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In this paper, we consider one - dimensional two - phase Stefan problems for a class of para-
bolic equations with nonlinear heat source terms and with nonlinear flux conditions on the fixed
boundary. The flux conditions are described by time - dependent subdifferential operators in R and
are interpreted as feedback boundary controls. The main purpose of this paper is to establish a local
existence theorem for the Stefan problems, and our approach is based on the abstract theory of
nonlinear evolution equations governed by time - dependent subdifferentials in Hilbert spaces.

Introduction
Let us consider the following two - phase Stefan problem:

Find a functionu = u(t,x)onQ, = (0,7,) x (0,1),0 < T, < o0, and a curve
x =1(1),0<l<1, on[0,T,] such that

= j& i‘n Q:‘+:
p(u),—a(u,),+h(t,x) = T o, (0.1)
h(t,x)e g(t,x,u(t,x))forae. (t,x)e Q,,
Q" =4t x); 0t T, 0 < x<l() )

O =f(Lx);0<i=s T (<2<}

u(t,i(t)) =0 for0<t<T,,
1'"(t) =—a(u (t,l(t)=))+a(u.(t,l(t)+)) forae. t€[0,T,], (0.2)
1(0) = 1,

u(0,x)

u,(x) for xe(0,1), (0.3)
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a(u,(1,04))edb,/(u(1,0)) forae. tel0,T,],
—a(u (t,1—-))edb,/(u(t,1)) forae. te[0,T,], (04)

where p: R—+ R and a: R— R are continuous increasing functions;
forae.(t,x)eQ,,r—g(t x,r)isamultivalued mappingin R; f,(i = 0,1)is
a functionon Q,; /,is anumber with 0 < /; < 1 and uisa functionon[0,1]; 5/
(i = 0,1) is a proper ls.c. convex function on R for each ¢t € [0, T,,] and b/
denotes its subdifferential in R.

In this paper, we treat a class of nonlinear parabolic equations of the form
(0. 1) that in particular reduce to

-C,,u,w—(|u_{tf’_2u_‘)x+0'(u)3 f;’ I = 0111

for positive constants ¢,, ¢, and 2 < p < oo , where

| forr>0
a(r) = [—1,1] forr=0 (0.5)
—3] " forr<0

Also, it should be noticed that (0.4) represents various linear or nonlinear
boundary conditions, such as Dirichlet, Neumann - or Signorini - type.

Many interesting results about existence and uniqueness of solutions and
regularity of free boundaries are known for standard Stefan problems described
by linear parabolic equations with Dirichlet or Neumann boundary conditions
(cf.[2,3,4,5,8]). Also, Stefan problems for nonlinear parabolic equations have
been studied, for instance, in [ 6, 7, 13 ], and those with non - standard boundary
conditions of subdifferential type were earlier treated in [ 11, 15]. In particular,
Stefan problems for nonlinear equation cu, — (|u,|” "*u,), = f were for-
mulated and an existence result was established in [ 10].

Our problem (0.1)-(0.4) is more general than those in the papers quoted
above. We are especially interested in the heat source terms f;, i = 0,1 and
g(t,x,u)in (0,1), which cause that the set { (#,x);u(t,x) = 0} may have the
non-empty interior in Q. Also, we are interested in the boundary conditions
(0.4 ) which are interpreted as a feedback flux control on the boundary x = 0, 1.
The uniqueness of solution to the same type of problems as (0.1)-(0.4) was
already discussed in [ 12 ]. The aim of this paper is to establish a general existence
result for problem (0.1)-(0.4).
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1. Main results

In what follows, let 0 < T< owand Q = (0,7T) x (0,1). We begin with
introducing the precise assumptions (al)-(a4) on p,a, gand b/, i = 0,1,
under which Stefan problem (0.1)-(0.4) is discussed.

(al) p: R— R is a bi-Lipschitz continuous and increasing function with
p(0) = 0; denote by C, a Lipschitz constant of p and ¢

(a2) a: R— R is a continuous function such that
ag|lr|”<a(r)yr<a,|r|? for any r € R,
a(r—r’)"'<a(r)—a(r’) foranyr,r'e R r=>r,

where a, and a, are positive constants and 2 < p < c0.

(a3) Fora.e. (¢,x) € Q, the mapping r — g (¢, x,r) is set - valued in R such that
g(t,x,r)isanon-empty closed intervalin Rforanyre R,0eg(1,x,0)and
g(t,x,r) is us.c. with respect to r € R. Moreover suppose that for each
M > 0, g has the following properties (i)-(iii):

(i) r—>g(t,x,r)+ C,r is monotone in r with |r | < M for a positive
constant C,, depending only on M, that is,

(r, + Cyry—r, — Cyry)(r,—r,) = 0if|r,| < Mandr eg(t,x,r,),i = 1,2

(ii) |7 | < goun(t,x)forreg(t,x,r),rwith|r| < Mandae. (1,x)€Q,
where g, is a non - negative function in L*(Q);

(iii) for any 4 with 0<i<1/C, and r with |r|<M,
[I+ Ag(t,x,)] 'ris measurable in (1,x) € Q.

(a4) For i = 0,1 and each ¢ € [0, T], b/ is a proper l.s.c. convex function
%, € W'2(0,T), o, € W' (0,T):
(*)Forany 0<s<t<Tandre D(b’)={re R;b(r) < o} there
exists ' € D(b,) such that

lr'—r| < |ao(t) —ag($)I(1+|r | +1b7(r)|"),
b/(r)—=b(r) <o (2) —a;(s)|(1+[|r|?+1b/(r)]).

Furthermore, for f,, i = 0,1, u, and /, we suppose that

(a5) fo, /€ L*(Q);
(a6) 0 < [y <1, uge W'P(0,1), us(l) = 0, ug(i) e D(b/), i = 0,1.
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Now, we denote by P = P(b,, b,;g:fy, f1: u,: l,) the system
(0.1)-(0.4),and say thata pair { ,/ } isasolutionof Pon[0, 7;,],0 < T, < T, if
the following properties (i)-(iii) are fulfilled:

(i) u e W20, T,; L'(0, 1))L>(0, T;; W-?(0, 1)) (hence

ueC(Q,)),and le W"2(0, T,)(< C([0, T,]))with0 < /< 1 on
[0, T,],

(ii) (0.1)holdsinthesenseof D’(Q," )and D’ (Q,” ) forsome he L*(Q,)
withh(t,x)eg(t,x,u(t,x))fora.e.(t,x)eQ,,and (0.2)and (0.3)
are satisfied,

(iii) &7 (u(-, i)) is bounded on [0,7,], u(t, i) € D'(@b;) for a.e.
tel0, T,),i = 0, 1, and (0.4) holds.

THEOREM 1.1. Suppose that assumptions (al )-(a6) hold. Then there exists T,
with 0 < T, < T such that problem P has at least one solution {u, 1} on [0, T,].

The class of functions g(1, x,r) satisfying (a3) includes any locally
Lipschitz continuous function & (r) on R. Therefore, in general, a solution u of
p(u)~a(u,), +g(t,x,u)> fblowsup at some finite time, so problem P might
not be expected to have a solution on the whole time interval [0, 7°]. In this paper
we devote ourselves to the proof of the above local existence theorem, and shall
discuss global existence and behavior of solutions in the author’s forthcoming

paper [1].

The construction of a solution to problem (0.1)-(0.4) is done in the
following way.

First, givenacurvex = /(¢),0 </(t) < l,on[0,T],f,e L*(Q).i = 0,1,
and u, € W"?(0, 1), we consider the initial boundary value problem
(IBP), = (IBP),(!; f;, f; u,) which is formulated by

o mQ}F ={(t,x);0<x</(1),0<t<T},

p(u)t—a(ux)x=[ , (1.1)
fi mQ° =4 x)l{t)ex<,0<t< T},

u(0,x) = uy(x) for 0<x<1, (1.2)
u(t, 1(1)) =0 for 0<t<T, (1.3)
a(u,(t,0+)) e b, (u(,0)) forae te[0, T], (1.4)
—a(u,(1,1—)) €, (u(t, 1)) forae te[0, T]. (1.5)

This problem can be uniquely solved as a direct application of the theory of
nonlinear evolution equations generated by time - dependent subdifferentials.
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Next, we consider the problem (1BP ), with (1.1) replaced by

h in 9%,
plu)y—a(u), + h = _ (1.6)
H @S,

h(t,x)eg,(t x,u(t,x)) forae. (1,x)eQ,

where f, and f, are given functions in L*(Q), M is a positive number so that
|uy] < M on [0, 1] and

sup{r’;reg(t,x,M)} forr>M,
gu(t.x,r) =1 g(txr) for rwith |r| <M, (1.7)
inf{r';r'eg(t,x, — M)} forr<— M.
This problem is denoted by (1BP),, = (IBP),,(/;f,.f,: 4,) and can be solved by
using the uniform estimates for solutions of (IBP ), with respect to /, f; and f, .

Finally, by the standard fixed point theorem we seek for a curve x = /(1)
on [0, T]and a time 7', 0 < T’ < T, satisfying '

1(0)=1/,,0</<1lon]0, T],
r't) = —a(u(t,I(t)=))+a(u(t,i(1)+) forae. te[0, T]

where u is a solution of (IBP),, on Q. It is proved that this pair {u, /} gives
a solution of problem (0.1)-(0.4) on a time- interval [0, T, Jwith0 < T, < T".
2. Initial boundary value problem (IBP),

In the sequel, for simplicity we put

H=1L1%0,1), X=Ww"(0,1)(=C([0,1]))
and

(f &)y =njf(x)g(x)dx, for f, g e H.

Throughout this section, we assume (al )-(a6) to be satisfied.
We fix a number J with 0 < é < 1-4 and put

Ay = {leC([0,T]);6<I(1)<1-don[0,T]}.

In order to solve (IBP),(/;f,.f, :u,) foreach /e A, by an application of the
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subdifferential operator theory, we introduce the family { ¢/ } .4, of functions
@,/ on H formulated by
1
[A(z (x))dx+ by (z(0))+b,/(z(1)) if ze K'(1),

o/(z) =] © _ (2.1)
o0 otherwise,

where
K1) = {zeXizli(D) = 0,z(ie DB}, i = 0,1, 0Lt T,
and

A(r) = [a(s)ds foranyreR.
0

LEMMA 2.1. (c¢f., Kenmochi [11; Lemmas 2.1, 3.1]). (1) There are positive
constants R,, R, depending only on o, a, and T such that

b/(r)+ R\|r|+ R, 20 foranyte[0,T],anyreRandi = 0,1,
and
|6/ (r)| <b/(r)+ Ry|lr|+ R, foranyte[0,T),anyre Randi = 0, 1.

(2) Foreachle A;andte[0,T ), /() is aproper ls.c. convex function on
Hand D(o@/) = K'(1).

(3) There are positive constants Ry, R ,and R depending only on o, 0, , a,,
a,, T and 0 such that

lz. |? Lp(0,1)< R,@/(z)+ R foranyte[0,T] ze K'(t)yandle A,,

and
|b/(z(i))| < @/(z)+ Rsforanyte[0,T),zeK'(1),le Ayandi = 0, 1.

(4) There is a positive constant R, depending only on oy, o, a,, a,, T and
d such that for any l e A, @ /() has the following property (**):
(**) For any 0 < s<t< T and ze D(¢@}) there is z € D (/) such that
17— 20 < R { 1I(1) = 1(s)| + lag (1) — @ ()1} (1 + |97 (2)]"?)
and
0/ (2)— @ (2) S R A1) = 1(s)| + o () — g (s)| + |, (£) — o, (s)]} -
(1+109/(2)])

(5) For each |l € A,y and t € [0, T'], the subdifferential ¢ | of ¢/ in H is
single - valued and characterized as follows: z' = d¢/(z) if and only if z’ € H,
ze X and
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—a(z,), =z inD'(0,1(t))and D’(I(1), 1),
z(I(t)) =0,

a(z,(0%)) e dby(z(0)),
—a(z,(17)) € db, (z(1)).

By 7, we denote the following function on L*(0,1):
1

vo(2) = [z¥ (%) dx forze L*(0, 1).
0

This function is continuous, non - negative and convex on L*(0, 1). Also, by
B we denote the operator from D(B) = H into itself given by

[Bz](x) = p~'(z(x)) forze H,xe(0,1),
which is bi - Lipschitz continuous in H, and is the subdifferential of the convex
function j on H given by

1 w(x)
jvy=1[f p'(r)drdx forveH.
0 o0

LEMMA 2.2 (c¢f., Kenmochi [9; Lemma 3.4.3]).
(1) 9(2) +7o(—2) = |z| L'(0,1) forze L*(0,1).

(2) Foreachle Ajandte ([0, T ), 0@ /°Bisy,-accretive in H,i.e. if zand z,
are any points with Bz, Bz, € D (3¢ /), then (d¢/(Bz) — d@/(Bz,), w), = 0 for
some w € 0y, (z — z,), where 0y, is the subdifferential of y, in H.

(3) For each 1 € A;, t € [0, T] and r 20, the set {z € H; |z|, <7,
©/(z) <r} is compact in H.

For L > 0, we put
Ar?(L) . ‘UEAa; ”,lLZ(O! T)'EL}

The above Lemmas 2.1 and 2.2 allow us to apply the abstract results from
[9; Theorems 2.8.1.-2.8.3], and we see that for /e A;(L)and fe L*(0, T; H)
the Cauchy problem

v'(t)+ 89/ (B(v(1))) = f (1), forae. te[0,T],
(2.2)
v(0) = p(u,)

has a unique solution vin W"?(0, T; H ) such that the function t — ¢, (Bv (1)) is
bounded on [0, 7" ]. Let v be asolution of (2.2) forf = X" f,+ X,” f,, where
X;*, X,” are the characteristic functions of Q,", Q,~, respectively. Then,
by Lemma 2.1 it is easy to see that u = Bv is a unique solution of

(IBP),(1; fo, f 1; ) and u € W"2(0, T: H)n L*(0, T; X).
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Next we mention a lemma on some uniform estimates for solutions to
(IBP), with respect to the data.

LEMMA 2.3. Let k, be any positive number. Then there is a constant R, > 0,
depending only on the quantities in conditions (al), (a2), (a4), the class A;(L)
and k,, such that

lu|L2(0, T; X )+ |u|W"*(0, T;H) < R,, (2.3)
and

sup |b/(u(r,i))|< R, fori=0,1, (2.4)

te[0,T]

whenever u is the solution of (1BP),(1; f ;. f s uy) and l € A;(L), f,€ L*(Q)
with |f|L2(Q)<k,, i =0, 1, and u, € X satisfying u,(1(0)) = 0 and
16 (4 (0))| + lugly < Ky, i =0, L.

This lemma is a direct consequence of [9; Theorem 2.8.4], too.
The following lemma is concerned with convergence of solutions of
(IBP),.

LEMMA 2.4. Letl€ A;(L),l,e A;(L),n = 1,2, ..andf ,e L*(Q),i = 0, 1,
fi.€L%(Q),i=0,1,n = 1,2, .. Suppose that

I, — [ uniformly on [0, T,
and for i = 0, 1,

fiw—f weakly in L*(Q).

Let u and u, be the solutions of (1BP), (1:f 0.1 17 1) and(IBP)o(f";f_n_",f,‘n;
u, ,) on [0, T']. Then,

u,—»uin C([0,T];H),in L°(0, T; X), weaklyin W"?(0, T; H)and (2.5)

weakly * in L*(0, T; X ), (hence in C(Q)),

a(u, (+,0+))—>a(u,(-,0+)) inL (0, T), (2.6)
a(u, (-, 1=))—>a(u(-,1—)) in L’ (0, T), (2.7)
alt L)Yy =atu . 005) 20 in L7 (0, T), (2.8)

where 1/p+1/p' = L.

Proof. The lemma can be proved in a way similar to that of [9; Lemma 2.8.8 ]
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and [11; Proposition 4.1]. For simplicity we write ¢, , @' for ¢/ , ¢/ and_fn
Jor X)t fo + X0 fo X" fo+ X f |, respectively, where X;* |, X~ , X
and X, are the characteristic functionsof 0," , Q,” , 0," ,and O, , respectively.
Clearly

fo—f weakly in L*(0, T;H) as n— oo . (29)

By virtue of a convergence result concerning convex functions[ 11 ; Lemma 4.1 ],
we have

¢, — @' on H in the sense of Mosco foreach t € [0, T]asn— o0 . (2.10)
By Lemma 2.3,

+ |u,| R, for'm = 1,820

w0, Ty S

Therefore we can select a subsequence of { u, }, denoted by { u, } again, such that
u, converges to some vin C([0, T']; H), and evidently ve W"*(0, T; H) and

IR"ILOO(O,T,X)

p(u,),—p(v), weaklyin L*(0, T'; H), (2:11)
e'(v(t))<lim inf e, (u,(t)) foranyte[0, T]. (2.12)

Next we show that

i T

gcp;(uﬂ(i))dm{qo’(v(r))dr. (2.13)
In fact, since £, (1) — p(u,),(t) = do, ' (u,(t)), it follows that

§(ﬁ,(r) —p(u,), (1), w(t) —u,t))ydt
T T (2.14)
SOI%’(WU)) dt —UI(P”’(M,,U)) dt

for any w € L?(0, T; H) with ¢, (w(-)) € L'(0, T). Corresponding to the
function v, we take a sequence {z,} < L*(0, T; H ) such that

z,—vin L2(0, T; H), fcp,;(z,,(z)) dt—)f(p’(v(t)) dt :
1] 0

indeed such a sequence {z,} exists by (2.10) (cf,, [9; Proposition 2.7.1]).
Substituting z, as w in (2.14) and letting n — co, we get by (2.9) and (2.14)

lim sup?j:rp"’(un(r))dtgrf(p‘(mr(r))dt. (2.15)

n=o [t}
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Hence from (2.12) and (2.15) we see (2.13). Next, given we L*(0, T; H) with
@ (w(-))e L' (0, T), we choose a sequence {w, } in L?(0, T; H ) such that

I T
w,owin L*(0, T;H), [o,(w,(1))dt—[e'(v(1))dt,
0 0
and substitute w, as w of (2.14). Then by (2.13), letting n —» oo yields

T B T F
{!(ﬂ(V);(f) —f (1), v(t) —w(1))ydt SJ(D’(ﬁ'(I))dF —ﬂ]fp’(V(I))dt,
which shows by the definition of subdifferential d¢' that
f(t)—p(v),(t)edo'(v(t)) forae. te[0, T]

Since the solution of Cauchy problem ( 2.2 ) is unique, we see that u = v and that
u,»uin C([0, T']; H), weakly* in L* (0, T; X ) and weakly in W"*(0, T;H )
without subtracting any subsequence of {,} . Furthermore, by the uniform
convexity of L7(0, T; X ), (2.13) implies

u,—u in L°(0,T;X).

Thus (2.5) has been proved.
Finally, convergences (2.6)-(2.8) are obtained by using (2.5) in the
following way. By virtue of (a2) and (2.5) we have

a(u, )—a(u,) in L' (0, T;L' (0, 1)). (2.16)
Given ¢ > 0, we choose a smooth function /in A;(L) so that
0</ —1 <e on[0, T] for all large n.
Observe that forae. t € [0, T],
la(u, (¢ 1,(t) =) —alu(8 1() =)
<9la(u, (1, 1,(1)=))—a(u, (6.1 (D)+
+9la(u, (4,1 (1)) —alu (1 ()" +
+9la(u (6,1 (1)) —alu (s, 1(t) =)
Also, forae. te[0, T,

la(u, (1,1 (1)) = a(u(1, 1(t) =)
iHr)
= | a(u,(1, x)).dx|"

i)
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I(t)

<{J Upu) (8, x) |+ /(2 X)) dx }?

1
< 411 =TI {1p(w) (D1 +1 /(D15 }
< 4e {24 1p(w), (D] g+ 1 7(D)u }s
and similarly
a(u, (4, 4,(0)7)) —a(u, (4 T())F
< 482 (24 |p(u,), ()] 5+ fy ()] 5} foralllarge n. We choose a smo-

oth functionne C' ([0, T 1) such that0 < n < 1on[0,71,#(0) = 0,5 = lon
[0, 1], and set C(n) = sup {|n,(x)|; x € [0, 1]}. Then we have

(I]TIa(u,,,x(I, (1)) — alu,(t, [(1)))1 de

RGP

=[] = {n(x)(alu, (t,x)) —a(u,(t,x)))}" dx|dt
6 o Ox
T

T )

%g IO C(np’l(a(u, (1.x)) —a(u, (t,x))|" dxdt +

+j j;?la(u,,.x(r,x))x — a(u, (6.x))]la(u, (%)) —a(u, (1,x))|7"~dxds
< CP’ I(aluy) = a1 2190 1))+

P alu,) = @l 1o 10 19y

JICIOAREFTCR N EIN s

<COmp I(aluy) =al rog porvo 1yy+

+p,T(2_P)2P1(a(unc)_a(ur)|LP(0 TLP(O 1)){|p(un)r|L2(0 TH)+

G e T



52 T. AIKI

Consequently, using (2.16), we have

limsup|a(u, (-, [,(-)=))—a(u (. 1()— ))i”'Lp-(0 T) < const. &7,
Thus
a(u, (-, L,(-)=))=a(u (-, 1(-)=)) in L' (0,T).

The other convergences of (2.6), (2.7) and (2.8 ) can be shown in a similar way

3. Initial boundary value problem (IBP ),,

In this section we solve (1BP),,.
Let /e A;(L), u,e X and f,e L*(Q), i = 0, 1, and suppose that

u, (1(0)) = 0, uy (i) e D(b), i = 0,1. (3.1)
First of all we take a number M > 0 so that
lug(x)| <M forall xel0,1], (:3.2)

and consider the multivalued function g,,on [0, 7] x [0, 1] x Rgiven by (1.7).
Clearly, by (a3) the mapping r — g, (¢, x,r) + C,r is maximal monotone in
re Rforae. (t,x) e @, and

|r'| < gy (2, x) forany r'e g, (t,xr), re Rand ae. (t,x)e Q, (3.3)

where C,, and g, ,, are correspondingly the non-negative constant and the
function in condition (a3).
Now, for each 0 < ¢ < C,, consider the following approximate problem
(IBP),, :
fo Q7.
plu),—a(u,), + gy, (t.x,u) = oy A (34)
/i nQ,,

and initial - boundary conditions (1.2)-(1.5). Here, for ae. (t,x) € O,
2. (2, x,) is the Yosida approximation of g, (t,x,* ), i.e.

gu.(tx,1) = % {r—[1+egy(t,x,-)] 'r}, reR.
From (3.3) it is easy to see that

| gy (t,X,7)]| < g u(t,x) forany re Randae. (£,x)e Q. (3.5)
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LEMMA 3.1. For each 0<e<C, , (IBP), ., has a solution u, in
W30, T; H)n L* (0, T: X ). Moreover, there is a positive constant R,, , indepen-
dent of €, such that

|ue| +|u5| “‘{‘~'RM (36)

L*(0,T; X) W20, T; H)

Proof. Forsimplicity we write g,, . (w) for g,, . (¢, x, w). Consider the mapping
I', with assigns to each w e C([0, T ]; H) the solution u of (I1BP),(/; f,. [, ty)
with £, = f, — g, ,(w) and f, = f, — g,,.(w). Since

|.f;_-gM;.(w)|L2(Q)S|ﬁ|L2(Q)+|g0M|L2(Q)

for any w e C([0,T]; H), it follows from Lemma 2.3 that

IT,w) +|T,w| < R,, forallwe C([0,T]; H),

L*(0,T;X) W20, T; H)

where R, is a positive constant independent of &.
Therefore I, is a compact operator from

{fwe C([0,T];H);w(0,x) = uy(x) for xe[0,1],

|w < T'? Ry, + | uy|  } into itself, so that T, has a fixed point u,,

C([0,T] H)
ie. I'u, = u,. Clearly, u, is a solution of (IBP),,, satisfying (3.6).

LEMMA 3.2. Let u, be the solution of (1BP),, ,, obtained by Lemma 3.1, for each

0 < &< Cy, . Then, there is a sequence {&,} with ¢, 0 (as n— o) such that
u,: = u, converges to the solution u of (I1BP),, in the following

u, —uin L’ (0, T; X), weakly in W"2(0, T:H) and weakly * in  (3.7)

L*(0, T; X ), (hence in C(D)),

a(u, (-,0+)) > a(u,(-,0+)) in L"(0, T), (3.8)
a(u, (-,1-))=a(u(-,1=)) in L' (0, T), (3.9)
a(u, (-, 1(:)+))~a(u,(-,I1(-)£)) in L (0, T), (3.10)

where 1/p+1/p’ = L

Proof From (3.5)

|gu o (1.x,u,(4,x))| < g 4 (t.x) forae. (1,x) € Q.
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Then there exists a subsequence { ¢, | { } with e, | 0 and & e L*( Q) such that
8u.s, (t.x,u, (t xX))—=h(t,x) wedkly in L*(Q). By virtue of Lemma 2.4,
u, : = u, converges to the solution u of (IBP),(/;f;.f,; 4, ) With f, = f, — hand
fi =1 “h in the of (3.7)-(3.10). Using basic properties of Yosida-ap-
proximation, we see that

h(t,x)e g (t.x,u(t,x)) forae. (1,x)eQ.

Finally it is not difficult to check that u is the solution of (IBP),,.

4. Proof of the Theorem 1.1

Let M be a positive number satisfying ( 3.2 ), L be any positive number and
fix them in this section. Next, taking a positive number é with

20 < by < 1—26,
we consider the subclass A (L, /1) of A;(L):
A;CL L) = {1e A(E)1(0) = I}

LEMMA 4.1. Let u' be a solution of (1BP ), (L; f, .f, 1 u, ) for eachle A;( L, 1,). Then
there is anumber T, independent of [, withO < T" < Tsuch that for allle Ay( L, I;)

la(u/( 1) =) Fla(u!C ()] . <L (41)

£l £l 3

Proof By Lemma 2.3 and (3.3) we have

| | + ||

forany le A;(L,1). (4.2)

where R, is some positive constant. From (0.1) it follows that

la(u)),| = |lp(d),—h'+fl , (4.3)
L(Q") L(Q")

<lp(ud),| + |4 + 1Al ,

L(9") L(Q") L(Q7)
< CpRs + [0, ael +l61 . = R,.
0) L(Q)

4
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where h' = f, — p(u'),+ a(u'), in Q,% and R, is some positive constant
independent of /.

For simplicity, we put u = u'. To prove the lemma, we use the following
inequalities :

¥ 2 4p'(p +2) (4=2p)/(p' +2) 2
v( x x < K, v| . V. vl .
;]“ (x)Fdx < K() (| |f.‘”w,_v: | “ILZm._r} +| ILPlO,;'))
¥ plip'+2) (p'+4)/(p'+2)
[ () de S KX iy Dl 2, +
+ | v | LPI(O.J.) I v.t I szuh‘.‘ )’

for ve {ve L?(0,y); v.e L*(0,y)} where 1/p+1/p’ =1 and K,(p) is
a positive decreasing function of y > 0 independent of v (cf., O. A. Ladyzens-
kaja, V. A. Solonnikov, N. N. Ural’ceva [14; Chap.2, Theorem 2.2]).
K, = K,(9),using the same function » asin the proof of Lemma 2.4, we have for
any t > 0,

la(u,(t,1(t) =) dt

)

I ﬁ(”:'(-’C)a(-'»t_t(‘c,x)))za'xa'*r
0 dx

t ()

[ 20, (x)n(x)alu,(t,x)) dxdr +

g!
!’

t I(r)

+ﬂ_[6f Zq(x)za(u_r(r,x))_ra(u_‘(r,x))dxdr

ap'i(p'+2) 4=2p)/(p'+2)

la(uy (7))l s

7 (0.1¢x)) L7(0,0(7))

s2C(n)Kog)'(|a(u,.(r,-))l

+1a(u (1)) g 00y ) B +

p(p +2) (p'+4)/(p'+2)

la(u.(7,7)).l 2

2 0,1(19) L7(0,1(1))

+2K0£'(|a(ux(rw))l

+|a(u“(‘[’.))|f.‘a’:0..’(t)) Ia(u-\‘(‘r’.))-“lLZ(O.H‘:)} )df

ko s, o 4p ((p'+2) (4=2p)/(p" +2)
<2C(n) Kya "7+ flu(z,-)| la(u,(t,-)),l dr +
0

p 2
LE(00(x)) LT(0,4(z))
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2p—1)

+2C(n)Kya?® [ |u(1)] o) =&
; ..
o (5p—4)/(3p—2)
+2 Ka, PR j (7, )]LP(UI) LI E00 PR s %+
—r2Ka1f|u (T)Ime” |8 (70Dl 245405

4p'f(p+2 f(p'+2 —4)/(3p—=2) 4+ 2p/(3p-2
-‘{26'(?1)](0&"’-”*’}%84”-“’ }R9f2p M(3p=2)42p/(3p=2) 1

+2C(n) Kya R& "Vt +
=LF 2]’(0 alrf'a"(p'+2)RSp.-'(p'+ E)Rg{ﬁp—4}!{6;?—4)[;3:'{6;)—4} 3 2{(0 a, RRP—] R91 12002

We have the same type of inequality for a(u (+,/(-) + )) as above. Hence the
required inequality is inferred for a certain 7" with 0 < T" < T.

Now we define an operator N: A;(L,l,) = C([0,T]) by putting
[NII(£) = Iy —J a (ul(z.0(z) =) de + [ a(u/(z,1(x) +))dr,
0 0

for each / € A;(L,l,) and ¢t € [0, T ]. Moreover, let us consider the operator
N*: A;(L,1,)— C([0,T]) given by

[NI](1) for 0<t<T,,
[N*I](1) =
[NII(T,) oy T =1,

foféach!EAa(L, ly),where T, = min{7",(8/L)*}, T beingasin Lemma4.1.

LBMMA 4.2. (1) N* maps A;(L, 1) into itself.
(2) N* is continuous in the topology of C([0,T1]).

Proof We observe that

|2 INI(O1 < a6 1) =)+ e/ (L 1(1)+ )| forae. 1[0, T],

so*that

LIV, <V IND <L forany Le Ay(L o)

L(0.T) dt L0, 7))
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Also, by elementary calculation and the definition of T,

| [N*I](t)—1l,)<dforanyle A;(L,I,)and t € [0, T, ].
Thus ( 1) holds. In order to prove (2),let/ , /e A;(L, [,) and assume /, — /in
C([0, T']). For simplicity we write «, (resp. u) for the solution of
(IBP) (5 fo, f15 up) (resp. (1BP),, (,: fy, /i3 1)) By (3.3),

“'fr]ﬁ(g; élgo-Mle(Qj forn=1,2, ..,

where

n

fﬂ_p(un):+a(un.x)x il'l Q.’:-
f!_p(un):+a(un_x)x in Qj_;-

Therefore we can choose a subsequence { 4, } of { i, } with a functionhe L*(Q)
such that h,' — i weakly in L2(Q). We put f, - = f,+ h, for i = 0, 1. Now,
applying Lemma 2.4, we see that

u,-—vin C([0, T]; H),

a(uy (-, L:(-)£))—»a(v.(-.1(:)+)) inL"(0, T),

where 1/p+ 1/p’ = 1 and v is the solution of (IBP),(/; f,, fi: 4,) with
f, = f,+ hfori = 0, 1. Besides, by (a3),

h(t,x)eg,(t.x,v(t,x)) forae (1,x)eQ.

This shows that v is the solution (IBP),,(/; f,, f;: 14,), and the uniqueness of
asolution of (1BP),,(/:f;.f,:4,)) shows thatu = v. Hence, without taking any
subsequence of {7}, we see that

a(u, (. L,(:)+))—a(u (-, 1(-)+)) inL" (0, T).

Therefore N*/,— N*! in C([0, T]).

We now accomplish the proof of Theorem 1.1. Since A (L, ;) is
a compact convex set in C([0, 7 ]), by the fixed point theorem there exists
l € Aj(L, 1,) such that N*/ = [, and the pair {«',/} is a solution of
P(by b\ gy fo:f iu)on [0, T,]. Noting thatue C(Q)and |u,| < M, we can
choose a number T, with 0 < 7, < 7, such that |u(¢, x)| < M for (1, x) €
[0, T,] x [0, 1]. From the definition of g, , it is follows that g(7,x,u) =
gu(t.x,u)ae. on(0,7T,) x (0,1)and hence { &', /} is a solution of P(b,', b,';
g:Jos Ji3ug) on [0, T ].
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5. A comparison result and some examples

In this section we give a result on the comparison of solutions to Stefan
problems and some examples of flux condition (0.4 ) and source term g (¢, x, u).

A comparison result is proved under the following sign conditions on the
data f,, f,, by, b, and u, :

|:6bu’(r)c:(—oo,0] forany r<0 and re[0, T], and
(5.1)

@b,/ (r)c[0,0) forany r>0 and te[0, T];
(—1)f,>0ae.onQ,and f,e L'([0, T]; L*(0,1)),i = 0,1; (5.2)
uy >0 on [0, [,], u, <0 on [/, 1]. (53)

THEOREM 35.1. (¢f., Kenmochi[12]). Let p and a be functions satisfving (al ) and
(a2), respectively, a..d consider the Stefan problems P = P(b,', b,' ;g fo. [:

Ups Iy) and P = P(by. b\";g; fy, [1iuy 1), where the set of data (b, b,':g;

Joo fiiug, 1,) as well as (b, b':g:fys fiiuy ly) satisfies (a3)-(a6) and
(5.1)-(5.3).

Further suppose that

h<h: fi<f ae on0,

(r'"—r')Y(r—r)" 20 forany r € D(0b/), re D(6b)),
r'edb! (r), ?'Eé!-)i' (r),i=0,1,and t € [0, T];

Jfor each M > 0 there is a positive constant C,, such that
(F=F)r=r)*+Cyl(r=r)*1*>0 forany rwith|r| <M,
rreg(t,x,r), rwith|r|<M,r'eg(t,xr)andae. (t,x)eQ;

Let {u,l} and {u,l } be solutions of P and P on [0, T,],0< T, < T, respectively.
Then, we have

o (u(0)) = P11 1 g 1y + 1D = (1))

< Ulp(u(s)) —p(u(s)I* |, +[1(s) = 1(s)]"} x (5.4)

(0,1)
x CXP{CCR(I—S)+§[|'&(T)[Lx(0 l)+l.fl(T)ILx(0 ])]dt}9

Jorany 0 <s<t<T,
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where M is any constant with|u| < M and|u| < M a.e.onQ, = (0,T,) x (0,1)
and C = max { C,;, C,, C,, } with the constants C,,, C,, in condition (a3)-(i)
corresponding to the data of P, P, respectively.
Proof. Let M be any positive constant such that |u| < M and || < M on Qo,
and consider the multivalued functions g,, and g,,, defined in the similar way as
(1.7), corresponding to g and g, respectively.

Now, denote by P,, (resp. P,,) the problem P (resp. P) with g (resp. g)
replaced by g, (resp. g,). Then, since g, (t,x,u) = g(t,x,u) and
gy(t.x,u) = g(1,x,u),weseethat { u,/}and { u,1} aresolutions of P, and P,,,
respectively. According to the comparison result of [12; Theorem], the
inequality (5.4) holds for the solutions {u,/} and {u,/} of P, and P,
respectively.

COROLLARY. Assume (al)-(a6) and (5.1)-(5.3) hold. Then problem

P = P(by,b/;g:fo,fyiu, ly) has at most one solution on any interval [0, T],
0<T,<T

Pro o f. Apply Theorem 5.1 in case P = P. Then from (5.4) we infer that if
{u,1} and {u,l} are any two solutions of P, then u = uand / = 1.

As mentioned in the Introduction, expression (0.4) includes various
boundary conditions. We now give some examples.

EXAMPLE 5.1. ( Dirichlet type).
sl i) =kitt), Ost<T, i=0.1;
this is written in the form (0.4), if b/(-) is defined by
0 it =k, l1)
bi(r) =
ow if r# k(t);

where k,e W'*(0,T), (—1)k,=0o0n[0, T]. Then fori = 0, 1, b/ satisfies
(a4) and (5.1). In fact, put

a,(t) = ;(|k’0(r)[+|k'](t)])dr, o,(t)=0 foranyte[0, T].

Thenforany s, 1e[0, T Jwiths < ¢, fori = 0,landreD(b/)(ie.r = k,(s5)),
we can take k.(t) asr’ e D(b/), because

lr=r'| = |k,(s) = k;(2)|

< _f |k, (t)|dt
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< leg(2) — oy ($)1(1+[r]).

Hence we have (a4 ). Clearly, (5.1) holds.
EXAMPLE 5.2. (Neumann type ).

u (t,0+4) =ky(t)and u (1, 1—) = k,(¢) forae 1[0, T];
in this case we may take as b,/ (). i = 0, 1,

b!(r) =k, (t)r forreR.
Assume that k; € W'"'(0, T)and k, >0 on [0, T] for i = 0, 1, and put

a, (1) =0, w,(t)= g(lk’ﬂ(r)l—klk',(t)l)d‘c, for any r € [0, T].

Then (a4) is satisfied. In fact, for any s, t € [0, T ] with s <, i = 0, 1 and
re D(b/), we can take r as r' € D(b/), because

bi(r) = b7 (r) = k,()r —k,(s)r
< (J1k/ ()] do)] 7]
<oy (1) = oy () (1 + [r17 4+ 1BE()]):
Since b/ (r) = k,(t) fori = 0, 1 and any ¢ € [0, T'], b/ satisfies (5.1).

EXAMPLE 5.3. ( Signorini type).

[ u(,0) = ky()
u(-,04)=0
| #(,04+) < 0

[ u(-,1) <k (0)
u(,1=) =0
| . (,1-)< 0

on[0,7T],
a.e.on {u(-,0)>ky()},
a.e.on {u(-,0)=ky()},

on[0,T],
ae on{u(-,1)<k ()},
ac.on{u(-,1)=k(-)};

these conditions are represented in the form (0.4) for /(-), i = 0, 1, given by

by'(r) (resp. b,'(r)) = [

0 if r=ky(t) (resp. r <k, (1)),

oo otherwise.
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wherefori = 0,1,k,e W"*(0,T),(—1)'k, = 0on[0, T ]. Also, condition (a4)
is satisfied. In fact, let

ao(r)=;(|k'0(r)]+|k’,(r)|)dr, a,()=0 foranyte[0, T].

Then forany s, re [0, T Jwith s < ¢, and rye D(b") (resp. r, € D(b,")), we can
takeky (1) + (ry — ko () * (resp.k,(t) — (r, — k, ()" )asr'ye D(b,') (resp.
r'y€ D(b,")). By elementary calculation, we obtain () of (a4). It is clear that
(5.1) holds.

Finally we give a typical example of g (¢, x,r).

EXAMPLE 5.4. Let g, (1, x) be a nonnegative function in L?( Q) and g, (¢, x) be
a bounded measurable function on Q. Also, let k(r) be a locally Lipschitz
continuous function in r € R, and assume k (0) = 0. Then we define

gltxr) =g(t.x)o(u)+g(t,x)k(r),

where o (- )is given by (0.5). For this function g, condition (a3 ) is easily verified ;
in fact, given any number M > 0, we can take

Cy = lg‘lL“(Q) % (Lipschitz constant of k on [ —M, M ])

and

gO‘M(r'x) = gﬁ(’tx)'i_lglle.(Q) X max {Ik(r)lv _MerM}
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Istnienie rozwigzan dwufazowego zagadnienia Stefana dla nieliniowych réwnan
parabolicznych

W pracy rozwazane jest jednowymiarowe dwufazowe zagadnienie Stefana dla réwnan typu
parabolicznego 7 nieliniowymi warunkami brzegowymi. Warunki brzegowe sa opisywane przez
zalezne od czasu operatory subgradientu i interpretowane jako realizacja sterowania w ukladzie
zamknigtym. Glownym wynikiem pracy jest twierdzenie o istnieniu lokalnego w czasie rozwiazania
zagadnienia. Stosowana metoda dowodu oparta jest na abstrakcyjnej teorii nieliniowych réwnan
ewolucyjnych z zaleznymi od czasu operatorami subgradientu w przestrzeni Hilberta.

CymecrBoBanne pemennii aByx¢asnoii 3agaum Credanma aas HeaHHeHHBIX
napaboHYecKHX ypaBHeHHH

B crarthe paccmatpusaeTcs omHoMepHas apyxdasuas 3anasa Credana nns mapaGommyeckux
YPABHEHNI ¢ HENHHEHHBLIMA NpPAaBBIMH YaCTAMH M HEJIMHEHHBIMH TPAHHYHBIMH YCIOBHAMH.
l"pauumue YCIIOBHA ONHCAHBI H3IMEHANINHMHCH BO BpPEMECHH OHIEpATOPAMH cy6rpanHeHTa
H HHTEPHPETHPYIOTCA B Ka4eCTBE pealM3allid YNpPAaBICHHA B 3aMKHyTOﬁ cBa3u. ['naBHBIM
]'.‘ICZ)(JIbTaTOM paﬁo-rm ABIACTCA TeopeMa O C}'UJ.OCTBOBSHHH JIOKAJLHOT'O BO BpeMBHH pemecHuA
sanauu. TMpuMeHseMslil METO JOKA3aTeNLCTBA OCHOBAH Ha AGCTPAKTHOW TEOPHH HETHHEHHBIX
IBOJHOLHOHHBIX ypaaﬂcaui’i C H3IMCHAMKIIMMCA BO BpPCMCHH OlNEpaTopamMH cyﬁrpanneura
B rH/ib0EPTOBOM NPOCTPAHCTBE.



