WL3 (T
0
- 6,T

0
), 

b/.l(u(-, z)) n L <X) (T
0
-B,T

0
), i = 0, 1, 

(7.1) 

(7.2) 
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for some 0 < e < T
0

, and the solution { u, I} is extendable beyond the time T0 • 

Proof. By assumption (7 .1 ), there is a constant b > 0 such that 

b < L < I - {> on [0, T J. 

Hence we obtain (7.2) from (2.12) with inequalities (3.4) and (3.4)'. Besides, (7.2) 
a nd Lemma 3.3 imply that u(T

0
) EX, u(T

0
, 1) E D(b,r0

), u(T
0

, ·) ~ 0 on [0, I(T
0
)] 

and u (T
0

, ·) :::; 0 on[/ (T0 ), I], so that on account of Theorem 3.1, SP (p; {b~}, { bH; 
u (T

0
), I (T

0
)) has a solution on a certain interval [T

0
, To], T, > T0 • The 

continuation of { u, I} by this solution gives a solution of SP on [0, 7;.]. • 

LEMMA 7.2. Let p, {b:}, i = 0, I , U
0

, /
0 

be as in Theorem 2.1, and let {u, /}be the 
solution of SP (p; { b~}. { b:}; U

0
, 1

0
) on [0, T*), where [0, T*) is the maximal interval 

of existence. Suppose T* < oo. Then .for each e E (0, T*), u is bounded on [T* - e, 
T*) X (0, 1) . 
P r o o f. Consider the problem 

p (v),- v_... = 0 in (0, oo) x (0, 1), 

{ 

u
0 
(x) for a.e. x e [0, IJ, 

v(O,x) = 
0 for x E (/

0
, 1], 

v_.(t, 0 +) E Ob~ (V (t, 0)) for a.e. t ~ 0, 

v(t, 1) = 0 fort > 0. 

(7.3) 

It is well known (cf. [9, IO]) that problem (7.3) has a unique solution v in C(R+; 
H) r. Wl~ ((O,oo); H) n L1:,((0,oo); X) ( c C((O,ooO x [0, 1])). Comparing u with 
v on Qi (T*), we have by Lemmas 3.3 and 3.4 

on Q ~ (T*). 

Since vis continuous on [T* - e, T*] x [0, 1], it follows that u is bounded on 
Qi (T*) n [T* -e, T*] x [0, 1] for each 0 < e < T*. Similarly u is bounded on 
Q/ (T*) n [T*-e, T*] x [0, 1] . • 

Proof of Theorem 2. I . We first take a sequence {u
0 

... ,, !
0

} of initial data 
satisfying the strong compatibility condition and u o.n -. U0 in H (as n -. oo ). Also, 
put 

and 

on [0, IJ, 

on [/
0

, oo), 
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z"" (resp. z1 ) = { 
0 

u"·" (resp. u,J 

on [- oo, /
0
], 

on [1
0

, 1]. 

N. K ENMOCHI 

Now, denote by { u,, /,} the solution of SP (p; { b~}, { b{}, u o,n• 10 ) on the maximal 
interval [0, 7;;) of existence, and by { u'f, !~} , i = 0, I, the solution· of one-phase 
Stefan problem SP;(p; {b:}; z;,,. !,) on R +. Then, by Theorem 2.2 we have 

u}, ~ u, ~ u;; on (0, T;,) x [0, 1], P,, ~ !, ~ I~ on (0, T;,), (7 .4) 

because { U~, /~} (resp. { u:, . t;,}) is a solution ofSP (p; { b~}, {b:}' zO,ll' 10) (resp. SP (p; 
{b~} , {b:}; z •. ,, !

0
)) on [0, T,,) with T,, = sup {t > 0; l~(t) < 1 (resp. 1;,(t) > 0)} , 

where 

for r ;:::: 0, for r ~0, 

for r < 0, for r >0. 

We observe from Proposition 6.2 that 

{ 

/~ ~ l; in C([O, T]), i = 0, 1, 

u;; ~ u" in C([O, T]; L2 (0, oo)), 

u~ ~ u1 in C([O, T],· U(-oo,1)) 

(7.5) 

for every finite T > 0, where { u;, fi} is the solution of SP;(p; { bi}; z;, !) on R +, 
i = 0, 1. We note that there are positive constants l;, T

0 
such that 

f; ~ l~ ~ 1 - f; on [0, T,] for i = 0, 1 and large n, 

and by (7.4) 

l; ~ 1, (t) ~ I - l; for t E [0, 7;;) n [0, T0 ] and large n. 

Hence. Lemma 7.1 implies that T*" > T
0 

for large n, and just as in Lemmas 5.2 
and 5.3 we see from (2.12) for { u,, 111} on [0, T0 ] that { u,} is bounded in W ·2 (T

0
- e, 

T0 ; H) n L !Y.) (To - e,T,,; X),{!,} is bounded in W 3 (T
0 
-e, T

0
), and {b/l (u,(-, l))}, 

i = 0, 1, are bounded in L " (To-e, TJ for every 0 < e < T,,. Using these facts 
together with (7.4) and (7.5), we can extract a subsequence of {n}, denote again 
by {n}, such that u, ~ u in C([O, T,,]; H), weakly in w:! ((0, T

0
]; H) an weakly* in 

L 1~c ((0, T"J; X), and/,~ I in C ([0, T0 ]) and weakly in Wj~ ((0, T
0
J) . Besides, it is 

not difficult to see that the limit { u, /} is the solution of SP (p; { b~} , {b{}; u
0

, /
0

) on 
[0, TJ, having the required proporties. • 
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Proof ofT he ore m 2. 4. For each n, w denote by { u
11

, /, }the solution ofSPn 
on [0, T~). where [0, T!) is the maximal interval of existence. Just as Lemma 5.4, 
it can be shown that T! > Tfor sufficiently large 11 . Moreover, making use of the 
inequalities (2.12) and (2.13) for { U11, 111} and employing a standard argument on 
the convergence of subdifferential operators (cf. [9, 13]) we obtain the required 
convergences. • 
Proof of Theorem 2. 5. Suppose T* < oo and either (b) or (c) does not 
holds. Then, there would exist a sequence {t,} with t

11 
j T* (as n-+ oo) and two 

numbers 0 < x1 < X
0 

< 1 such that 

x1 < l(t,) < X 0 for any n. 

Now, let { 0, L'} be the solution of one-phase problem SP1(p; {b1.M}; V~. x,) on R+ 
fori = 0, l , where for a positive constant M 

{ 

M (resp. - M) for 0 ::; x ::; X
0 

(resp. x1 ::; x ::; 1), 
V:: (x) (resp. ~ (x)) = 

0 for x > X 0 (resp. x < x 1) , 

and 

{ 

0 for r = M (resp. r = - M), 
bo.M (r) (resp. b1.M (r)) = 

oo otherwise. 

We then note that these are one-phase Stefan problems with the usual Dirichlet 
boundaryconditions vo = Monx = Oand V 1 = -Monx = ! , respectively. 
Here, the constant M is chosen so as to satisfy 

lul :5 M on[~*, T*) x [0, I]; (7.6) 

this choice of M is possible by Lemma 7.2. Moreover, take positive number o and 
T0 (::; T*/ 2) so that 

0:5 Ll(t) < L"(t) :50-0 fortE [0, T., ]. 

In this case, on account of (7.6), it follows from the usual comparison result for 
Stefan problems with Dirichlet boundary conditions that 

D (t - t,J :5 l(t) :5 L"(t- 111 ) for any t E [1
11

, T*) with T*- 1
11 

:5 T
0

• 

Therefore, 



38 N. KENMOCHI 

0 < inf /(t) ~ sup /(1) < I, 
I E I"·T* ) I E I".T*) 

so that by Lemma 7.1, {u, /}is extendable beyond the timeT*. This contradicts 
the definition ofT*. Thus the case (b) or (c) holds true, if T * < oo • 
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Globalne istnienie rozwi~zan dwufazowego zadania Stefana z warunkami nielinio­
wymi 

W pracy wyprowadzono wyniki dotycz~ce istnienia rozwillzan dwufazowych zadan Stefana 
z nieliniowymi warunkarni przeplywu. W tym celu dowodzi si~ wlasnosci dotyczllcych specjalnych 

ocen energii dla szerokiej klasy daoych poezlltkowych. 

Dm6a.Jibaoe CYJQecTBOBaHHe pememrii .z.ayxc)»alHOii 3a~alfll CTec)»aaa caeJIH­
aeiiHLIMH yCJioBHHMB 

B pa6oTe npe,nCTasnem.t pe3ynhTaThi cymeCTBOBaHH.II peweHKH .n:ByX$a3HhiX 3a,lla'i CTe<!>aaa 
C HeJIHHeiiHh!MH YCliOBH.IIMH DOTOKa. ,[(ml 3TOH f(eJIH .llO'Ka3hlBaJOTCll CBOikTBa KaCaJOmHecll 
CDef(Ha.JlbHbi.X OlleHOK 3HeprHH .ll)I.II WHpOICOfO Knacca Ha'ia.JlbHbfX .llaHHhfX. 




