Control
and Cybernetics

Vol. 19 (1990) No. 1-2

Global existence of solutions of two-phase Stefan
problems with nonlinear flux conditions described
by time-dependent subdifferentials

by

NOBUYUKI KENMOCHI
Department of Mathematics
Faculty of Education

Chiba University

Chiba, Japan

A global existence result [or two-phase Stefan problems with nonlinear flux conditions with
time-dependent subdifferentials on the fixed boundary is established. To this end, special energy
estimates, holding for a large class of initial data. are proved.

1. Introduction

In our previous paper [13] we established a local existence result and
a comparison result for the following two-phase Stefan problem in one-
-dimensional space:

{P(H),— i, =00} (T) = {(£x);0 <tz (t); 0 ct< T}, 1S
andin Q7 (T) = {(¢.x); 1 (1) <x<1,0<t<T},
u(0,x) = u,(x) for ae. x €0, 1], (1.2)
u(t,0+) e ébi(u(1,0)) forae. t [0, T,
{— u (t, 1—) e ébj(u(t, 1)) for ae. te [0, T], el
u(t,1(t)) = 0forany te(0, 7], (1.4)

{!’(T} (: di(r)) = —u, (t,I{t)—)+u,l()+)forae te[0,T],

dt "
10) = 1, (1-3)
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whereu = u(t,x)and x = /(1),0 < [(t) < 1, are the unknown functions which
are respectively definedon [0, 71x [0, 1]and [0, T']: p = p(r)isa given increasing
function on R which vanishes at 0 and is bi-Lipschitz continuous on R;
b} = (b, t >0}, i = 0,1, are given families of proper lower semicontinuous
(1.s.c.) convex functions b!(-) on R and éb; () stand for their subdifferentials in R;
u,, [, areinitial data givenin L? (0, 1) and in the interval (0, 1), respectively. This is
a two-phase Stefan problem with flux conditions controlled by time-dependent
subdifferentials éb{(-) on the fixed boundary x = i,i = 0, 1

In the present paper we shall give an energy estimate for ¥ and / by the same
method as in Evans-Kotlow [4], and show that problem (1.1) — (1.5) is solvable
for a larger class of initial functions u, than that treated in [13]. Moreover,
making use of the energy estimate, we shall investigate the behavior of the free
boundary x = [(r) as t T T*, where T* is the upper end of maximal interval
where the solution exist. In particular, when b|(-) is independent of time ¢, i.e.
bi() = b,(*). Stefan problems of the same type as above were completely solved
by Yotsutani[21, 23]. In the time-dependent case, the energy estimate is of course
more complicated than in the time-independent one. In fact, it depends
essentially upon the smoothness of the mappings 1 —b}(-).

As to one or two-phase Stefan problems with nonlinear smooth flux
conditions on the fixed boundary, many interesting results have been established.
For instance, see Cannon-DiBenedetto [3], Fasano-Primicerio [5], Knabner [14],
Niezgodka-Pawlow [16], Niezgodka-Pawlow-Visintin [17], Pawlow [18], and
Visintin [19]. Also, see Yotsutani [20, 21,] and Kenmochi [11, 12] for related
one-phase problems, and especially Magenes-Verdi-Visintin [14] and Béni-
lan-Crandall-Sacks [2] for the nonlinear semigroup approach.

Recently, an interesting problem of the free boundary control was proposed
and has been studied by Hoffmann-Sprekels [6, 7, 8]. The free boundary control
is very important from the mechanical point of view, and it can be done by
controlling the flux of the temperature on the fixed boundary. The boundary
condition (1.3) may be regarded as a simple mathematical description in such
a context, though the expression is not so realistic in some practical respects.

2. Statement of results

In general, for a (real) Banach space V, we denote by ||, the norm in V, and use
the symbols ”—" and "'lim” to indicate strong convergence in ¥, unless otherwise
stated.

Throughout this paper, for the sake of simplicity of notation we put

H=I?(01)and X = W'2(0, 1) (c C ([0, 1])).

We denote by SP = SP(p; {b.}, {b]{}, u,, I,)) on [0, T], 0 < T < oo, the
problem (1.1) — (1.5) and say that {u, /} is a solution of SP on [0, T], if
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ue C([0, T H) o W2 (0, T1); H) 0 L2(0, T; X) n L% (0, T X),
b,.”(u(-, Nel0, N LEO, T],i=0,1, 2.1)
le C([0,T])n W2((0,T]),0<1<1on]0,T]

and (1.1) — (1.5) are satisfied. Also, we say that for0 < T' < o0, {u, [} isa
solution of SP on [0, T"), if it is a solution of SPon [0, T'] forevery0 < T < T'in
the above sense.

REMARK 2.1. In the above definition of solution {u, /} to SP on [0, T], we
see from (2.1) that u (- , 0+), u (- , 1 =) are in L2 ((0, T]), because u, =
p(u), e LE.((0, TY; L* (1)), I = (0, ) or (1 — 4,1), for a positive number & with
0 <l <1 —24don[0, T]. Therefore in condition (1.5) the relation

') = —u(t, 1() =) + u,(t, I(t) + ) forae. te [0, T]
is equivalent to

1(1)=1(s) + _f; p(u)(s,x) dx—j':) p(u)(r.x)dx+j:{ux(t,l —-)—ul(t,04)}dr
(2.2)
forany0 < s <t < T

This equivalence can be easily proved with the aid of the formula of integration
by parts. Moreover, if ue W2 (0, T; H), then (1.5) is equivalent to

I(t) = 1,+ j';p(u,,)(x) dx—j';p(u)(r,x)dx+_[:{u_‘(‘r,l —)—u(t,0+)}dr
2.2)’
for any t € [0, T;

note that u, (- , 0+), u, (-, 1—) are in L*(0, T) in this case.

Given two positive numbers C,, C,, we denote by I" (C,, C,) the class of all
functions p : R — R such that p(0) = 0 and

Cir=r)<p@)—p@) < C(r—r')foranyr,r' € Rwithr > r'.

Also, given two functions a, € W2 (R,), o, € W2 (R ), we denote by B(«,, o)
the class of all families {#; t > 0} of proper 1.s.c. convex functions 4'(-) on
R having the following property (*):
(*) Foranys,te R, withs < t andanyre D (b") (= {re R; b’'(r) < oo}) thereis
re D(b") such that

F—rl < o (8) — &g (5) (1 +1rl +16°(D'72),
b'(F) = b'(r) < oy (1) — o, () |(1 +[rP +15" (1)]).

For two proper l.s.c. convex functions b, (-) and b, (*) on R we indicate by b,
<* b, on R” that
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b Ar')+b e Vr)<b({()+ by(r')foranyr, e R (2.3)

wherer A r’ = min {r,r’} and r V r' = max {r, r}. It is easy to see that (2.3)
implies
(FF —r3)(ry — 1, )Y = O0forany rf eob, (r),i = 1, 2. (2.4)

In the existence theorem for SP (p; {bl}. {b{}, u,, [,) which we shall prove in this
paper, we postulate the strong (resp. weak) compatibility condition for the Stefan
data {b}},i = 0,1, u, e X (resp. u,€ H)and 0 < /, < 1, which consists of the
following conditions (2.5), (2.6) and (2.7) (resp. (2.7)'):

dby(r) = (— o0, 0) forany t € R, and r < 0. (2.5)
db{(r) = (0, + o) for any € R, and r >0. (2.6)

u, > 0o0n[0,/), u, < O0onll,!] u,(0) e D(bS)and u,(1) e D(BY). (2.7)

u, > 0ae onl0,/]and u, < 0 ae. on [/, 1] 27y

The purpose of the present paper is to establish existence and uniqueness
theorems for SP as well as the energy inequality for the solution under the weak
compatibility condition for the Stefan data.

The first theorem is concerned with the existence of a solution to SP.
THEOREM 2.1. Let p e T'(C,, C,), {b}} € B(a,, o0,), i = 0, 1, u, € Hand 0 < I,
< 1 be such that the weak compatibility condition holds. Then, for some positive
number T, SP (p; {bl}, {bi}; u,, 1) has a solution {u, I} on [0, T] such that

Eyte T20, T; HY, 7%, e L7, T:H),
and
Al e 12(0, T),

where ' = (d/dt)u.

The next theorem is concerned with the comparison of solutions to SP
associated with different Stefan data. 5
THEOREM2.2. Let pe ' (C,, C,), {b{} € B(a,, &0,), {bi} € B(o,, ), i = 0,1, u,€ H,
i,e H 0 <[l < and0 <1, < 1. Suppose

bl <* E::- on Rforanyte R, andi = 0. 1, (2.8)

_ Futher suppose that Stefan data {b}},i = 0, 1, u,, |, as well as ,{5 Bi=0,14%,
L, satisfy the weak compatibility condition. Let {u, I} and {i, [} be solutions of
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SP(p; (b4}, (b1} uy 1) and SP(p; {bl}, {b1}. it 1,) on [0, T'], respectively.
Then, forany 0 < s <t < T,

e @® - p@®) 1, + UO=10)"

+ [ G, (5, 04) — 1, (2, 04))a, ([u(z, 0) — iz, 0)]*) de

‘ (2.9)
=, (@1 =) =a(, 1-)) g, ([u(r, 1) —i(z, 1)]")de
< 1p@E —p@E)', ,,, + (6 =16)*
where
| ifr >0,
o, (= 0 if e =0,
-1 ifr<o.
In particular, for any 0 < s < t < T,
@@ —p@@)*, .+ (@)—10)*
o) (2.10)

< [(p ) (s) — p (@) ()| + (I(s) = 1(s)*

o,
Moreover, if b} = BiforanytER+ andi = 0, 1, then forany 0 < s <t < T,
(e @) —p@)D,  , + (-1

< lp@)(s) —p()(s)]

2.11)
doy UG =161
COROLLARY. In addition to the assumptions of Theorem 2.2, assume that u, < i
a.e.on [0, 1] and I, < 1,. Then,

]

u<iion(0, T1x[0, 1]and! <1on[0, T).

The above corollary shows the uniqueness of solution to SP. The inequality
(2.9) was proved in [13] for the solution {u, /} under the strong compatibility
condition. It is easily seen that the inequality remains true under the weak
compatibility condition, too, so that the proofs of Theorem 2.2 and its corollary
are omitted.

In this paper we shall establish the following theorem on the energy estimate
for the solution of SP.

THEOREM 2.3. Under the same assumptions as in Theorem 2.1, for the solution
{u, 1} to SP(p; {b}}, {b;}; u,, 1,) on [0, T] it holds that
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r 2 1 '
20 u®) + & [ o @@ de+5 1@ de
2

< x(s, u(s)) + ,c loeo Il (z, 04+) |+ w, (7,1 =)y (z, u())'? dr (2.12)
+I: oy (7) [y (z, u(r)dr forany0 < s <t < T,

where
1
1(t2) = 5 20y + Bl O) + b (), zey
and

Y(6.2) = by(2(0) + by (z(1)) + B, (1z(0)] +]z(1)]) + B,(= 0), zey,

with some positive constants B,, B, determined only by T, |a;|,0 ,|og|,2  andbs,
: 0.0 “ 0.1
i = 0, 1. Moreover, we have

(=) 2au@) + 5 [ = N @O d 7+ [ (¢~ NI @Fcke

< [\ z(u(@)dr + [ (=)o @l (1,0 +)] +lu, (1,1 =)y (ru ()} 2de - (2.13)

+1 =9 Oy Gu@)de  foramy0<s<t<T.

REMARK 2.2 In the case the boundary condition (1.3) is of the usual Dirichlet
type or bj are independent of time ¢, i.e. bj() = b,(’), the same kind of energy
inequality as (2.12) was earlier obtained by Evans-Kotlow [4] and Yotsutani [21].
The next theorem is concerned with the convergence of solutions to SP.
THEOREM 24. Let p, p, € I'(C,, C), {b}, {bl,} € B, «),
i=0,1,u,u,,€eHandl,l,  e(0,1),n = 1,2, . Suppose that Stefan data {b'},
u, 1, as well as {bi,}, u,,, L,, satisfy the weak compatibility condition for each
n = 1,2, -, and suppose that

p, = p uniformly on every compact subset of R,
u,, = u,in H,
l,,— 1 inR

an

and

bi,, — bi on R in the sense of Mosco (cf. [13]) for each t € R,

asn — co. Furthermore assume that SP = SP(p;{b.}; {b!}, u,, l,) has a solution
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{u, I} on an interval [0, T). 0 < T < oo. Then, for large n, SP, = SP(p; {b},},
{b{ ,}: u,, 1,,) has a solution {u,, 1.} on the same interval [0,T ). Moreover,

u, » uin C([0, T1; H) and in L*(0, T; X),
t'" u, - t'"? u' weakly in I2(0, T; H),
1" u, — t'" u_weakly* in L* (0, T: H),
I = lin C([0, T])
and

AR I — 03 | weakly in I3(0, T)
asn — .

Finally we shall show the behavior of the free boundary x = /().
THEOREM 2.5. Under the same assumptions as in Theorem 2.1, denote by
T* =T*(p:{bi},{b{} u,1),0 < T* < 0, so that [0, T *] is the maximal
interval of existence of the solution {u, I} to SP. Then, one and only one of the
following cases (a), (b), (c) always holds:

(@) T* = oo;
(b) T'E ooand!un,”-l(r)=0,
© T* < ooandlimyrel(t) = 1.

3. Known results and some lemmas

First of all we recall a local existence theorem for SP under strong
compatibility condition, which has been proved in [13].
THEOREM 3.1 (cf. [13]). Let p € I'(C,, C,), and let {bj} € B(a, w,),
i=0,1,u,eXand 0 < I, < 1 be such that the strong compatibility condition
holds. Then, for some positive number T, SP(p; {b!}, {b!}: u,, 1,) has a solution
{u, I} on [0, T'] such that

ue W“Z(O, T: H) n L= (0, T: X) (t: C([O, T] X [0, ]]))a

b (u(,i))eL*(0,T),i=0,1,
and
le W»2(0, T).
In fact, it was proved in [13] that a local solution {u, /} of SP can be constructed
as that of the problem
p) () +0@(u(t)) 30 forae €0, T],
{ (1.2) and (1.5) hold, (3.1)
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where p (1) = (d/dt) p (u), ®j(-), t > 0, is a proper l.s.c. convex function on
H defined by

2B O) + b))  ifzeXand z((H) = O,
i(2) = {2

oo otherwise,

and 0®;(-) is the subdifferential of ®; in H. Simultaneously it was shown for the
solution {u, I} that forany0 < s <t < T

(V) + 4, | 1o @)@ de
: (3.2)
< Q) + 4, | e @F +log @] + I (2) P} (@ (0) + 4, ) dx,

where 4, i = 1, 2, 3, are positive constants depending only on p e I'(C,, C,),
{bi}, i = 0,1, u,and /,. From (3.2) it follows that

lim, csup @) (u(?)) < ®;(u(s)) forany 0 < s < T. (3.3)

REMARK 3.1. As it is seen from checking carefully the construction of a solution
in [13], the interval of existence of the solution w, can be chosen uniformly in
pel(C,, C,), {bj}eB(a, o).i = 0,1,u,€ Xand /, as long as |u,|y, H° (u, (7)),
i = 0,1, vary in a bounded subset of R, /, in a compact subset of (0, 1) and (2.5),
(2.6) and (2.7) hold.

Next we list some useful inequalities in Sobolev spaces:

M= g < COWILE g5 Wm0 5 » Y€ W20, 3), (3.4)
& 1.2 '
M2 g < 802 5 + COBM 5 5+ v E WH2(0, 0), (3.4)

where 0, ¢ are arbitrary positive numbers and C (J) (resp. C (d, €)) is a positive
constant depending only on d (resp. d and £). We note here that C (0) and C (3, &)
are chosen so as to be bounded in R, as long as d and & vary in any compact
subset of (0, o0). Inequality (3.4)" immediately follows from (3.4).

Aubin’s compactness theorem, which is stated below, is very useful with
inequalities (3.4) and (3.4)" in this paper. Let Y, Y, Y, be three reflexive
Banach spaces such that

.o Y, ¥
and the injection from Y, into ¥, is compact. We put

W= {veL?(0, T; Y,); V (= (d/di)v) e L*(0, T: Y,)},
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where 0 < T'< o0, 1 < p < w, 1 < g < o are given numbers. The set
W becomes a Banach space equipped with norm

_ '
IV]W' - IVle‘&nYo) + |‘P Iqu‘t.r“l'

Then Aubin’s compactness theorem [1] shows that the injection from W into
L7(0, T} Y,) is compact. As a direct application of this result we prove:
LEMMA 3.1. Let 0 < 0 < oo and Q0 < T < oo. Then we have:

(i) if u, = w weakly in I*(0, T; L* (0, é)) as n —» oo, {u,} is bounded in
L2 (0, T; W'2(0,0)) and {u,} is bounded in L (0, T; W12(0,0)), | < g < oo, then
u, = win L>(0, T, L*(0,0)) as n — oo.

(ii) if' v, = v weakly in L*(0, T; W"2(0,0)) as n — o0, {v,} is bounded in
L*(0, T; W*2(0,0)) and {v,} is bounded in L? (0, T; L* (0,0)), 1 < ¢ < o0, then v,
— vin L2(0, ; W'2(0,0)) asn — 0.

Proof. Note that W'2(0,6) o L*(0,0) & W™2(0,0) (= the dual space of
W2(0,0)) and the injection from W' 2(0,0) into L?(0,0) is compact. Hence
assertion (i) is a direct consequence of Aubin’s compactness theorem. Next, let
{v,; be as in the statement (ii). Putting u, = v,,,, we see that {u,} satisfies the
conditionsin (i), so thatu, — w,i.e.v,, — v, in L? (0, T; L?(0,6)) (as n — o0). Thus
v, = vin L*(0, T; W'2(0.9)). and thus (ii) holds.

n

LEMMA 3.2. Let 0 < 6 < 0,0 < T < oo, and {u,} be a bounded sequence in
W2(0, T; L*(0,0)) and in L* (0, T; W'2(0,8)). Suppose u, — u weakly in L2 (0,
T; [*(0,0)) as n —» . Then, ue C([0,T] x [0,6]) and

u, = win C([0,T]x[0,6])as n — 0. (3.5)

In addition, if {u,,.} is bounded in I*(0, T; L* (0,9)), then u is in L*(0, T;
W22(0,8)), u, = win L*(0, T, W'2(0,0)) as n — o0, and for any x, in [0, 4],

t, (%) = u.(,x,)in 20, T)as n — <o, (3.6)

Proof. By Ascoli-Arzela’s theorem, we see that u, — uin C ([0, T']; L2 (0,6))
(as n — o0). Since u, € C([0,7] x [0,0]) for each n, it follows from (3.4) that

10 ) = 1O gy < CONty (O = 0, D52 | 10, (D) =y D12,

for any 7 € [0,7] and positive integers n, m. This shows that {u,} is a Cauchy
sequence in C([(0,7] x [0,6]), whence (3.5) holds. Moreover, if {u,, .} is
bounded in L?(0, T; L?(0,9)), then (ii) of Lemma 3.1 implies that u, — u in
L2 (0,T; W'2(0,0)). By (3.4).
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|uu’.\' (z'xn) Ja H_\. (Ifx,::) | : S C(é) ¥ | u" (t) - um (I)IWIZ (0_5)'“,, (I) = um (r)lwz'z (0,8)?

from which (3.6) follows.
Finally we study the sign and comparison properties of solutions to the
initial-boundary value problems (3.7) and (3.7)" formulated below:

pl)i—u,=0 in D ={xs0<t<Tx <x<lID}:
u(0,x) = u,(x) forae. xelx, x]
u (t,x,+) e db,(u(t,x,)) forae tel0, 1], (3.7)
u(tx) =0 forte(0, Tland /(1) < x < X3

pw),—u,=0 in D = {{tx)0<t<TI{)<x<x}
u(0,x) = u,(x) forae. xelx, x,].
- u (t,x, =) € b{ (u(t,x,)) forae. tel0, T, (3.7
u(t,x) =0 forte (0, T]and x, < x < (1),

where x = [(¢)is a given curve in C([0, T']), x, and x, (x, < x,) are given reals
such that x, < /(#) < x, for any t € [0, T'], and u, is a given initial datum in
P, %)

LEMMA3.3. LetpeT (C,,C,), (b, } (resp. {b{})€ B(,, o) andu, € L* (x,, x,) such
that (2.5) (resp. (2.6)) holds together with the following (3.8) (resp. (3.8)):

u, > 0 a.e. on [x, [(0)], u,

0 a.e. on [/(0), x,], (3.8)
u, <0 a.e. on [[(0), x,], u, = 0 a.e. on [x,, /(0)], (3.8)

Let u be a solution of (3.7) (resp. (3.7)) in C([0, T),; L*(x
(x,x)) 0 L0, T); Wh2(x,x,)). Then,

» X)) N WRZO, T1;

u>0onD,(resp.u < 0onD,).

Proof. We prove the lemma for the case w is a solution of (3.7). Since
p(u),e L (0, T]; L2 (x,x,))and p () (¢, - ) = Oon[/(?), x,]. it follows that for
ae te[0, T]

1d (M |
sar | (=p@(x) Pax

(1

—_ j:l p(u)I(I,x) (— p(u) (f:x))'dx

S Iim U (1,x) (— p ) (1.x)) " dx
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= j:uurmu.:u_‘_(r,x)p (), (t.x)dx + u (t.x,+ )(— p@)(1,x,)" < 0,
because
=i I:nu,nw:u-\'("”")f) () (t.x)dx > C!I:u[f_ricﬂllu‘U"‘-)Fdx 2 0,
and by (2.5)

u (t,x, +)(—pu)(tx,)" < 0forae. te[0, 7]

Therefore, noting p (u,) > 0a.e. on[x,,x,] by (3.8), we derive that for any 1€ [0, 7]

[ 1= pa(@x)*Pax < 0.

Thus p(u) (1, - )) > 0 a.e. on [x,,x,] for any ¢ € [0, T'], which implies that u > 0
on D,

LEMI\:IA 34.LetpeT (C,,C,), 1, {bl} (resp. {bi}), u,€ L* (x,.x,) be as in Lemma 3.3;
condition (2.5) (resp. (2.6)) and (3.8) (resp. (3.8)) are as well assumed. Now, let
le C([0, T]) withx, < s x, on [0, T'], {I; o) (resp. {5{}). i, € L*(x,,x, ), and
suppose that conditions (2.5) (resp. (2.6)) and (3.8) (resp. (3.8") are satisfied for {5 3
(resp. {b{)), I and ii,. Further suppose that

b <*b! (resp. b <*b!)on R foranyteR,,

I <lonl0, T]
and
u, < i, a.e. on [x,x)].

0

Let u be a solution of (3.7) (resp. (3.7)') and it be a solution of (3.7) (resp. (3.7)),
corresponding to p, 1, i, (b1} (resp. {b1}),in C([0, T); L2 (x,,x,)) 0 W32 ((0, T);
L2 (x,x,)) A L& (O, T); W12 (x,.x,)). Then,

u < won (0, T]x [x,x,].

Proof. Consider the lemma in the case of problem (3.7). We first note that
o,([pw) — p@@)]") = o,([u—u]") for the same function ¢, in Theorem 2.2,
and by Lemma 33 that [u—#]" =0on {0 <t < T, /(1) < x < x,}.
Therefore, for a.e. t € [0, T'] we have

X

d 1
@ J‘ (o () (1.x) — p (@) (1.X)) " |dx

x5
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= [ (@), () — p@, (L), [p (W) (1.%) — p @) (£.%)]*)dx

_ J'un (., (t.x) — @ (t.x) o, ([u (t.x) — @& (1.x)]") dx.

.\o

Here, we approximate o, by a sequence of smooth functions g, on R such that
6,00=0,—-1<a,<1,0,>00nRand g, = g, pointwise on R (asn — o).
With this function o, we observe that

1)

j"_ (2, x) — @, (1, x)) o, ([u(t, x) — @t(t,x)]") dx

= lim [ e (0, 3) — it (1,3)) 0, ([ (1,2) = (2, %) 1) dx

H=oa

= lim { — [ (.0 — 2(,)),0,([u(t,) - @ (60)]"),dx

n-—-=%

= (t.x,+)—i.(,x,+))o,([u(t,x,) = a(t,x,)]")

< lim — |, lu, (1.) — i1, (1, )P 0 ([u (2, ) — it (¢, )] ") dx

T i
P e lrx) — u(rx)=0]

<0 for a.e. t € [0, T],
because (u (t,x, +) — i, (¢, x,+)) o, ([u(t, x,) — t(t,x,)]*) > 0Ofora.e.1€[0, 7],
by (2.4). Therefore,

d M
dt J‘ (o (@) (1) — p (@) (1.x))*dx < 0 for ace. t € [0, T,

whence

I 10 @) (ax) = p @) ) dx < [ 1oy (9) = p Gty () *ldx = 0
for all 7 € [0, T]. This shows that p (4) < p (&) a.e. on [0, 7] x [x,.x,].
Hence u < aon (0, T] x [ X,, X,].
4. Proof of Theorem 2.3

Inthis section, letpeT (C,, C,), {bj} € B(x,.,),i = 0,1,0 </, < andu,e X so
that the strong compatibility condition holds. Let {u, /} be the solution of
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SP = SP(p; {bl}. {b{};u,, I)on[0,T),0 < T < oo such thatue W*2(0,T; H)
NL*0,7: X),b(u(-,i)eL*(0,T),i = 0,1,and /e W'2(0, T) (cf. Theorem
3.1). We are going to prove the inequality (2.12) for0 < s <1 < T.
We choose a positive number 6 in (0, 1) so that
d<l(t)y<l1—oforanytel0, T],

and so that the functions u(- ,6)and u(- ,1 — d)arein W'-2 (0, T'). For simplicity
we put

Lo (D) = u@o), f;, (1) = u(t, 1 —9),

E,() = 3§ (0P dx + B (10),

1
E () = 5, Iu () dx + b{ (u(, 1),

E(t) = E (1) + E, (1),
F (1) = b;(u(1,0)) + By |u(1,0) + B; (> 0),
F, (1) = b{(u(t.1)) + B |u(1,1)| + B; (> 0), and
F() = F,() + F, (1),
where B], B; are non-negative constants to be determined later.
The purpose of this section is to prove the following lemma:

LEMMA4.1. Forany 0 < s <t < T,
1 .r 8 | 0 i
E(1) + ra I ) lp@), ex)Pdxde +— | [,_; |p (), (r,x)Pdxdr
A G, 4

S E® + [ 1 (0 (u, (00 ) + u, (5,1 =N F@2de+ [ |of ()IF (@) de

+ @0 /6 () — u, (] = O)f (@)} . @.1)

For each 4 € (0, 1]and 7€ R we consider the Yosida approximation b of b!:

t e ] ’ I £t
b/, (r) = inf {ﬁlr P+ b,-(r)}, reR.

r'eR
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It is known (cf. [9; section 1.5]) that there are positive constants B;, Bj,
determined only by 7, the norms of o, «, in L' (0, T') and

R(p) =inf{r>0,3s5eDBN. Is| <r 1) <r},i=0,1 (42)

such that

(i) bi,,(NB{|r|+ B, > 0forany 1€ (0,1}, te[0,T],re R, i = 0,1;
(i1) for each 4 € (0, 1] and 7 € R the functions r — b,,(r),i = 0, 1, are of
bounded variation of [0, 7] and

rd
bl (r) — b, (r) < jsa bi;(nNdrtforany0 <s <t < T,

d

75 D () =l (D 1055, (0] (b1, (1) + Bilr| + By )1

+ oy (O)|(B,; (r) + B |r| + B;) forae. t€[0, T]. (4.3)
In order to prove Lemma 4.1 we approximate » on [0, 7] x [0, d] and [0, T]
x [1 — &, 1] by the function u, which is the solution of the following problems
(4.4) and (4.4)":
p(ui)f U T 0 in (Os 7-) X (09 5)~
w.(t:8) = f,(£) for0 <1< T,
u,, (t, 0+)=0b,, (u, (t, 0)) for a.e. € [0, T],

u; (0, x) = u,(x) for0 < x < ¢;

pu) —u,. =0 in (0, 7) x (0—,4, 1),
u,(t, 1 =20) = f,() for0 <t <T,
—u, (1, 1=)=0b],;(1, 1)) forae tel0, T),
u; (0, x) = u,(x) fori—d<x<1;

According to a result in [9; section 2.8] (or [10; Theorem 1.1]), problems (4.4) and
(4.4)" have unique solutions u, in W2 (0, T, L2(0, é)) n L* (0, T, Wt2(0, )
c C([0,T] x [0,6])and in W*2(0, T; L2 (1 — 0, 1) n L™ (0, T: W2(1 — 4,1))
= C([0, T] x [1 =4,1]).
Next we derive the energy inequalities for the approximate solutions u,.
Forae. te[0, T] and any s € [0, T] with s < 7 we observe that
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_[(: p (), (t.%) (4, (z, X) — u, (s,x))dx = j':: ;e (0,) (1 (7,%) — u; (5,))dx

= [, @0) (05, ) — (50N + 25, (£, () — £,5)
—u, (t.0+) (1, (2.0)— 1, (50)). 4.5)
Using (4.3), we have
— i, (204) (4, (5.0)—1, (50)) < b, (1, (5.0)) — B, (1, (5.0)
— B3, (,(.0)) — B, 01, (50)) + B (2, (50)) — b3, u; (5.0)
< b, (,(5.0)) — b, (1, (20) (4.6)
1 1ot (0) 1085, (5,00 | (85, 1, (5.0)) + Bilu, (5.0) + By)i

+ 12 (@) 155, (5.0)) + Bilu, (s.0)| + B} ) do

Hence it follows from (4.5) and (4.6) that
I, @), () @, (23 — 1, (530 + E,, () — Eu6)
< I 106 (@) 1082, 5,00 | (05, 61, 6.0) + Bilu, 6.0 + B 2do (A7)
+ 1104 00163, 5.0) + Biluy (.00 + B) P do + 1, (53) 0, () — 9,
where

1 s
B (v) = 3 | o i (r,x)Pdx + b; ; (u, (z,0)).

Note here (cf. [9; Proposition 0.3.5, Lemma 1.21]) that
1
053 ; (u; (5,0)) — 05 ; (u; (,0))] < 7 11:(.0) — u; (z.0)
and
1054 (1, (5,0)) — b5, (u; (x.0))] < A(Ju; (5.0)+[u; (x,0)Dlu; (,0) — u, (z,0)]
forevery T e[s, 1], where 4, is a constant depending only on 4. Therefore, dividing

(4.7) by © — s, letting s T 7 and noting the relation u, . (t,0+) = b}, (u, (1,0)), we
see that for a.e. T € [0, T']



22 N. KENMOCHI

: PR
_[0 P (u.i.)t (T!x)u}.,t (T_.X) X + E 0.4 (T)

< log @Mt (1O F, ; (2 + log (0] F, (1) + u; (2.0) fy (), (4.8)

where
F,;(t) = b ;(u;(7,0)) + By |u;(z,0)| + B;;

it should be noted that E,; is of bounded variation on [0, T'] and

E

.4

() —E,,(s) < jz %Ef,_i (t)de for0 <s<t<T

Hence
| L
& L IpGu)Pdxds + E,; (0 = E,; ()
< [ 105 @l @O+IF, , (0 2de + [ o @IF, , (D)ee 4.9)

+IZ u; (1,0)f ¢ (7) dr.

Similarly we can obtain
| e
ol -".- -f;-a lp (w;) Pdxde + E, ;(t) — E, ;(5)
L ¥

< [ log @l @1 -)IF ;@ %ds + [ | @IF (s (4.10)
— [ e, 1 = 8)f; (o)

where
1
E (0 = 5[ . (6 0Pdx + b (0, (11)
and

F, ;) = b/, (1,1)) + Blu,(1,1)| + B;.

Proof of LEMMA 4.1. Since |u,(z.0+)| < C;(lu; )20, +1/,(0)]) for
a constant C; depending only on 4, we see that

F,t) < E,0)+C; te[0, T, 1e(0,1], (4.11)
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with a constant C; independent of A and ¢. Besides, since p (), = u,,, in
(0, T) x (0, &), we have with the aid of (3.4)
|, (2 )|L"'(o.5; < epu;),( )|L2{o.6} o C(é's)["&.\'(‘)lf.z(o.d) (4.12)

fora.e. 1€ [0, T], where ¢ is any positive number. Taking ¢ > 0 small enough we
derive from (4.9) together with (4.11) and (4.12) that

L, | 10@). @F 2oadt + E, () — E,;(6)

< L | (g @F + g @) + 1) (E,u(0) +Ly)de + L, | | (P dr (4.13)

forany A€ (0,1]and 0 < s < t < T, where L, -, L, are positive constants
independent of 4 € (0, 1] and s, t € [0, T']. Therefore, applying Gronwall’s
inequality to (4.13), we obtain that {u;; 0 < 1 < 1} is bounded in W12(0, T
L2(0,6)) n L*(0, T5; W*2(0,0)) and {b") (u;(-,0)); 0 < A < 1} is bounded in
L*(0, T). Accordingly, by Lemma 3.2 it follows that for a suitable sequence {4,}
with 4, | 0 (as n —» o0),

u, —>u in C([0, T'] x [0, 8]) n L?(0, T; W*2(0, 9)),
u, (0+) = u(,0+) in L2(0, T),
uiu,r('sa) = u,,(-,é) in L2 (Ov T),

and
p(u,iu ), = p(u), weakly in L* (0, T; L?(0,0)).

Also, by some standard techniques in the subdifferential operator theory we may
conclude that

by, (w; (£0)) = bi(u(t,0)) for ae. t € [0, T},
lim inf b}, (w; (£,0)) > b} (u(2,0)) for any t € [0, T]
W 5 g N gy
and

E,; (0) - E,(0).

Taking 4 = 4, in (4.9), we get by passing to the limit in n that

&1L o pdsie + £,
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< E,(0) + [ log llu, OH)IF, (2 2 de + [ o @IF, )k (4.14)
+ I; u,(t,0) fo(t)dv  forany 1€ [0, T].

Similarly it follows from (4.10) that
O
—_— 2
& 11 @ paxde + £,

< E O+, g @llu (el -)IF, @2 ds + [ 1 QIF, @ds (4.15)
- [; u,(t,1 =0) f1(t)dr  for any t € [0, T].

Adding (4.12) and (4.13) yields (4.1) with s = 0 and any ¢ € [0, T']. By taking
s € (0, T'] as the initial time and repeating the same argument as above, we
obtaing (4.1) forany 0 < s <t < T.

|

5. Proof of Theorem 2.3 (continued)

For the moment we continue our discussion under the assumptions of section
4; let {u, I} and 0 < 6 < 1 be as in that section.

First Step. In the first step we assume that p is a smooth functionin I' (C,, C,),
and prove:
LEMMA 5.1. Forany 0 < s < t < T,

1 ¢ 1-8 . | =2 . l 1—6 5
c [,1, lp@ @xPdxde+ 5[ [I'@Pde+3 [l (@x)Pdx (5.1)
< 2117 0 Py — T {u,(20) £1(8) — (.1 —8) f{ (W}

Proof. According to Evans-Kotlow [4; Theorems 1, 2] we see that
["e H®([s, T]) for any s € (0, T'),
ue H24+01+4+0/2(Q"), ue H2+0,1+0/2(0"),

and
u, e L2(Q7), u, e L>(Q7),

for any region Q with @ < (0, T'] x (0, 1), where 0 < ® < 1 and
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@t =0nQi(T), 0" =Q2n Qi1(T),
Let us differentiate u(z, /(¢)) = 0 with respect to ¢ € [0, T']. Then,
u(t, l()+) = —u(, () )(Q) forte (0, T). (5.2)
Also,we have forany0 < s <t < T

| T t Y t T
F j" j': "o (), dxdr < | j;“ p (w)u dxdt = | j';t ; u,, udxde
2 ¥ 5

= 11" wa dvde + [ u,@1@) =) (@ 1@) ~ e~ [ u,(20) £ @de

1 1o 1 .1 1
— e -2— ‘[6 lux (I,X)Fdx b 5 j& fu_t (S,x)lzdx + E J.I: !ux (T.K‘L’)—)IZ zr (T)dT

+ 1 @l ) u 1@ e - [, (w) £ (e

1 .10 1 .1 1
~% J.a [u, (2,.x)Pdx + 3 jﬁ e, (s,)Pdx — 3 _[: lu, (zd(r)=)P ' (x)dt

— ' u,@0) £3 () de

We have used (5.2) in order to get the last equality. Thus, forany0 <s <t < T,

1 .. 1B : 1 i
c [, 1, PGP dxde+3 ] lu @@= @de+3 [ lu(ex)Pdx
(5.3)

1

<50, e GnPdx = [ u.(5.0) £, @

a1

Similarly, forany 0 < s < 1t < T,

I & a=38 T ) e
2 e 2 o 2
c. [ @ dxde =5 [ Ju@l@ P @de+3 [ lu (x)Pd

] 1—4 1 .
<50, MGXPd+ [ u (el =) f] (.

Since
u (tl(z) —)*1'(v) —u (tl(x) = )*I'(2)

= = (—u@l(®) =) +u @@ +) (@ @l() —) + u (i) +))'(x)
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= — I @Pu(rl(r) =) + u(r.l(x) +))

< I (z)pP forae.tel0, T),

we infer (5.1) for 0 < s < ¢t < T from (5.3) and (5.4).

Combining Lemma 4.1 with Lemma 5.1 we see that the inequality (2.12) with
B, = Bj and B, = 2B, holds for any 0 < s < ¢ < T. Besides, on account of
(3.3), (2.12) holds for s = 0, too.

Second Step. In the general case of p € I'(C,, C,) we take a sequence p, of
smooth functions in I'(C,, C,) such that

p, — p uniformly on each bounded subset of R.
Now, let {u,, /,} be the solution of SP (p,, {b.}, {b{}; u,, ) on [0, T*¥), where [0,
T%) is the maximal interval of existence. In view of the first step we have

| T | I
SRy 2 2 3
2w, O)+ g §) 8 1w ) P + 5 [ e

< 1O, u,)+ I; letg (D (24, (2.0 +) | + [ (T,1 = )y (z.1, () 2de (5.5)
4 j; o, (D)l (2., (7))dx for any € [0, T¥).
For each n we put
T,=sup{t<min{l, T;d<l, <1—35on|0, T]}.
LEMMA 5.2. There is a constant M, > 0, independent of n, such that

Wdi20,7 0 < My, Ju,(Dly < M, forany T e [0, T,),

Ty ==

IIZ" {b) (u, (r,0)) + bf (u, (z.1))}dr| < M,.

Proof.First, choose functions i, W':2 (0, T),i = 0, 1, such that b (h,(-)) are
bounded on [0, T°]; in fact, we can take as 4, as solutions of A (¢) + obi(h,(2)) 30
on [0, T (cf. [8; Chapter 1]). Next, consider the function

h = h(t,x) on [0, T] x [0, 1], given by

hu(r)(l—g) for (1,x) € [0, T] x [0, 3],
b)) i= 0 for (t,x) € [0, T] x [4, 1 — 4],

h (1) (1 = % + g) for (tx) € [0, T] x [1 — 4, 1].



Stefan problems with nonlinear flux 27

Then we observe that for any 7 € [0, T,)
' | 1 n(:} ]
{1 pow), (w, — Wydxde = [ [ u, (u,— hydxde+{ [ u, . (u,—h)dxde
o o 00 ¢ 0 ™
= = [, I}ty — h) dxd — [ w4, (1,0+) (u, (2.0) — b, (@))de

I}t 1 =)y (1) = hy (@)
= ¢
< 5 00§, Wpdvds = [ [ u, Pdxde + [ {851, () + b (h, (0)}de
= j; (b5 (u, (2,00) + b} (u,(1,1))} e
On the other hand, for any ¢ € [0, T),

[0, pulu). (=B dxde = [ [ p,(w,), udxde — [ [ p, (), haxde
= [, P20 x) dx— ] p2u,() dx+[ [ p,(,)hdxde

+J, o, ) ROX) dx = [ p, (4, (03) h(1x)dx,
where
PE() = B, (p,(r)) with p,(s) = [ p,” (o)do.
Noting that
ki < ph(r) < kylrl?, re R,
for some constants k,, k, > 0 independent of n, we have forany 0 < t < T,
[0, uu)(u, — Bydxde> k [ | u,(t:%)7|dx — k, fo 8 ) dvde — kg,

where k,, k,, kg > 0 are positive constants independent of n and z. Hence,
t
5 00 0 g Pxde + (B, (2.0) + b (u, (2 1)}di + &, | I, (b)Pdx (5.6)

—k, f; _‘: || dxdr < M, for any 1 € [0, T),),

where M is a positive constant independent of n and 1. Also, forany0 < ¢ < T,
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by (u,(z, 0)) + by (u,(1,1)) > — B, (|u,(t, 0) + |u, (2.1)]) — B,
(5.7)

1 .
2 — Z |un,.\'(:)ﬁf — k&["ﬂ (I)lzﬁ S k';r!

where k,, k, are constants independent of n and . In order to get the last
inequality we have used (3.4)". Accordingly, (5.6) and (5.7) yield an inequality of
the following form:

1 ;
i j; D) e + el O, < Ky [ 0, @ e+ K, for0 <t < T, (58)

where kg, k, are some constants independent of n and 7. Applying Gronwall’s
inequality to (5.8), we get the desired estimates for a constant M, > 0 indepen-
dent of n. =
LEMMA 5.3. There is a constant M, > 0 independent of n, such that

|pn(u:l)|FF'1'2{U,T”;H] < M,, ]uu!r,’“”(n.?";ﬂ) < M,,

16 (, Cole=.1,y < My 1= 0, L L3 g1,y < M,

Proof. We use the following inequalities which are derived from (3.4):
|, (£.0)| + |u, (£.D)| < &lu,,  (Dly + C (e, (D]
and

|t (LOH)E + |, (11 —)P < &(u, (OF2(0,0) + |, (OF 2 (1-6,1))

A

+ C08)lu, (D < &lp, (w,) I, + COe)lu, (D]

By the estimates in Lemma 5.2 together with the above inequalities it follows
from (5.5) that for any 7 € [0, T,)

A [
2t 0) + Koo [ ] lo, ) Paxde + 3 [ (0P

, (5.9)
< 100, 1) + k;; ID (o (D + log (O (x (v, (7)) + k)dr + k5,

where k,,,"-.,k,, are positive constants independent of  and ¢. It is easy to see
from (5.9) that the required inequalities hold. i
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LEMMA 54. T, = T for all large n.
Proof.ByLemma5.3,u,e W*(0,7,: H)nL*(0,T,; X)and [,e W"*(0, T,)
for each n. We also have
L) =d 1-6,fT.<T (5.10)

In fact, if 7, < T and 6 < /[ (T,) < 1-9, then u,(7,) = lim ,, u, (¢) exists in
H and weakly in X. By Lemma 3.3, thedata {b};t > T, },i = 0, 1, u,(T,).[,(T,)
satisfy the strong compatibility condition with 7, as the initial time. Hence, the
local existence theorem (Theorem 3.1) vields a contradiction to the definition
of T,.

Next, suppose that 7, < T for a subsequence {n, } of {n}, and 7, — T" as

k — o0. We then note by Remark 3.1 that 77 > 0. On account of Lemma 5.3,
given ¢ > 0, there exists 7 < T’ such that

V=g T, < 4 il,,k(Tc’)—l,,k(T,,k)I <g¢ forall large k.  (5.11)
Moreover, in view of Lemmas 3.1, 3.2 and Lemma 5.3 we may assume that
Uy, = uin C([0, T/]1x[0, 1]) and weakly* in L= (0, T; X),
P, (T p(u)in C([0.T/]x [0,1]) and weakly in W"2 (0, T/; H),
Uy, (- 0+) = (0+) 54, (51 =)= u,(,1=)in L2 (0, T})

and
L —1in C([0,T/]) and weakly in W' (0,T).

By the expression (2.2)" of the free boundary we have

I,,k(t) = l,,—l-Jl pnk(u(,) (x)dx— J‘l p,,k(u,,*) (t,x)dx
0 0

{
+ J‘ {“";.-‘x (2, 1<) =% (z,04+)}dr foranyte[0,T/].
0
Letting k — oo in this inequality yields

I(t) = £ +J-1,0 () (x)dx — Jl p(u)(tx)dx+
0 0

J.t{ffx(t._l —)—J,(t,0+)}dt
0
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for any 1€ [0, T,']. Therefore, {u,1 } is the solution of SP (p: {b!}. {bi};u,,1)
on [0, 7,']. and by the uniqueness of solution we have

u=u on [0,T/]x[0,1].7=1 on [0,T/]
Moreover, it follows from (5.10) and (5.11) that
(T)—=68]Z¢e or |[I(T))—(1-8)] e

for an arbitrary ¢ > 0. But this contradicts that d < / < 1 — d on [0, T'].
QED. m
From Lemma 5.4 it follows that (5.5) holds for any ¢ € [0, T'] and large n.
Therefore, the passage to the limit in » yields that (2.12) is valid for any [0, T']
and s = 0. Repeating the same argument as above in the case of initial time
s €(0,7T), we see that (2.12) holds forany 0 <s <1< T.
We now accomplish the proof of Theorem 2.3.

Proof of THEOREM 2.3: On account of Lemma 3.2, we easily see under
the assumptions of Theorem 2.3 that for se (0, 7), {b!},5,,i = 0,1, /(s) and
u (s) satisfy the strong compatibility condition with s as initial time. Hence by the
above fact, inequality (2.12) holdsfor 0 < s <t < T.

Next, it should be noted from (2.12) that the function ¢t — X (r, u (1)) is of
bounded variation on each compact subset of (0, T'],

2 u()-x(s, u(s) < J-l-‘%_z(r, u(r))dr forany 0<s<t<T

and

d 1 L N
71 U@+ W @+ 511

< lag @I u,(z, 0+)| + u.(r, 1))y (z, u(®)? + | (@) |y (7, u(7)) (5.12)
forae. t€ [0, T].

Multiplying both sides of (5.12) by (r-s) and integrating them over [s, 7],

0<s<t<T,wehave (2.13)forany0 <s<t<T. =2

6. Some remarks on one-phase Stefan problems

One-phase problem is regarded as a special case of two-phase problem. Given
pel(C,,C,), {b'}eB(x,,a,), u,e L*(0, o) and /, > 0, we denote by SP, ( p;
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{b'};u,,1,)on[0, T]the problem of findingw = u(t, x) on [0, T ] x [0, o0) and
x = [(1) > 0on [0, T) such that

pw),~u, =0 inQ(T)={(tx);0<t<T, 0<x<I()}, (6.1
u(0, x) = u,(x) forae x>0, (6.2)
u(t,04)edb'(u(t,0)) forae. 1€[0,T], (6.3)
u(t, x) =0 forany te(0,T] and x> 1(1), (6.4)
{I'(r) = -u.t I(z)-) for ae. te[0, T], 6.5

10) = 1. B

A pair {u, I} is called a solution of SP, on [0, T'], if ue C([0, T]; L*(0,
0)) N W,b2((0, T]; L*(0, 0)) n L2(0, T; W"2(0, o0)) n LS ((0, T]; W'2(0,

0)), [eC ([0, T1) A W12 (0, T1), 9 (u(-,0))eL' (0, T) A L ((0, T']) and
(6.1) = (6.5) hold. A solution of SP, on R, is defined in a similar way to the
two-phase problem.

In view of Lemma 3.3, it is easy to see that {u, / } is a solution of SP_on [0, T']if
and only if it is a solution of the two-phase problem SP (p; {b!}, {b{}: u,. 1),
with b! = b'and b{ (r) = O0forr = 0 and = oo otherwise, on [0, 7], provided
that0</<1on|[0, T]and u, = 0 a.e. on [/,, o0).

In such a sense one-phase problem is regarded as a special case of a two-phase
problem. Therefore, as far as the local existence and uniqueness of solution to
SP, are concerned, similar results to Theorems 3.1, 2.2 and 2.3 are valid, even
though /, > 1 and the problem is formulated on the half line [0, o) of the spatial
variable x. Moreover, we prove:

PROPOSITION 6.1. Let peT (C,, C,) and {b'} € B(a,, o, ) such that

db'(r)c (~o0, 0] for any t <0 and r < 0. (6.6)
Let I,> 0 and u,e L? (0, o) such that
u,>0ae.on0,/]andu,<0ae. onl, o). (6.7)

Then there exists one and only one solution {u, 1} of SP, (p;{b"' },u,.1,) on R such
that | is non-decreasing on R, and

rlﬂ l'e Leioc (R+ )9

2
and such that function t — t|u (1) | I is locally bounded on R, and

(0, o0)
t"?u'e L} (R, ; L* (0, 0)).
Proof. (First Step) In case

u,e W"*(0, ), u,(0)eD(5°), u,>0o0n [0, /] and u, = 0 on [/,, 0), (6.8)
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by Theorems 3.1 and 2.2 problem SP_ has a unique solution {u, /} on [0, T'%),
T* > 0, where [0, T%*) is the maximal interval of existence. Since u > 0 on
Q, (T*)by Lemma 3.3, u (1. [(1)-) < O fora.e. te[0, T*),sothat/’ > 0a.e. on
[0, T#*), that is, / is non-decreasing on [0, 7*). We are going to show T* = 0.
To the contrary, suppose 7% < oo, Then, by Theorem 2.3,

| ] -
1, u(n)+*J 1P @) @)%, ___r_,,df+—f |1 (x) |3 d 6.9)
C2 0 2 0
< 1.(0, u,,)+J‘r|aL(t)l[H_\-(T'0+Jl?o(’f,H(T))l’"zdr+

¥+ f |y (0) |7, (z, u(r))d
and

1. ’ i
rx,,(t,u(t))+5~j o) @14, x_,dr+§j. o|I' (@) dx
0 0

2

- szn(r, u(t))dr + J.:ﬂt‘xo’ ©|u.(z, 04+) |7, (z, u(zr))*dz (6.10)
0 0

+J. tlai (1) [y, (7, u(0))de
0
for any ¢ € [0, T*), where
I
Kot D) = 31202,y +b'C0). 7, 2) = b'EO) +B,|=(0)| +B,

for ze W' 2 (0, o), and B,, B, are positive constants determined by T*, the
norms of &/,  in L' (0, T*) and 4". Since (0, T*) x (0, §) = Q] (T*) for
0<d <, it follows from (6.9), with the aid of inequality (cf. (3.4)")

|2, (0+)] < ¢|z,,| + C(9, 8) |z,

L2(0, &)

12(0,58)’

that p (u) € L2(0, T*; L2(0, o)), ue L= (0, T*; W2 (0, 0)), b (u (- , 0)) e
L*(0,T*)andle W'3(0, T*).Hence,u(T*)e W'*(0,0),u(T*,0)0eD(H™),
u(T*,-)=>00n[0,/(T*)land u (T*,-) = 0on [/ (T*), c0). This implies that
{u, [} can be extended beyond T*, which contradicts the definition of 7'*.
Therefore T* must be infinite.
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(Second Step) In the general case of u, we take a sequence u,_, satisfying (6.8)
such thatu, , — u,in L* (0, o0), and denote by {u,, [, } the solution of SP (p; {5’} ;
u,,l,)on R. . We note that the free boundary x = /, (1) admits the representation
(cf. [11]):

o

ollie ol 53 B 2J u (i O)ide,

1]

mxp(uo) (x)a'x—Zf

0

L) = 1242 J

]

and inequality (6.10) holds for each n. Also, just as in Lemma 5.2, we can prove
that {u,} is bounded in L (R, ; L? (0, c0)) and in L2, (R, ; W"? (0, o0)).
Therefore, using the above expression for the free boundary, we see by a slight
modification of the proof of Theorem 1.1 in [11] that there is a subsequence of
{n}, denoted by {n} again, such that

u—u in C([0, T]; L*(0, 0)) andin L*(0, T: W'"2(0, ©0))

and
I.—-1 in C([0,T])

forevery finite T > 0, and the limit {u, / } is the solution of SP, (p; {b'} ; u,,1,) on
R, having the desired properties. ]

Employing the same technique as in the second step of the proof of Proposition
6.1, we can prove:

PROPOSITION 6.2. Let p, { b } u, and I be as in Proposition 6.1. Also, let 1, , > 0
and o n€ L*(0, o0) such that for eachn = 1, 2, ..., the same type of condition as
(6.7) holds and

lo.n—= 1, and u, n— u, in L*(0, o) (as n — o).

Then, the solutions {u,, I,} of SP,(p: {b'}; tio,n, lo,n) on R, converge to the
solution {u, 1} of SP (p; {b'}; u,, 1)) on R, in the sense that

u, —wuin C([0, T1; L2(0, )~ L2(0, T; W"2(0, o))

and

I -1 in C([0,T])

for every finite T > 0.

In the proof of Theorems 2.1 and 2.5, we need another one-phase Stefan
problem. Given pel' (C,, C,), {b'}eB(a, o), u,eL’(-00, 1) and
I<1,SP,(p;{b'};u,,l)on[0, T]is the problem of finding u = u(z, x) on
[0, T]x (~o0, 1]and x = [(t) < 1 on [0, T ] such that
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p),~u,, =0 in Q,(T)={(1, x)O<t<TI(t)~cx<1} (6.1)
(0, x) =u(x) forae =<l (6.2)'
~u, (1, l)eﬁb (u(t,1)) forae. tel0, T], (6.3)’
u(t,x) =0 forany re(0, 7] and x<I(t), (6.4)
{l’(r) =u_(t,/(t)+) for ae. te[0, T], 6.5)

I(0y= L, '

We say that {u, /} is a solution of SP, on [0, T'], if ue C([0, T']; L*(- o0,
D)AWL, T1; Lo, D)ALX0, T; W' 2(-c0, 1)) nLE((0, T);
W00, 1)), b (u(-, 1))eL' (0, T)NnLZ.((0, T]), IeC([0, T])n W2
((0, T]) and (6.1)" - (6. 5) are satisfied. A solution of SP, on R is defined in
a way similar to the problem SP, on R_.

As for problem SP, we have:
PROPOSITION 6.1". Let peI'(C,, C,) and {b'} € B(«,, a,) such that

db'(r) [0, ) forany t>0 and r>0.
Let [, < | and u,e L* (- o0, 1) such that
u, <0 ae.on [,1] and u,=0 ae on (-oo,l]

Then there exists one and only one solution {u, l'} of SP, (p; {b'};u, 1) on R,
such that lis non-increasing on R, andt'*1'e L}, (R, ), and such that the function

loc

2
t—tlu(1)] is locally bounded on R, and t'?u’ belongs to L}, (R, ;

L*(-00,1)
L0, 1)).

Concerning problem SP,, the convergence result similar to Proposition 6.2
holds, too.

7. Proofs of Theorems 2.1, 2.4 and 2.5

We begin with the following lemma.
LEMMA 7.1. Let p, {bi},i = 0,1,/ and u,be as in Theorem 2.1, and let {u, I} be the
solution of SP (p; {b.}, {b}; u,, 1) onaninterval[0,T,),0 < T, < oo. Suppose that

0 < inf I(r) < sup /(1) < 1. (7.1)
te[0.T,) tef0.7,)
Then we have
ue W2(T,—e¢T,; H n L*(T,—¢,T,; X),
le WA3(T,—e,T), (7.2)
b, D)) n L*(T,—e,T),i=0,1,
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for some 0 < &¢ < T,, and the solution {u, [} is extendable beyond the time T,.
Proof. By assumption (7.1), there is a constant 4 > 0 such that

d<il<l1l—4do0on[0,T).

Hence we obtain (7.2) from (2.12) with inequalities (3.4) and (3.4)". Besides. (7.2)
and Lemma 3.3 imply that (7)) € X, u(T,, i) € D(b,*), u(T,;") > 0 on [0, /(T,)]
andu(T,,") < 0on[/(T,), 1], so that on account of Theorem 3.1, SP (p; {b,}, {b!},
u(T,), I(T,)) has a solution on a certain interval [7,, T;], T, > T,. The
continuation of {u, /} by this solution gives a solution of SP on [0, T}]. ]

LEMMA 7.2. Let p, {b}}, i = 0,1, u,, I, be as in Theorem 2.1, and let {u, l} be the
solution of SP (p; {b}}, {bi}; u,. 1)) on [0, T*), where [0, T*) is the maximal interval
of existence. Suppose T* < oo. Then, for each ¢ € (0, T*), u is bounded on [T* —¢,
™) % [0, 1].

Proof. Consider the problem

p(v)f—- Vex = 0 in (01 ':D) X (09 1)1

u,(x) forae. xel0,/],
v(0,x) =
0 forxe(l, 1], (7.3)

v.(2,04+) e db,(v(z,0)) forae.t >0,
vit, ) =0 fort > 0.
It is well known (cf. [9, 10]) that problem (7.3) has a unique solution vin C(R ;

H) n W2 ((0,00); H) n L% ((0,%0); X) (< C((0,000 x [0, 1])). Comparing u with
von Q} (T*), we have by Lemmas 3.3 and 3.4

O<u<v on Q) (T*).

Since v is continuous on [T*—g, T*] x [0, 1], it follows that  is bounded on
Qi (T*) N [T*—¢ T* x [0, 1] for each 0 < ¢ < T™*. Similarly u is bounded on
Qi (T*) N [T*—e, T*] x [0, 1]. [
Proof of Theorem 2.1. We first take a sequence {u,,, /,} of initial data
satisfying the strong compatibility condition and u,,, — u,in H (as n — ). Also,
put

z,, (resp. z,)) =

{ u,, (resp. u,) on [0, 1],

on [/, o),

and
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{0 on [_{D’ia]a

Mﬂ,n (resp' ua) on ['{u' 1]'

z, , (1esp. z,) =

Now, denote by {u,, [ } the solution of SP (p; {bi}, {b{}, u,,. 1,) on the maximal
interval [0, 7%) of existence, and by {u}, [;}, i = 0, 1, the solution of one-phase
Stefan problem SP,(p; {b}, z,,, [,) on R_. Then, by Theorem 2.2 we have

in?

up < u, < uyon (0, 7,) x [0,11, 7, <1, < [yon (0, T)), (7.4)

because {u, I} (resp. {u}, 1,}) is a solution of SP (p; {65}, {b.}. 2, 1,) (resp. SP (p;
(b1}, {b'}; 2, ,, 1)) on [0, T},) with T}, = sup {r > 0; () < 1 (resp. [,(H) > 0)},
where

> 0 forr > 0, : 0 for r <0,
by(r) = bo(r) =

o0 forr < 0, o0 for r >0.

We observe from Proposition 6.2 that

E51' mC([0, T])i=01,
), = u* in C([0, T],; L? (0, o0)), (7.5)
wh = ut in C([0, T); I (—,1))

for every finite 7 > 0, where {i/, I'} is the solution of SP,(p; {b}}, z, [)on R,
i = 0, 1. We note that there are positive constants J, 7, such that

d<li<l—2don[0,T)fori=0,]1and large n,
and by (7.4)

0<l(t)< 1 —dfortel0, TF) n [0, T)) and large n.

Hence, Lemma 7.1 implies that 7%, > T, for large », and just as in Lemmas 5.2
and 5.3 we see from (2.12) for {u,, /,} on [0, 7] that {u,} is bounded in W2 (T, —e,
T, H)n L% (T,—¢,T,; X),{l,}is bounded in W3 (T,—¢, T,),and {b," (u,(, )},
i = 0,1, are bounded in L™ (7,—e, T,) for every 0 < ¢ < T,. Using these facts
together with (7.4) and (7.5), we can extract a subsequence of {n}, denote again
by {n}, such thatu, > uin C ([0, T,]; H), weakly in W2 ((0, T,]; H) an weakly* in
L5 (0, T); X),and [,— [in C ([0, T]) and weakly in W13 ((0, 7,]). Besides, it is
not difficult to see that the limit {«, /} is the solution of SP (p; {b!}, {b{}, u,, [,) on
[0, T ). having the required proporties. =
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Proofof Theorem 2.4.Foreachn, wdenote by {u,,/,} the solution of SP,
on [0, T#), where [0, T¥) is the maximal interval of existence. Just as Lemma 5.4,
itcan be shown that 7% > T for sufficiently large n. Moreover, making use of the
inequalities (2.12) and (2.13) for {u,, /,} and employing a standard argument on
the convergence of subdifferential operators (cf. [9, 13]) we obtain the required
convergences. o
Proof of Theorem 2.5. Suppose T* < oo and either (b) or (¢) does not
holds. Then, there would exist a sequence {1,} with 1, T T* (as n - o) and two
numbers 0 < x, < x, < 1 such that

x, < I(t,) < x, for any n.

Now, let { V/, L'} be the solution of one-phase problem SP, (p; {b,,}; Vi, x)on R,
for i = 0, 1, where for a positive constant M

M (resp. — M) for0 < x < x, (resp. x, < x < 1),
Vi(x) (resp. Vi (x)) =

0 for x > x, (resp. x < x,),

and
0 forr = M (resp. r = — M),

oo otherwise.

b, (r) (resp. b, (1) = {

We then note that these are one-phase Stefan problems with the usual Dirichlet
boundary conditions ¥* = Monx = Oand V' = —Monx = 1,respectively.
Here, the constant M is chosen so as to satisfy

T*
lu < M on [T T*) x [0, 1]; (7.6)

this choice of M is possible by Lemma 7.2. Moreover, take positive number § and
T,(< T*/2) so that

< L'(t)<L'(t)<0-26 for te|0, 7,].

In this case, on account of (7.6), it follows from the usual comparison result for
Stefan problems with Dirichlet boundary conditions that

L'(t—1t,) < I(t) < L°(t—1,) forany t € [1,, T*) with T* — 1, < ) 3

Therefore,
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0 <inf I(f) <sup [I(1) <1,

te .T%) 1e [\T%)

so that by Lemma 7.1, {u, /} is extendable beyond the time 7*, This contradicts
the definition of T*. Thus the case (b) or (¢) holds true, if T* < = =
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Globalne istnienie rozwigzan dwufazowego zadania Stefana z warunkami nielinio-

wymi

W pracy wyprowadzono wyniki dotyczace istnienia rozwiazan dwufazowych zadan Stefana
z nieliniowymi warunkami przeptywu. W tym celu dowodzi sie wlasnosci dotyczacych specjalnych
ocen energii dla szerokiej klasy danych poczatkowych.

I'no6anbHoe cymiecTBoBanWe pemienmii AByxda3zmoii 3amaum Credana chenu-
HeHHLIME YCIOBHAMH

B paboTe mpencTaBieHBl Pe3yiLTATEI CyIIECTBOBAHWA pemieHuit aByxdasmeix 3amay Credana
C HE/NHHEHHBIMH YCIOBHAMH NOTOKAa. s 3ToH menM NOKa3BIBAIOTCH CBOMCTBA KacalOMIHECH
CIeNHATLHEIX OIEHOK HEPIHH [UIA MIMPOKOTO KJIACCa Ha4YaNbHBIX JaHHBIX.






