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In this paper, we consider one - dimensional two - phase Stefan problems for a class of para
bolic equations with nonlinear heat source terms and with nonlinear flux conditions on the fixed 
boundary. The flux conditions are described by time-dependent subdifferential operators in Rand 
are interpreted as feedback boundary controls. The main purpose of this paper is to establish a local 
existence theorem for the Stefan problems, and our approach is based on the abstract theory of 
non linear evolution equations governed by time- dependent subdifferentials in Hilbert spaces. 

lntroduction 

Let us consider the following two- phase Stefan problem: 
Findafunctionu = u(t,x)onQ0 = (O,T0 ) x (0, 1 ),0 < T0 < oo,andacurve 
x = l(t), 0 <I< 1, on [0, T0 ] such that 

p(u),- a(u,) , + h(t,x) ~ [ ~ (0.1) 

h(t,x) E g(t,x,u(t,.x)) for a.e. (t,x) E Q0 , 

Q/ {(t,x);O<t '<T0 ,0<x<l(t)}, 

lu(t,/(t))=O forO~t~T0 , 
I'( t) =-a (u..( t, I( t)-)) + a(u~ ( t, I( t )+))for a.e. t E [0, T0 ], (0.2) 
1(0) = 10 , 

U ( 0, X) = Uo (X) for X E ( 0, 1 ), (0.3) 
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r a(ux(t,O + )) E 8bo1 (u(t,O)) for a.e. t E [0, To], 

[-a(ux(t,l-))Eob 1
1 (u(t,I)) fora.e. tE[O,T0 ], 

T . AIKI 

(0.4) 

where p: R- R and a: R - R are continuous increasing functions; 
for a.e. ( t,x) E Q 0 , r- g( t, x, r) is a multivalued mapping inR ;f; ( i = 0,1) is 
afunctiononQ 0 ;/0 isanumberwithO < /0 < 1 andu0 isafunctionon[O, l];b/ 
( i = 0, 1 ) is a proper l.s.c. convex function on R for each t E [ 0, T0 ] and 8b / 
denotes its subdifferential in R. 

In this paper, we treat a class of nonlinear parabolic equation~ of the form 
( 0. 1 ) that in particular reduce to 

for positive constants c0 , c 1 and 2 ~ p < oo , where 

a(r) = [!-1,1] 
-1 

for r > 0 
for r = 0 
for r < 0 

i = 0, 1, 

(0.5) 

Also, it should be noticed that ( 0.4) represents various linear or nonlinear 
boundary conditions, such as Dirichlet, Neumann • or Signorini- type. 

Many interesting results about existence and uniqueness of solutions and 
regularity of fre.e boundaries are known for standard Stefan problems described 
by linear parabolic equations with Dirichlet or Neumann boundary conditions 
(cf. [ 2, 3, 4, 5, 8] ). Also, Stefan problems for nonlinear parabolic equations have 
been studied, for instance, in [ 6, 7, 13 ], and those with non- standard boundary 
conditions of subdifferential type were earlier treated in [ 11, 15 ]. In particular, 
Stefan problems for nonlinear equation c u, - (I u xI P-

2 u") ·" = f were for
mulated and an existence result was established in [ 10]. 

Our problem ( 0.1) • ( 0.4 ) is more general than those in the papers quoted 
above. We are especially interested in the heat source terms/;, i = 0,1 and 
g(t, x, u) in (0, 1 ), which cause that the set { ( t, x); u( t, x) = 0} may have the 
non- empty interior in Q 0. Also, we are interested in the boundary conditions 
( 0.4) which are interpreted as a feedback flux control on the boundary x = 0, 1. 
The uniqueness of solution to the same type of problems as ( 0. 1 ) - ( 0.4) was 
already discussed in [ 12 ]. The aim of this paper is to establish a general existence 
result for problem ( 0. 1)- ( 0.4 ). 
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1. Main results 

In what follows, let 0 < T < oo and Q = ( 0, T) x ( 0, l ). We begin with 
introducing the precise assumptions (a 1 ) - (a 4) on p, a, g and b;', i = 0, 1, 
under which Stefan problem ( 0.1)- ( 0.4) is discussed. 

(a I ) p : R -+ R is a bi- Lipschitz continuous and increasing function with 
p ( 0) = 0 ; denote by C P a Lipschitz constant of p and cp - I 

( a2) a : R -+ R is a continuous function such that 
a0 I r I P ~ a ( r) r ~ a tl r I P for any re R, 
a0(r- r ' )P - 1 ~ a(r)- a(r') for any r,r' eR, r';:!; r', 

where a0 and a 1 are positive constants and 2 ~ p < oo. 

( a3) For a.e. ( t, x) e Q, the mapping r-+ g ( t, x, r) is set- valued in R such that 
g ( t, x, r) is a non- empty closed interval in R for any re R, 0 e g ( t, x, 0) and 
g ( t, x, r) is u.s.c. with respect to r e R. Moreover suppose that for each 
M > 0, g has the following properties ( i)- ( iii) : 

( i) r-+ g ( t, x, r) + CM r is monotone in r with I r I ~ M for a positive 
constant CM depending only on M, that is, 

(ii) I r I~ go,M( t,x) for re g( l,X, r), r with I r I~ M and a.e. ( t, x) e Q, 
where g0.M is a non-negative function in L 2(Q); 

(iii) for any A. with 0 <A.< 1/ CM and r with lr I~ M, 
[J + A.g( t, x, ·)] - I, is measurable in ( t, x) e Q. 

( a4) For i = 0, l ·and each t e [ 0, T], b;' is a proper l.s.c. convex function 
a. e W1

•
2 ( 0 T) a. e W1

•
1 (0 T) · 0 ' > I > • 

( *) For any 0 ~ s ~ t ~ T and r e D ( bi') = { r eR; b/ ( r) < oo} there 
exists r' e D ( b/) such that 

I r'- r I ~ I a.o C t) - a.0 ( s) I ( 1 + I r I + I b / ( r) I11
P ), 

b;' ( r') - b / ( r) ~ I a. 1 ( t) - a. 1 (s) I ( 1 + I r lP + I b / ( r) I). 

Furthermore, for/;. i = 0, 1, u0 and /0 we suppose that 

( a5) fo, J; e L 2 
( Q) ; 

(a6) 0 < lo < 1 ' Uo e w• ·P (O, 1), Uo(/o) = 0, Uo(i) e D(b;0), i = 0, 1. 

------ ~-
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Now, we denote by P=P(b0', b 1'; g;fo,J..; u0 ; 10 ) the system 
(0.1 )- (0.4 ), and say that a pair { u, I} is a solution of Pon [0, T0 ] , 0 < T0 ~ T, if 
tbe following properties ( i)- ( iii) are fulfilled: 

(i) u E Wu(O, T0 ; L2 (0, l)) n L.o (O, T 0 ; W 1·P(0, I)) ( hence 
u E C( Qo) ), and I E W 1

• 
2 ( 0, To)( c C([ 0, ToD) with 0 <I< 1 on 

[0, T0 ] , 

( ii) (0.1) holds in the sense ofD' ( Q,+) and D' ( Q,- ) for some h eL2
( Q0 ) 

with h (t, x) E g( t, x, u( t, x)) for a.e. ( l ,x) E Q0 , and (0.2) and (0.3) 
are satisfied, 

(iii) b r> (u(', i)) is bounded on [O,T0] , u(t, i) E D '('i:Jb/) for a.e. 
t e [0, T0 ], i = 0, 1, and (0.4) holds. 

THEOREM 1.1. Suppose that assumptions ( al)- ( a6) hold. Then there exists T0 

with 0 < T0 ~ T such that problem P has at least one solution { u, I} on [0, T0 ]. 

The class of functions g ( t, x, r) satisfying ( a3) includes any locally 
Lipschitz continuous function k ( r) on R. Therefore, in general, a solution u of 
p ( u),-a(u .• ) .• + g( t, x, u) 3 /blows up at some finite time, so problem Pmight 
not be expected to have a solution on the whole time interval [ 0, T ]. In this paper 
we devote ourselves to the proof of the above local existence theorem, and shall 
discuss global existence and behavior of solutions in the author's forthcoming 
paper [ 1 ]. 

The construction of a solution to problem ( 0.1)- ( 0.4) is done in the 
following way. 

First,givenacurvex = l(t),O < l(t) < l , on[O, T],j,eL2 ( Q),i = 0, 1, 
and u0 E W 1

• P ( 0, 1 ), we consider the initial boundary value problem 
(IBP)0 = (IBP)0 (/;fo,f..; u0 ) which is fo rmulated by 

[

fo in Q/ = { ( t, x); 0 < x < /( t), 0 < t < T }, 
p(u)1 - a(ux) .• = 

J; in Q 1- = { ( t, x) ; I ( t) < x < 1, 0 < l < T } , 

u(O, x) = u0 (x) for 0 ~ x ~ 1, 

u ( t, I ( t)) = 0 for 0 ~ t ~ T, 

a(u. (t, 0 + )) E 8b0'(u(t, 0)) for a.e. t E [0, T], 

-a(ux(t, 1-))e8 1
1(u(t, I)) fora.e.te[O, T]. 

( 1.1) 

( 1.2) 

( 1.3) 

( 1.4) 

( 1.5) 

This problem can be uniquely solved as a direct application of the theory of 
nonlinear evolution equations generated by time- dependent subdifferentials. 
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Next, we consider the problem (!BP )0 with ( 1.1 ) replaced by 

in Q,-, 
( 1.6) 

h(t, x) E gM(l, x, u(t, x)) for a.e. (t, x) e Q, 

where.fo and.!; are given functions in L 2
( Q), M is a positive number so that 

I u0 I < M on [ 0, L ] and 

[

sup{r';r'eg(t,x,M)} forr>M, 
gM( t, x. r) = g(t,x, r) for r with lrl ~M, 

inf{ r';r ' E g(t,x, - M)} for r < - M. 
( 1.7 ) 

This problem is denoted by ( IBP) M = ( IBP) M (I ;fo ,J; ; u0 ) and can be solved by 
using the uniform estimates for solutions of ( IBP )0 with respect to l ,fo and.J;. 

Fina lly, by the standard fixed point theorem we seek for a curve x = I ( t) 
on [ 0, T] and a time T', 0 < T' ~ T, satisfying · 

[ 

I ( 0) = 10 , 0 < I < 1 on [ 0, T' ], 

l'(t.) = -a(uAt. l (t) -) )+a(uy(t,/(t)+) fora.e. te[O, T'], 

where u is a solution of ( IBP )M on Q. It is proved that this pair { u, I } gives 
a solution of problem ( 0.1) - ( 0.4 ) on a time- interval [ 0, T0 ] with 0 < T0 ~ T'. 

2. Initial boundary value problem (IBP)0 

a nu 

In the sequel, for simplicity we put 

X= W 1·P(0, l)( c:C([O, 1])) 

U: g)H = J f(x)g(x)dx, for f. g e H. 
0 

Throughout this section, we assume (a l )-(a6) to be satisfied. 
We fix a number[> with 0 < [> < l- [> and put 

Aa = {I e C([O, T]) ; [> ~ l(t) ~ 1- [J on [0, TJ}. 

In o rder to solve ( IBP )0 (I ;fo ,J; ; u0 ) for each I e A a by an application of the 
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subdifferential operator theory, we introduce the family { <p / } te(o, TJ of functions 
<p / on H formulated by 

[
J
1

A(zx(x))dx + b0
1 (z (O)) + b/(z(l )) if z E K'(t), 

<p/(z) = o . (2.1) 
oo otherwise, 

where 

and 

K 1 
( t) = { z E X; z (I ( t)) = 0, z ( i) E D ( b /), i = 0, I } , 0 ~ t ~ T, 

A(r) = J a(s)ds for any rE R. 
0 

LEMMA 2.1 . ( cf, Kenmochi [ 11 ; Lemmas 2.1, 3.1 ] ). ( 1) There are positive 
constants R 1 , R 2 depending only on a 0 , a 1 and T such that 

b/(r)+R 1 Ir i +R1 ;;::0 foranytE[O,T],anyrERandi = 0, 1, 
and 

I b / ( r) I ~ b / ( r) + R 2 1 r I + R 2 for any t E [ 0, T ], any r E R and i = 0, l. 

( 2) For each I E A8 and t E [ 0, T ], <p / (·)is a proper l.s.c. convex function on 
Hand D (<p/) = K 1(t). 

( 3) There are positive constants R 3 , R 4 and R 5 depending only on a 0 , a 1 , a0 , 

a 1 , T and a such that 

lz,. lP Lp(O, 1) ~ R 3 <p/(z) + R 4 for any t E [0, T ], z E K 1(t) and lE A8 , 

and 
I b / ( z ( i)) I ~ <p / ( z) + R sfor any t E [ 0, T ], z E K' ( t ), lE A8 and i = 0, 1. 

( 4) There is a positive constant R 6 depending only on a 0 , a 1 , a0 , a 1 , T and 
a such that for any I E A i)' <p / (.) has the following property ( **): 

and 

( ** )For any 0 ~ s ~ t ~ T and z E D(<p/) there is z E D(<p/) such that 
I z- z IH ~ R 6 { I/ ( t) - l ( s) I + I a 0 ( t) - a 0 ( s) I} ( 1 + I <fJ/ ( z) 1112

) 

<p,'(z) - <p/(z) ~ R 6 { ll(t) - /(s)l + la 0 (t) - a 0 (s)l + la 1(t) - a 1(s) l} · 
· (1 + l <fJ/(z) l ) 

( 5) For each I E A 0 and t E [ 0, T ], the subd?fferential a<p / of <p/ in H is 
single- valued and ·characterized as follows: z' = a<p/ ( z) if and only if z' E H , 
z EX and 
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By y 0 we denote the following function on L 2 ( 0,1 ) : 

I 

y0 (z) = f z+ (x) dx for z E L2 (0, 1 ). 
0 
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This function is continuous, non- negative and convex on L 2 ( 0, 1 ). Also, by 
B we denote the operator from D (B) = H into itself given by 

[Bz](x) = p-1 (z(x)) forzeH,xe(O, 1), 
which is bi -Lipschitz continuous in H, and is the subdifferential of the convex 
function j on H given by 

I v(x) 

j(v) = f f p- 1 (r) drdx for v EH. 
0 0 

LEMMA 2.2 ( cf, Kenmochi [ 9; Lemma 3.4.3] ). 

(1) Yo ( z) + Yo ( - z) = I z I L 1 ( 0, 1 ) for z E L 2 
( 0, I ). 

( 2) For each I E A6 and t E [ 0, T ], ocp /oB is y0 - accretive in H, i.e. if z and z1 
are any points with Bz, Bzl E D ( 0(/J / ), then ( ocp/ ( Bz) - 0(/J / ( Bz I ), w )u ~ 0 for 
some w E fJy0 ( z - z 1 ), where oy0 is the subdifferential of y0 in H. 

(3) For each I E A6 , t E [0, T] and r ~ 0, the set {z EH; lzllf:::;;; r, 
cp/ ( z) :::;;; r} is compact in H. 

For L > 0, we put 
A,) ( L) = {I E A8 ; I/' I L 2 ( 0 , T ) :::;;; L } . 

The above Lemmas 2.1 and 2.2 allow· us to apply the abstract results from 
[9; Theorems 2.8.1.- 2.8.3 ], and we see that for lE A,(L) and] E V(O, T; H) 
the Cauchy problem 

[

v'(t) + ocp/(B(v(t))) = J (t), for a.e. t E [0, T], 

v(O) = p(u0 ) 

(2.2) 

has a unique solution v in W1
•
2 

( 0, T; H) such that the function t-+ cp/ ( Bv ( t)) is 
bounded on [ 0, T ]. Let v be a solution of ( 2.2) for J = X/ J 0 + x,-J 1 , where 
X/, x,- are the characteristic functions of Q,+, Q,-, respectively. Then, 
by Lemma 2.1 it is easy to see that u = Bv is a unique solution of 
(IBP)0 (/: J 0 ,] 1; u0 ) and u E W1

•
2 (0, T; H) n L 00 (0, T; X). 
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Next we mention a lemma on some uniform estimates for solutions to 
( IBP )0 with respect to the data. 

LEMMA 2.3. Let k 1 be any positive number. Then there is a constant R 1 > 0, 
depending only on the quantities in conditions (a 1 ), ( a2 ), ( a4 ), the class A~ ( L) 
and k1, such that 

lul Loo (0, T; X)+ lul W 1
•

2 (0, T;H) ~ R 1 , (2.3) 

and 

sup lb/(u( t, i))l ~ R 1 fori = 0, 1, (2.4) 
t e (0. T] 

whenever u is the solution of (IBP)0 (I; J 0 ,] 1; u0 ) and lE Ab(L ), ]; E L 2 ( Q) 
with I] 1 I L2 

( Q) ~· k 1 , i = 0, 1, and u0 E X satisfying u0 ( l ( 0)) = 0 and 
I b ;0 

( u0 ( 0)) I + I u0 lx ~ k 1 , i = 0, 1. 

This lemma is a direct consequence of [9; Theorem 2.8.4 ], too. 
The following lemma is concerned with convergence of solutions of 

(IBP) 0 . 

L EMMA 2.4. Let lE Af> (L), /11 E A6 (L), n = 1, 2, ... andj; E £ 2 ( Q), i = 0, 1, 
]; ,

11 
E L2

( Q), i = 0, 1, n = 1, 2, .... Suppose that 
In--+ l uniformly on [ 0, T ], 

andfor i = 0, 1, 

Let u and U11 be the solutions of( IBP )0 ( l ;.f 0 ,J 1 ; u0 ) and ( IBP )0 ( l" J o,n ,J 1,
11

; 

u0 . 11 ) on [ 0, T ]. Then, 

U
11

--+ uin C([O, T]; H), in LP (0, T;X), weakly in W1•2 (0, T;H) and (2.5) 

weakly * in L 00 
( 0, T; X ), (hence in C ( Q) ), 

a(un .x( · ,0 + )) --+ a(u..( · , 0 + )) in Lp' (o, T), 

a ( U11 .. ~ (' , 1 -)) --+ a ( uxC · , 1 - ) ) in If ( 0, T), 

a(un,x(' ,In(')±))--+ a(u,(' ,/(') ± )) in Lp·(O, T), 

where1/ p +1 fp' = 1. 

(2.6) 

(2.7) 

(2.8) 

Proof. The lemma can be proved in a way similar to that of[ 9; Lemma 2.8.8] 
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and [ 11; Proposition 4.1]. For simplicity we write cp 11', (p 1 for cp/ , cp/ and/ n 
- - - - - n 

,J for x,~, f o. 11 +X,~, f I, 11' X/ f 0 + xl-f I ' respectively, where XI~, J x,~ I X/ 
and x,- are the characteristic functions of Q/ , Q,- , Q/ , and Q,- , respectively. 
Clearly 

n n · 

]
11

--+ J weakly in L2 (0, T;H) as n--+ oo . (2.9) 

By virtue of a convergence result concerning convex functions [ 11 ; Lemma 4.1 ], 
we have 

cp11
1 

--+ cp1 on H in the sense of Mosco for each t E [ 0, T ] as n --+ oo . ( 2.10) 

By Lemma 2.3, 

for n = 1, 2, .... 

Therefore we can select a subsequence of { u"}, denoted by { u"} again, such that 
un converges to some v in C ( [ 0, T ] ; H), and evidently v E W 1• 2 

( 0, T; H) and 

cp'(v(t)) ~ lim inf cp,,t(u
11
(t)) for any t E [0, T]. 

Next we show that 

T T 
J cp ,/ ( U11 ( t) )dt --+ J cp 1 

( V ( t) )dt. 
0 0 

In fact, since!,.(t)- p(u11 ) 1 (t) = acpn'(u,(t)), it follows that 

T -J (/ 11 (t) - p(u11 )/t), w(t)- unCt))Hdt 
0 

T T 
~ J cp 11

1 
( w ( t) ) dt - J cp ,/ ( U11 ( t)) dt 

0 0 

(2.11) 

( 2.12) 

( 2.13) 

(2.14) 

for any w E L 2 ( 0, T; H) with cp
11
0 (w (')) E V ( 0, T ). Corresponding to the 

function v, we take a sequence { Z11 } c L2 ( 0, T; H) such that 

T T 
Z11 --+ v in L 2(0, T;H ), J cp,1 (Z11 (t)) dt--+ J cp 1 (v(t)) dt: 

0 0 

indeed such a sequence {zn} exists by (2.10) (cf., [9; Proposition 2.7.1]). 
Substituting Z 11 as w in ( 2. 14) and letting n --+ oo, we get by ( 2.9) and ( 2.14) 

T T 
lim sup J cp 11

1 
( U11 ( t) )dt ~ J cp 1 

( v ( t) )dt . 
n ..... oo 0 0 

( 2.15) 
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Hence from (2.12) and ( 2.15) we see (2.13 ). Next, given wE L 2 
( 0, T; H) with 

q> t· J ( w (-)) E L1 
( 0, T), we choose a sequence { W

11
} in L 2 ( 0, T; H) such that 

T T 
W11 ~ Ml in L 2 (0, T;H ), J (j) 11

1
(W11 ( l)) dt-+ J q>'(v(t)) dt, 

0 0 

and substitute W
11 

as w of (2.14 ). Then by (2. 13 ), letting n ~ oo yields 
T T T 

J(p(v),(t)-J (t), v(t) - "1(t))Hdt ~ J q>'(w( t))dt- J q> 1 (v(t))dt, 
0 0 0 

which shows by the definition of subdifferential oq> 1 that 

/(t) - p(v) ,(t) E oq>'(v(t)) for a.e. t E [0, T]. 

Since the solution of Cauchy problem ( 2.2) is unique, we see that u = v and that 
u, -+ u in C([O, T]; H), weakly* in L 00 (0, T; X) and weakly in W1

•
2 (0, T; H) 

without subtracting any subsequence of { u" } . Furthermore, by the uniform 
convexity of U ( 0, T; X), ( 2.13) implies 

u
11

-+ u in U(O, T;X). 

Thus ( 2.5) has been proved. 
Finally, convergences ( 2.6)- ( 2.8) are obtained by using ( 2.5) in the 

following way. By virtue of ( a2) and ( 2.5) we have 

a(u
11

,.)-+a(u,) in If( O,T;Lp· (O, l)). , .. . 

Given s > 0, we choose a smooth function 7 in A6 ( L) so that 

0 ~ I" - l ~ s on [ 0, T] for all large n. 

Observe that for a.e. t E [ 0, T ], 

la(u" .(t, l11 (t) - )) - a(ux( t, l(t)- ))lP' .. . 

~ 91a(u, ,_.( t , ln(t) - )) - a(u11 .x(t, l (t)))IP. + 

+ 91a(u, , .• (t, T (t))) - a(uJt, T (t)))IP' + 

+ 91a(u..(t, l (t)))- a(ux(t, l(t)- ))lP·. 

Also, for a. e. t E [ 0, T ], 

la (ux(t, l (t)))- a(ux(t, l(t) - ))lP' 
I(/) 

= I J a ( u, ( t, x )).,. dx lp' 
i(t} 

( 2.16) 
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I( r) 

:::; { J ( l p(u),(t, x) l + lfo(t, x) l)dx}P' 

:::; 41/(t) - l(t) IP'/2 { l p(u),(t) l ~· + lfo(t) l ~·} 

:::; 4 eP'12 { 2 + I p ( u ), ( t) I ~+ l fo ( t) I ~ } , 

and similarly 

51 

2 - 2 
:::; 4 eP·12 { 2 + I p ( u, ), ( t) I 11 + I fo., ( t) I 11 } for all large n. We choose a smo-

oth function '1 E C 1 
( [0, T]) such that 0 :::; '1 :::; 1 on [ 0, T ], '1 ( 0) = 0, 1'J = 1 on 

[o, 1], and set C('l'/) = sup {1'7 .• (x)l; x E [0, 1 ]}. Then we have 

T 

J la(u,,x(t, f{t))) - a(ux( t, f(t))) IP'dt 
0 

T l(r) O 
= J IJ ;- {1J(x)(a(u, ,x(t,x)) - a(u,(t,x)))}P'dxldt 

o o uX 

T l(l ) 

:::; J J C('I'J)p' l(a(un.x(t,x)) - a(u,, (t,x)) IP'dxdt + 
0 0 

r i(r) 

+ J J p' la(un,x(t,x))x - a(u, (t,x))xlla(u,,x(t,x)) - a(ux (t,x))lp'- ldxdt 
0 0 

I ( ( ) - < ) I r<2 - p') / 2p' 
x a ull.x x a ux x L\0, T ;H) 

+ 'T< 2 - p')t 2p· l ( ( ) - ( ) I · · r I ( ) I + P a un.x a u,, I! (0, T;LP (0, 1)) \ P u, 1 L\O,T;H) 
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+ l.ft.n IL2 (0, T; H)+ I}; IL2 ( 0, T; H)}. 

Consequently, using ( 2. 16 ), we have 

T . AlK.l 

limsup I a(u, ... C, l,(-)-))- a ( u_. (', l (')-)) IP·L".(O T) ~ const. sP'~'1. 
t1 _.. CO , 

Thus 

a(u, ... ( ·, !,( ·)- )) -+ a(u,( ·,I ( ·)- )) in L"'(o, T). 

The other convergences of (2.6 ), ( 2.7) and (2.8) can be shown in a simjlar way 

3. Initial boundary value problem ( ffiP )M 

In this section we solve ( IBP )M' 
Let I E A15 (L ), u0 EX and/; E L 2

( Q ), i = 0, 1, and suppose that 

u0(/(0)) = 0, u0 (i) E D(bn, i = 0,1. ( 3.1) 

First of all we take a number M > 0 so that 

I u0 ( x) J < M for all x E [ 0, 1 ], ( 3.2) 

and consider the multi valued function gM on [ 0, T] x [ 0, l] x R given by ( 1. 7 ). 
Clearly, by ( a3) the mapping r-+ gM( t, x, r) + CMr is maximal monotone in 
rE R for a.e. (t,x) E Q, and 

lr'l ~ g0.M( t, x) for any r' E gM( t,x,r), rE Rand a.e. ( t,x) E Q, ( 3.3) 

where CM and g0.M are correspondingly the non- negative constant and the 
function in condition ( a3 ). _ 

1 
Now, for each 0 < e ~ CM consider the following approximate problem 

(IBP)M.s : 

. Q+ 
m ' ' ( 3.4) 
in Q,- , 

and initial- boundary conditions ( 1.2)- ( 1.5 ). Here, for a.e. ( t, x) E Q, 
gM. e( t, x, ·)is the Yosida approximation of gM( t, x , ·),i.e. 

gM,c(t,x,r) = + { r- [I+ egM(t,x,· )] - 1 r }, rE R. 

From ( 3.3) it is easy to see that 

]gM,s ( t,x, r) I~ g0,M( t,x) for any rE Rand a.e. ( t, x) E Q. (3.5) 
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- I 
LEMMA 3.1. For each 0 < e ~CM , (IBP)M.e has a solution ue in 
W 1•2 ( 0, T; H) n L 00 

( 0, T; X). Moreover, there is a positive constant RM, indepen
dent of e, such that 

( 3.6) 

Proof. For simplicity we write gM e ( w) for gM e ( t, x, w ). Consider the mapping 
r e with assigns to each wE C([O, T 1; H) the solution u of ( IBP)o(/ ;,h ,ft; Uo) 
with fo = j~- gM,s ( w) and J; = J; - gM,e ( w ) . Since 

I /; - gM. s ( w) I L 2 ( Q) ~ I /; I L 2 ( Q) + I go. M I L 2 ( Q) 

for any w E C ( [ 0, T ] ; H), it follows from Lemma 2.3 that 

lr . wl L'f) (0, T;X) + I r. wl W'·2(0, T;H) ~ RM for all WE C([O, T]; H), 

where RM is a positive constant independent of e. 
Therefore r. is a compact operator from 

{wE C ( [ 0, T]; H); w ( 0, x) = u0 ( x) for x E [ 0, 1 ], 

I w I c ( [ 0, T]; H) ~ T 112 
RM + I Uo I H} into itself, so that r. has a fixed point u. , 

i.e. r .u. = u~. Clearly, u. is a solution of (IBP)M,a satisfying (3.6). 

LEMMA 3.2. Let u. be the solution of(IBP )M. e , obtained by Lemma 3.1,/or each 

0 < e ~ C~1 
• Then, there is a sequence {en} with e, ! 0 (as n--+ oo) such that 

un : = u. converges to the solution u of ( IBP )M in the following 
n 

un--+ u in I! ( 0, T; X), weakly in W 1
• 

2 
( 0, T; H) and weakly * in ( 3.7) 

£<X>(O, T;X), (hence in C(Q)), 

p' 
a(un,xC·,O+))--+a(ux(·,O+ )) in L (0, T), 

p' 
a(u,,x(',l(')±))--+a(ux(-,1(')±)) inL (0, T), 

wherel fp + l f p'= 1. 

Proof. From (3.5) 

lgM,r.(t,x,u. (t,x)) l ~g0.M(t,x) for a.e. (t,x) E Q. 

(3.8) 

(3.9) 

( 3.10) 
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Then there exists a subsequence { 811 } of { e} with e,! 0 and hE L 2 
( Q) such that 

gM. e ( t, x, u. ( t, x)) ~ h ( t, x) weakly in L2 ( Q ). By virtue of Lemma 2.4, 
u, : ·~ ut converges to the solution u of ( TBP )o (I ;j~ ,J, ; Uo) with./~ = .fo - hand 

/ 1 =./; ... !'h in the of (3.7)-(3.10). Using basic properties of Yosida - ap
proximation, we see that 

h(t,x) E gM(t,x, u(t,x) ) for a.e. (t , x) E Q. 

FinaUy it is not difficult to check that u is the solution of ( IBP)M. 

4. Proof of the Theorem 1.1 

Let M be a positive number satisfying ( 3.2 ), L be any positive number and 
fix them in this section. Next, taking a positive number o with 

28 < l0 < 1 - 28, 

we consider the subclass A~ ( L, /0 ) of AJ ( L): 

LEMMA 4.1. Le tu' be a solution of( IBP )M( l ;fo ,J;; u0)foreach LE A,5( L, 10). Then 
there is a number T', independent of I, with 0 < T' ~ T such that for all/ E A,5 ( L, 10) 

I a ( u./ (" , l (") - ) ) I 
2 

+ I a ( ux' (" , l (') + ) ) I , ~ L. ( 4.1 ) 
L (0, T), L-(0, T) 

P r o o f. By Lemma 2.3 and ( 3.3) we have 

lu' l L X; (O, T;X) +I u'l wu(O, T; H)~ R8 for any I E A~(L, /0 ) . ( 4.2) 

where R8 is some positive constant. From ( 0.1 ) it follows that 

la(u/)xl 
2 

= lp(u'),-h'+fo l 
2 

L (Q/ ) L (Q/) 
( 4.3) 

~ lp(u'),l 2 + lh'l 2 + lfo l 2 
L ( Q/ ) L ( Q/) L ( Q/ ) 
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where h1 =f0 -p(u 1
) 1 +a(u/ )x in Q/ and R9 is some positive constant 

independent of/. 
For simplicity, we put u- u1

• To prove the lemma, we use the following 
inequalities: 

... 4p '/ (p' +2) (4- 2p' )/ (p' + 2) 2 

Jlv(x)l2dx~K0(y) ( lv l p' lv~l2 +lvl · ) 
0 L (O.y) L (O,y) LP (O,y) 

.1' p 'J(p' + 2) (p '+ 4 ) / {p'+2) 

[ I v(x) 11 v_, ( x ) I dx ~ K0( y )(I vI L"'co. y> I v_, I L2CO.yJ + 

for v E {v E L"'(O,y) ; vx E L 2 (0,y) } where 1/p+ 1/ p' = 1 and K 0 (y) is 
a positive decreasing function of y ~ 0 independent of v (cf., 0. A. Ladyzens
kaja, V. A. Solonnikov, N. N. Ural'ceva [ 14 ; Chap.2, Theorem 2.2]). 
Ko = Ko (b), using the same function '1 as in the proof of Lemma 2.4, we have for 
any t > 0, 

I 2 

J I a ( ux (-. , I ( -r) - ) ) I d-r 
0 

I /(1) O 2 

= J J - (17(x)a(ux(-r , x))) dxdr 
0 0 ax 

1 I (1) 
2 

= J J 21]..(X)1](x)a(u, (t, x)) dxd-r + 
0 0 

I I ( 1) 
2 

+ J J 21]( x )a(ux(-r, x)) xa(u..( -r,x ))dxdt 
0 0 

I 4p'/ (p'+2) ( 4-2p ' ) / (p'+ 2) 

~ 2C(1])K0 !( Ja(uA c, ·)) Jd'·co,/(r)) Ja(ux(-r,·)}.J L2(0, / ( r )) + 

I p' / (p ' + 2 ) (p'+ 4 ) / (p' + 2) 

+ 2Ko I ( I a( u_, ( 'r, . )) ILp'(0, / ( 1)) I a( u_. ( 'L,. n.l £2(0, / (t)) + 

I 4p/(p '+2} (4 -2p '}/(p' + 2 ) 
~2C(n)K0 a14p'f (p' + lJ Jlu~ (-r,·)J la(u (1: ·)).1 ' d-r+ 

O " Lp ( O, /(t)) x ' ·' L-{0,/{t)) 
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I 

+ 2C(ry)K0 a1
1 J iux(r) l 

0 

2(p - l) 

dr + 
Lp(O,J) 

+2K a"'f(p'+2) J'lu (r ·)ip / (p +2J l a(u (r ·)). l(sp - 4J / (3p - 2J dr + 
0 I 0 X ' Lp(O, I ) X ' ·' L2( 0, /(r)) 

I (p - 1) 

+ 2 K0 a 1 J I u_v ( 1: ) I p I a ( u ( i ) ) I 2 de 
O " L ( 0. 1) .< .< L (0,/(<)) 

T. AIKI 

We have the same type of inequality for a ( ux (·,I ( ·) + ) ) as above. Hence the 
required inequality is inferred for a certain T' with 0 < T ~ T. 

Now we define an operator N : A8 (L,/0 )--+ C([O, T]) by putting 

I I 

[ N l]( t) = l 0 - J a ( u / ( r , I ( r) - ) ) dr + J a ( u ./ ( r , l ( T) + ) ) dr , 
0 0 

for each I E A J(L, l 0 ) and t E [O, T]. Moreover, let us consider the operator 
N*: A 6 (L,l0 )--+ C([O, T]) given by 

[

[Nl](t) 
[N*l](t) = 

[Nl](T1 ) 

fo~each le A b (L, 10 ) , where T1 = min { T', (b I L) 2
}, T'beingas in Lemma4.1. 

L&\1MA 4.2. ( 1) N* maps A b (L, 10 ) into itself 
( 2) N* is continuous in the topology of C ( [ 0, T ]). 

P r o o f. We observe that 

' d 
~ dt [N /]( t) I~ I a(u/(t, l( t) - )) I+ I a(u/ (t.l(t)+ )) I for a.e. tE [0, T ], 

so ·that 

f!!:.. [N* l] I 2 ~ I !!.__ [NI] I 2 ~ L for any lE AJ(L, /0 ) . 
. dt L ( O. T ) dt L(O,T1) 

: 
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Also, by elementary calculation and the definition of T1, 

I [N* l](t) -/0 1 ~ b for any I E A 6 (L,I0 ) and t E [0, T1 ]. 

Thus (I) holds. In order to prove ( 2 ), let 1,, I e A 6 (L, 10 ) and assume 1, ~I in 
C ( [ 0, T] ). For simplicity we write u, ( resp. u) for the solution of 
( IBP )M(I;fo,J;; u0 ) (resp. ( IBP )M(ln;fo,J;; u0 )). By (3.3), 

where 

[

/ 0 - p(u,L + a(u,,.Jx 
h, = 

!1 - p ( U J I + a ( U 11 , • .> X 

. Q + 
10 I ' 

n 

Therefore we can choose a subsequence { h,·} of { h,} with a function he L 2 
( Q) 

such that h,· -+ Tz weakly in L 2 (Q). We putft., · = f 1+ h,· fori = 0, I. Now, 
applying Lemma 2.4, we see that 

u,· ~ v in C([O, T]; H), 

a ( u,· x (·,I,· ( ·) ±))~a ( vx (·,I ( ·) ±)) 
p' 

in L (0, T), 

where 1/ p+ I f p' =land vis the solution of (IBP)0 (/;/0,/1 ; u0 ) with 
J; = / 1 + h for i = 0, 1. Besides, by ( a3 ), 

h (t,x) E gM(t,x, v(t,x)) for a.e. (r,x) E Q. 

This shows that vis the solution (IBP)M(/;fo,J.; u0 ), a nd the uniqueness of 
a solution of( IBP)M(/;fo ,.J;; u0 ) )shows that u = v. Hence, without taking any 
subsequence of { n}, we see that 

a ( u,, x ( · .I, ( · ) ± ) ) ~ a ( u_, ( · ,I ( · ) ± ) ) in If(o, T). 

Therefore N* 1,--+ N* I in C ( [ 0, T ]). 
We now accomplish the proof of Theorem 1.1. Since A 6( L, /0 ) is 

a compact convex set in C ( [ 0, T ]), by the fixed point theorem there exists 
I E A 6(L, 10 ) such that N*l =I, and the pair {u1, /} is a solution of 
P(b0', b 1

1 ;gM; fo,J;; u0) on'(O, T1 ]. Noting that ue C( Q) a nd I u0 I < M, we can 
choose a number T0 with 0 < T0 ~ T 1 such that lu(t, x)l <M for (t, x) e 
[ 0, T0] x [ 0, 1 ). From the definition of gM, it is follows that g ( t, x, u) = 

gM(t,x,u)a.e.on(O, T 0 ) x (0, 1)andhence {u1,/} isasolutionofP(b0
1 ,b 1

1
; 

g;fo,J. ;u0 ) on [0, T0 ]. 
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5. A comparison result and some examples 

In this section we give a result on the comparison of solutions to Stefan 
problems and some examples of nux condition ( 0.4) and source term g ( t, x, u ). 

A comparison result is proved under the following sign conditions on the 
data .fo, f.., b0', b 1' and u0 : 

[ 

8b0'(r)c(-oo,O] forany r<O and te[O,T],and 

·ab 1' ( r) c [ 0, oo) for any r > 0 and t e [ 0, T]; 
( 5.1) 

(- l );/; ~ 0 a .e. on Q, and/; e L 1 ([0, T]; L 00 (0, 1 )), i = 0, 1; (5.2) 

u0 ~ 0 on [ 0, /0 ], u0 ~ 0 on [I 0 , 1 ]. ( 5.3) 

THEOREM 5.1. ( cf, Kenmochi [ 12] ). Let panda be functions satisfying ( al) and 
(a2), respectively, a •. d consider tire Stefan problems P = P(b 0', b 1';g;fo,.!;; 

Uo, /0 ) and P = P(b0', b 1';g;f0 ,f..;u0 10 ), where the set of data (b 0', b 1';g; 

fo, f..;u0 , 10 ) as well as (b 0', b 1';g;fo, f..;u0 10 ) satisfies (a3) - (a6) and 
(5.1)-(5.3). 
Further suppose that 

fo ~fo, f.. ~f.. a.e. on Q, 

[
(r '--: r') 

1

(r- ~~ ... 2:_ ~ ~r ~ny re D(bb;' ), re D(bb,'), 
r ebb; (r), r ebb; (r), 1 = 0, I , and t e [0, T]; 

for each M > 0 there is a positive constant C;, such that 

[ 

(r'-r')(r -r)++C;,I(r- r) +l 2 ~ 0 forany rwithlri~M, 

r ' E g(t,x, r), r with lrl ~M, r' e g(t,x,r) and a.e. ( t,x) e Q; 

Let { u, I} and { u, I} be solutions of P and P on [0, T0 ], 0< T0 ~ T, respectively. 
Then, we have 

l(p(u(t))- p(u(t))] +l L1 (O, 1) + [l(t) -/(t)]+ 

~{l[p(u(s))-p(u(s))J+IL1 (0, l )+[/(s)-/(s) ] +} x (5.4) 

I 

x exp {CC P ( t- s) + .![I fo ( -r) I L .x; ( O, 1) + 1/, ( -r) I L ~ ( O, 1) ] dr }, 

for any 0 ~ s ~ t ~ T0, 
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where M is any constant with I u I< M and! u I< M a.e. on Q0 = (0, T0 ) x (0, 1) 
and C = max { c;,, CM, CM} with the constants CM, CM in condition ( a3)- (i) 
corresponding to the data of P, P, respectively. 
P r o o f. Let M be any positive constant such that I u I < M and I u I < M on Q0, 

and consider the multivalued functions gM and gM, defmed in the similar way as 
( 1. 7 ), corresponding to g and g, respectively. 

Now, denote by PM ( resp. PM) the problem P ( resp. P) with g ( resp. g) 
replaced by gM (resp. gM). Then, since gM(t,x,u) = g(t,x,u) and 

gM( t, X, u) = g( t, X, u), we see that { u, l} and { u.7} are solutions of PMandP M' 
respectively. According to the comparison result of [ 12; Theorem], the 
inequality (5.4) holds for the solutions {u, / } and {u,/} of PM and PM, 
respectively. 

COROLLARY. Assume (al)-(a6) and (5.1)-(5.3) hold. Then problem 

P = P ( bo1
, b 11

; g; fo ,J,; Uo , /0 ) has at most one solu~ion on any interval [ 0, T0 ], 

0 < T0 ~ T. 
P r o o f. Apply Theorem 5.1 in case P = P. Then from ( 5.4) we infer that if 
{ u, I} and { u, 7} are any two solutions of P, then u = u and I = 7. 

As mentioned in the Introduction, expression (0.4) includes various 
boundary conditions. We now give some examples. 

EXAMPLE 5.1. ( Dirichlet type). 

u(t,i) = k 1(t), 0 ~ t ~ T, i = 0, l; 

this is written in the fonn ( 0.4 ), if b/ ( ·) is defined by 

b/(r) = [: 
if ,. = ki(t), 

if r ¥: k1( t); 

where k1 E wu(o, T), (- 1 Y k1 ;:::: 0 on [0, T]. Then fori = 0, I , b/ satisfies 
( a4) and ( 5.1 ). In fact, put 

I 

a 0 (t) = J(lk'0 ('r) l +lk'1 (-r)l)dr, a 1(t)=O foranyte[O, T]. 
0 

Then for any s, t E [0, T] with s ~ t, fori = 0, land reD(bi')( i.e. r = k 1(s)), 
we can take k 1(t) as r' E D(b/), because 

I 

~ J lk;'(-r)ldr 
.. 
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Hence we have ( a4 ). Clearly, ( 5. L) holds. 

EXAMPLE 5.2. (Neumann type). 

u, ( t, 0 +) = k 0 ( t) and u.,. ( t, 1- ) = k 1 ( t) for a.e. t E I 0, T] ; 

in this case we may take as b / ( · ), i = 0, 1, 

b/(r)=k;(t)r forreR. 

Assume that k; e WJ. 1(0, T) and k;:;;::: 0 on [0, T] fori= 0, 1, and put 
t 

a0 (t)=O, a 1(t) = J(lk'0(r)l+lk'1(r)l)dr, foranyte[O, T]. 
0 

Then ( a4) is satisfied. In fact, for any s, t E [ 0, T] with s ::::; t, i = 0, 1 and 
rE D(b/), we can taker as r ' E D(b/), because 

b;'(r) - b/(r) = k;(t)r-k;(s)r 

t 

::::; (J lk;'('r)ldr)lrl 
s 

Since ob;'(r) = k 1(t) fori= 0, 1 and any t E [0, T], b/ satisfies (5.1). 

EXAMPLE 5.3 . ( Signorini type). 

l
u(' ,l)::::;k1 (') 

u(· 1-)=0 X > 

u .. (', 1-) ::::; 0 

on [0, T], 

a.e. on { u (', 0) > k0 (')}, 

a.e. on { u (' , 0) = k0 (') } , 

on [0, T], 

a.e. on { u (' , l ) < k1 (') } , 

a.e. on {u(',l) =k1(')}; 

these conditions are represented in the form ( 0.4) for b/ ( · ), i = 0, 1, given by 

b,'(r) (resp. b,'(r)) ~ r: if r :;;::: k0 ( t) ( resp. r ~ k 1 ( t) ), 

otherwise. 
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where fori = 0, l , k;e wu (0, T), (-I); k; ~ 0 on [ 0, T ). Also, condition ( a4) 
is satisfied. In fact, let 

I 

a0(t) = J (lk'0 (-r)l+lk'1(c)l)dc, a1(t)= O foranyte[O, T]. 
0 

Then for any s, t e [0, T] withs ~ t, and r0 e D(b0' ) (resp. r1 e D(bn), we can 
take k0 ( t) + ( r0 - k0 (I))+ ( resp. k 1 ( t) - ( r 1 - k 1 ( t)) - ) as r'

0 
e D ( b

0
1
)( resp. 

r'1 e D ( b1
1

) ). By elementary calculation, we obtain (*)of ( a4 ). It is clear that 
( 5.1 ) holds. 

Finally we give a typical example of g(t,x,r). 

EXAMPLE 5.4. Let g0 ( t, x) be a nonnegative function in L2 ( Q) and g1 ( t, x) be 
a bounded measurable function on Q. Also, let k(r) be a locally Lipschitz 
continuous function in r e R, and assume k (0) = 0. Then we define 

g(t,x,r) = g0(t,x)O'(u)+g1(t, x)k( r ), 

where 0' (·)is given by ( 0.5 ). For this function g, condition ( a3) is easily verified; 
in fact, given any number M> 0, we can take 

C"' = I gJI L"' ( Q) x ( Lipschitz constant of k on [ - M , M ]) 

and 
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lstnienie rozwi~an dwufazowego zagadnienia Stefana dla nieliniowycb rownan 
parabolicznych 

W pracy rozwaiane jest jednowymiarowc dwufa?..owe 7agadnicnie Stefana dJa rownan typu 
parabolic?nego z nicliniowyrni warunkami brzegowymi. Warunki brzegowe SI! opisywane przez 
7alcinc od czasu opcratory subgradientu i intcrprctowane jako realizacja sterowania w ukladzie 
7amkni-ctym. Gl6wnym wynikiem pracy jest twierdzenie o istnieniu lokalnego w czasie rozwi!Jzania 
lAJgadnienia. Stosowana metoda dowodu oparta jest na abstrakcyjnej teorii nieliniowych r6wnan 
cwolucyjnych z zaleinymi od czasu opcratorami subgradicntu w przestneni l lilberta. 

CymeCTBoaaHHe pememrii ,IJ;Byxcjla.:Juoii 3a,IJ;a'IH CTecjlaua .llJl.H ueJJHHeii.ublx 
napa6onuqecKHX ypaaueHHii 

B CTaThe paccMarpHBaeTCll O.!IHOMepHall AByxcl>a3H3lt 3aJla'!a CTecl>aHa .liJUI napa6omr'leCKHX 
ypa8HCHtrn C HeJJHHeHHbiMK npaBblMlf 'laCTliMlf J1 HCJTRHeHHbtMII rpaHWUfbiMH YCJJOBIISIMH. 
f paHJol'lflbJe YCJJOBJHr ODHCaHbl K3MeiDUOLUHMliCII 80 8pCMCHII OnepaTOpaMH cy6rpaJlBeHTa 
H KHTepnpeTHpYJ<>TC.!l B K3'1CCTBe pe3JIJ{3aUHH ynpaBJlCHHll B 3aMKHYTOR CBli3H. f1Ia8HbtM 
pe3yJibTaTOM pa60Tbl IIBJIJICTCII TeOpeMa 0 CyLUeCTBOBaHHH JIOKaJibHOI'O BO BpeMCHB pClliCHIUI 
3aJia'IH. ITpwMeHJteMbiH MeTOJl AOK3.3aTeJibCTBa OCHOBaH Ha a6CTpaKTHOH TCOpH.H HCJIJ!JICH HbiX 
3BOni0U.HOHiiblX ypaBBCHHH C B3MCHltfOil{HMCII BO npeMCHH onepaTOpaMll cy6rpa,nHeHTa 
8 rHJlb6epTOBOM ITpOCTpaHCTBC. 


