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1. Introduction 

By a switching system we mean a (finite) set of modes together with a set of 
switching rules of a special form. A more detailed definition will be provided later 
but, for orientation, let us consider a prototypical example. 
EXAMPLE 1: Let X be the plane R2 and suppose one has available two modes 
given by the differential equations 

x = fj(x) U = 1,2; X EX) 

(ActualJy, we suppose that there are (closed) sets U1 c:: X for which each mode is 
available so it is only in U1 n U2 that bothj = 1 andj = 2 would be available.) 
The switching rule is a modified form of the heuristic: Don't switch unless you 
must! Introducing the complementary forbidden sets R1 = X jU1, we consider the 
interesting case in which R 1 contains a global attractor for the mode x = .1; (x) 
and similarly for R2; we assume, here, that R 1, R2 are disjoint so at least one mode 
is always available. Suppose we start the system with state x (0) in (the interior of) 
U 1 n U2 and in mode 1. Our solution coincides with the solution of x = J; (x) 

t) This research has been partially supported by AFOSR and NSF under 
grants AFOSR- 82- 0271 and CDR- 85- 00108, respectively. 
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until this hits the boundary oU1 oR1; this is inevitable since we have assumed 
that R 1 contains a global attractor. Since it is forbidden to enter R 1 in mode 
1 (i.e., for a state x (t) ER, the mode} = 1 is unavailable), we switch to mode 2. 
With this change in mode the trajectory may or may not enter R 1 but coincides 
with a solution of x = J; (x) until hitting oU2 = oR2 . We expect, then, to follow 
the individual differential equations alternately, switching from} = I to j = 2 at 
oR1 and back from j = 2 to j = 1 at oR2• 0 

An apparently minor quibble arises: Suppose there would be a point~ E oR, for 
which the equation x = J; (x) has a trajectory r passing through ~ but staying 
locally in U1 (see Figure 1), i.e., 

;y=Y,{x) 

Fig. 1 

tangentiaJ2 to oR1 at ~· Do we or do we not switch? This figure shows 
a neigh boring trajectory rentering R 1 at e1 so, for the switching system, the policy 
is clear: switch modes at ~ 1 • On the other band, the figure shows another 
neighboring trajectory r2 which never hits oR1 until ~2 so the policy for the 
switching system is again clear: switch modes at ~2 • Taking limits through 
trajectories like ,., we would expect switching at e for a switching system 
trajectory coinciding (in part) with the earlier part of r while taking limits 
through trajectories like r 2 would suggest, for the swicbing system, that one 
continue to coincide with rand defer switching until ~'. In order to have any 
chance of preserving the principle that a limit of solutions should be a solution, 
we accept both possibilities: switching at~ and deferring switching until ~' . This 
means, of course, that we must accept the consequence that a solution for the 
switching system which initially coincides with the early part of r must then have 
a nonunique continuation. This possibility of nonuniqueness is a significant 
characteristic 3 of the theory of switching systems - although for the con-

2 Although shown as such in Figure I, this need not mean tangency in the usual geometric sense 
since we do not impose enough regularity on oR1 for this to be necessarily meaningful; it might be 
better to say that r fails to be transversal at~. All we really mean, here, in using the term ,tangential'', 
is that r contains a point ~ of oR,, but does not enter R1 at ~. 

3 Note that the geometry of Figure I is generic in that some (nearby) point of tangency must occw
for any small perturbation of the direction field and/or the boundary aR,. 
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siderations of this paper it does not materially affect the results. Even apart from 
this possibility, we will see from Examples 3, and 4 that care is needed in deducing 
properties of a switching system from corresponding properties of the modes 
used to define it. 

In the next section we will (very briefly) indicate some possible applica
tions/examples of the formulation although a more detailed exploration of these 
will be deferred to a later presentation. Here, these are only intended as 
suggestive and to motivate the precise formulation of the switching rules in 
Section 3. 

Section 4 contains our principal result, on the continuous dependence of 
regular solutions, together with a global existence result. Section 5 discusses an 
important special case: linear switching systems. Finally, the last section will note 
some open problems and directions for generalization. A principal topic for 
further discussion is the existence of periodic solutions but this will be deferred to 
a separate paper [6]; it is in this context that the possibility of nonuniqueness 
described above becomes overwhelmingly significant. 

2. Motivation 

The original motivation for formulating a notion of ,switching systems" came 
from an attempt to model thermostats. The two modes, in this case, correspond 
to FURNACE OFF and FURNACE ON and the thermostat is a device to 
switch between these. 

lt consists of a sensor (measuring the temperature 0 at a particular position) 
and a pair of set points (}1, (}2 (typically, the gap 02-01 > 0 is fixed and the mean 
(01 + OJ/2 is adjustable) with two internal states corresponding to the two modes. 
If the furnace is OFF, then it will be switched ON when 0 crosses 01 from above; 
in particular, the furnace will always be on when 0 < 01• When, eventually, the 
temperature rises to have e cross the upper set point 02 (from below), then the 
furnace will be switched OFF; no recrossing of the lower set point affects the state 
until this occurs; the furnace is always OFF for 0 > 02• 

This, together with the partial differential equation governing the evolving 
state (spatial temperature distribution), seems to describe the physics quite well 
except for the same minor quibble noted in the Introduction: What happens if, 
e.g., with the furnace ON, the sensed temperature 0 (t) rises to 02 without 
(immediately) crossing? (Since the evolution is given by a pde, one can fmd initial 
conditions for which this is would acluaJJy occur.) It was the analysis of this 
situation which led to the present model. A completely different model is 
discussed, for example, in [4]; the discussion in [I] is closer in its concerns with the 
present analysis. More detailed analysis of switching system thermostat models 
will be deferred to [7). 
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An entirely different setting leading to switching system models is the 
Hamilton - Jacobi - Bellman formulation of optimal feedback control of 
multimodal (variable structure) systems with switching costs. Suppose one has 
a system which can operate in any of J modes, e.g., corresponding to differential 
equations 

i = J; (x) (} = 1, ... , J) (2.1) 

with attendant (x, J)-dependent running costs but with the possibility of 
switching at any time from the j-th to the k-th mode with cost ci. lr (x); there may 
also be other control possibilities implicit in (2. 1 ). We suppose Ji.i (x) is the 
optimal infinite horizon (discounted) cost if one is at the state x in the mode j. 
Clearly, we would switch to the k-th mode if Ji.i (x) > V~ (x) + cJ.Ir (x) but would 
not switch if the reverse inequality would hold, i.e. , we would always choose 

k = argmin {VIr (x) + c1. 1r (x) : k = I , ... , J} (2.2) 

where (x.;) is the current state and k is to be the ,new" mode (set ~f.J (x) = 0 for 
completeness). For a discussion of this approach, see [3]. The effort, then has 
gone into the construction of the value functions { V1 (')} with (2.1 , 2.2) taken as 
defining the controlled dynamics. We observe that the possibility of non unique
ness in (2.2) means that a further, more detailed , analysis of the dynamics is 
needed precisely at the switching surfaces 

sj. k := {x: vj (x) = vk (x) + cj. k (x)}. 

If we let R1 be the open set 

R1 : = {x : Ji.i (x) > Vk (x) + c1. k (x) for some k =1= J}, 

then we will obtain a switching system model for the optimally controlled 
dynamics. Note that the possibility of non unique continuation if a trajectory r of 
x = .~ (x) is tangential to the switching surface simply means that the optimal 
cost is attained nonuniquely: either continuing without switching or paying the 
switching cost and continuing in a new mode give the same (optimal) cost. 

There appear to be connections between the theory of switching systems 
presented here and , viability theory", c. f., [2). Of particular interest, in this 
connection, is the notion of a ,heavy trajectory", c.f., corresponding to the 
reluctance to change modes implicit in our switching rules. Our considerations 
a re, however, a lmost disjoint from those of [2) since we can also write, e.g., (2.1) 
as a differential inclusion x E F (x) by setting F (x) : = ~ (x) : j = 1, ... , J} but 
we are obviously emphasizing the case: F (x) finite whereas [2] emphasizes the 
quite distinct case: F (x) convex. 
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A final motivating setting comes from singular perturbation theory. Consider, 
for example, a system 

x = f(x, y), sy = g (x, y) (2.3) 

for very smalll e > 0. A principal concern of singular perturbation theory is to 
initiate an analysis of (2.3) by comparison with the reduced order (implicit) 
model 

x = f(x, y), g (x, y) = 0. (2.4) 

Jf we can solve g (x, y) = 0 to obtain y = Y (x), then (2.5) becomes simply 

x = .f. (x) : = f (x, Y (x)). (2.5) 

Suppose, however, that the graph {(x, y) : g (x, y) = 0} would look like the one 
of Figure 2. As shown, we observe that A = ogjoy is negative, corresponding to 
stability of the perturbation equation: cy = Ay, along the branches y = Yj (x) 
for j = I, 2 but we have A> 0 (instability) on y = Y. (x). Thus, local analysis 
shows that once we have y~ Y; (x) with a< x we would expect to stay close to the 
solution of 

x =it (x) := f(x, Y1 (x)) 

(for very small c > 0) unless/until this solution would reach x = a. Assuming 
it (a)< 0, this trajectory would (try to) enter the forbidden region R1 : = (-oo, a) 
for which Y1 does not exist. One would have to make a more detailed analysis of 
(2.3) to see jus~ what would happen then but, assuming Y2 (x) would be globally 
attractive for ( = g (x, ()for x<a, we would expect a rapid transient behavior 
,switching" to the branch y = Y2 (x). The solution would then stay close to this 
branch unless/until it reached x = b, with a similar ,switching" there ifJ; (b)> 0. 
This behavior is, of course, the standard hysteresis loop and is essentially similar 
to the description of the thermostat above. Other interesting varieties ofbehavior 
become possible when x, y may ,live" in higher-dimensional spaces. We defer to 
[6] any further discussion of this and of the extent to which the switching system 
model may provide a suitable reduced order model with to initiate the analysis of 
(2.3). These considerations seem complementary to those of [5). 

3. Definitions 

Motivated by the examples of the previous section, we introduce a formal 
definition of 'switching system'. Tbis may not be the most general possible 
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notion (c.f., Section 6 for further comment) but more than covers the motiva
ting settings. 

First, by a mode we mean a semidynamical system with state space X: 

1t: R+ X X~ X continuous, with 1t (0, e) = e and (3.1) 
1t (t + s, e) = 1t (t, 1t (s, e)) for t' s ~ 0. 

Note that 1t may be interpreted as the solution map: e =: X (0) ~ X (t) for an 
autonomous differential equation4 .X = f (x) but the exposition is somewhat 
simpler this way and more general in some respects. We will consider a variable 
structure system corresponding to a set { n1 : j e J} of such modes where J is 
suitable index set (usually finite: j = l, ... , J). 

For eachjeJweassume we are given a forbidden set R1 c X while for each pair 
(), k) e J x J there is an admissible switching set S1.k c X. (Any of these sets may 
possibly be empty.) Our concern with Rj is that the mode 1tj at some e E oR;, by 
which we mean 

(i) for some eo we have 7T.; (-, eo) E X \ R; on (0, e) with e > 0 (3.2) 
and 1t; (e, eo) = e; 

(ii) 1tj (e, e) E R; for arbitrarily small e > 0. 

We impose the set of geometric hypotheses:5 

(i) S;.k (\ Rk = 0, Rj = X \ Sj.j ; 
(ii) each Sp is closed in X (so each R1 is open); 
(iii) for each e E oR1 there is some k E J such that e E S1. k; (3.3) 
(iv) for each j E J: for each e EX there is a neighborhood N; Ce) 

which nontrivially intersects only finitely many of { S1. k}· 

By a switching system we mean a specification: 

:E := (J, {n1 :) E J}, {SJ, A :), k E J}] 

subject to (3.1) and (3 .3). 
For a function: t --. [x (t), j (t)] : R' --. X x J to be considered as a possible 

solution of such a switching system :E we first require that 

4 This restriction to autonomous equations is not very significant in the sense that one can 
formally include t as a component of the state. Somewhat more restrictive is the implicit assumption 
that a unique global solution (i.e., for all t e R+) exists for each initial ~ e X, sec Section 6. 

j This set might be weakened slightly if we did not prefer to keep it indcpendetofany knowledge of 
{nJ For example. (iii) is really needed only if n, would enter R1 at ~ and even then we might permit 
~ e iJ Rt if nt does not enter Rt at ~; compose the reformulation in Section 6. 
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(i) j O is piecewise constant with isolated6 'jumps'; 
(ii) whenever j 0 is constant ( = k) on an interval (s, t) we have (3.4) 

X (t) = TCk (t - S, X (s)). 

Note that this automatically forces x 0 to be continuous: R + - X since each 
mode nk is continuous in t. The requirement that the 'jumps' in j O be isolated 
means that j 0 will have· both left- and right-handed 'limits' at a jump: 

j (t -) = j, j (t +) = k (with j ¥ k). (3.5) 

We refer to such a time t as a switching time and to the situation as a transition 
(from mode n1 to mode nk) or, more succinctly, as a switch: j - k. If t' is 
a switching time (and there are any subsequent switches) then there is a unique 
next switching timet". We refer to (t', t") as an interswitching intervaf1. We 
impose the switching rules: 

(i) a switch: j ,.... k is permitted at time t only if x (t) e S1. k 

(ii) if x (t) e Rp then j (t) = j is forbidden - hence 1 must be a (3.6) 
switching time if n1 enters R1 at x (t) when one 'arrives' 
at x (t) = ~ E oR1 with} (t- ) = j. 

Thus, by a solution of the switching system :E on the time interval [0, 1) we mean 
a function pair 

[x 0, j (-)] : [0, 1) - X x J 

subject to (3.4) and (3.6). For definiteness we takej O to be left-continuous. The 
values [x (O),j (0)] are called the initial data for the solution; we have x continuous 
a tO so x (0+) = x (0) but we do permit (subject to (3.6) (i)) an immediate switch 
for j (-). 

R EMARK l: Usually we only consider solutions with T = oo, i.e., [0, 1) : = R +. It 
should be clear that there is nothing 'magic' about 0 and any interval I:= [a, b) 
would be equally appropriate but, as we consider only autonomous systems here, 
there is no loss of generality in translating in time by a to consider [0, 1) with T: = 
b - a; initial data at t = a then becomes initial data at t = 0. The other interesting 
possibility would be to consider solutions for all time': I = R; in this case it is 
somewhat irrelevant to consider 'initial data'. This possibility will be of interest to us 
in the context of stable linear switching systems in Section 5: note Theorem 6. 

6 This requirement could be relaxed somewhat and we could refer to the notion here as defining 
a regular solution or I:. 

1 We have j 0 constant (say, = k) on such an interswitching interval and (3.4) (ii) requires the 
solution simply to follow the mode n1 during it. 
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EXAMPLE 2: We present here, partly for its own sake8 and partly in contrast with 
the flavor of Example I , an example with an infinite dimensional state space X. 

We take this space to b& 

xo : = g 0: measurable from R+ to [0, 1]}. (3.7) 

The metric topology we consider on xo will be that induced by a weighted 
D-norm: 

(3 .8) 

where we assume that: 
the weight <p is positive and, nonincreasing with 

f'0 <p (s) ds = : M<oo, (3.9) 

e.g., <p (s) = Ce "8
• Next, set J: = {1, 2} and define the modes ni (j = 1, 2) by 

[n. (t, OJ (s) : = { ~ (s - t) for s> t, 
' ; - 1 on [0, t] 

(3.1 0) 

fortE R + and~ E X 0
• One easiJy verifies that each ni satisfies (3.1). Even before 

introducing the sets {Si. k} we note a representation formula 

{
e(s - t) 

[x (t)] (s) : = '( ) .
1 ; t - s -

for s> t, 
on [0, t] 

(3.11) 

for any measurable switching function j (), not necessarily satisfying (3.4) (i). 
Note that this automatically makes [x () ,j (')]satisfy (3.4) (ii) whenever (3.4) (i) 
really does hold.lO . 

Next, suppose we have a specified function 1/1 : R+ ~ R such that: 

8 The specific significance of this particular example lies in its canonical relation to general linear 
switching systems. as discussed later in Theorem 6. 

9 The particularly interesting subset of X" is 
x. := g 0: measurable from R+ to {0, I}} 

and we could really have used auy X sui tably embedding x •. 
10 Observe also that Xo is invariant: if ~ = x (O) e Xo, then x(t)EXo for each t e R~ for any j('). 
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(i) if! (0) = 0, : if! (s) ds = 1; 

(ii) sup { I if! (s) I: s 2:. t} ~ <p (t); 

(iii) I if! (t) - if! (s) I ~ K <p (s)(t - s) for t > s 2:. 0. 

We then introduce the sensor functional 

71 

(3.12) 

(3.13) 

and, for any %0 -valued state function x (-), the associated sensor function 

t-+Bl(t) = B(t;x) := O[x(t)] := f lO ijl(s)[x(t)](s)ds. (3.14) 

Note that f) is continuous on xo and that if x O is given by (3.11) we have 

O(t) = 1ccif!(t+s)~(s)ds+ l 1

if/(t - s)[j(s) - l]ds. (3.15) 

so that, by (3.9) and (3.12) (ii), e (t) is almost independent of~ for large t: the 

~-dependent part of e (t) is the first integral in (3.15) which is bounded by (I() if! 
I 

which goes to 0 as t -+ a:> . We have 

D(t)-8(t) = J
00

[if!(t+s) - if!(t'+s)]~(s)ds 

+ r[</1 (t~ s)- ift(t'-s)][ j (s) - I] ds 

+ f'if/(t - s)[j(s) - l]ds 

fort > t' 2:. 0 so, using (3.12) (ii, iii), we obtain the uniform Lipschitz condition: 

IO(t) -O(t')l ~ l00

K<p(t'+s)(t - t')ds 

+ 1''K<p(t' - s)(t - t')ds 1,_,.if!(s)ds 

~ [KM+ <p (0)] (t - t'). 

In terms of() [·] we define, fmally, 

(3.16) 
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R 1 = {(EX: 0[~] < C 1}, 

S1 1 := gEX:ORl 2: c,}, 
Su := 8R1 = gEX:O[~] = C,}, 

TH. J. SEIDMAN 

R2 := {eEX:O[~] > C2}, 

S2.2 : = gEX:O[~] ~ C2}, (3 .17) 

S2_2 := oR2 = gEX:O [~] = C2} 

where C1• C2 are specified constants with 0 < C 1 < C2 < l. One immediately 
verifies (3.3) since e [·]is continuous. Note that for a (possible) solution [x ('),}()] 
we can have a switch: j ~ k at t~me t only )f 0 (t) = Cp Thus, if (t., t,.+ 

1
) is an 

interswitching interval we have 10 (1,.+1)- 0(1.)1 =C2- C1 so, by (3.16), 

(3. I 8) 

which certainly ensures (3.4) (i). 
It is interesting to note that if, e.g., we were to proceed in the mode n2 then 

x(y + t) = n2(t, 0 with e : = x(y), 

D(y + t) = O[n2 (t, ~)] 

= 1 o:t/l(t+s)e(s)ds+ 1't/l(t - s)[2 l]ds 

2: I 't/1 (s) ds -t I by (3.12) (i) 

so R1 is a global attractor for n 2 and, indeed, one reaches R2 (from any starting 
point ~E X"). proceeding by n2 in time not greater than y = y2 where 

Similarly 

0 [n 1 (t, ~)] = 1'\Ht + s) ~ (s) ds 

~ f "' t/J(s)ds = 1- f't/l(s)ds -tO 
I 0 

so R 1 is a global attractor for n1 and one has an upper bound y1 for the time to 
reach R 1• 

For the switching system :E := [J, {n1}, {S,.k}], this ensures that, for every 
consistent starting point [x (O),j (0)] (i.e., x (0) £t R

1
<01 ) one has at least one solution 

of :E - e.g., corresponding to switching whenever this is permitted by (3.6) (i) 
- and every solution switches infinitely often with the uniform bounds 



Switching systems 73 

for interswitching intervals. Clearly, the state function x 0 is always related to 
the switching function j 0 through the representation formula (3.11) and one 
relates j 0 to X 0 through B 0 and (3.6); one always has (3.4) in this case . 

• 
We next consider the appropriate notion of convergence for switching systems. 

We say L"- L0 providing 

(i) J ", J 0 = J (slightly more generally, J 0 = limsup J" ); 
(H) if ~eRJ then ~ER}' for all n 2: i7./~); 
(iii) if ~0 is the limit of a subsequence ~ ~~ Cm> - ~0 with each 

c<ml eS~'~"'l, then ~0 eS. k; (3.19) 
], "' ], 

(iv) (3.3) (iv) holds uniformly in n, i.e. , for each j , ~ there are 
a neighborhood N = ~(0, and a finite subset K = JSCO c J 
such that s;: k n N = <1> for k ~ K and each n; 

(v) 1t ]' (t , 0- 1t J (t, e) locally uniformly, i.e., uniformly on some 
[0, T] x X-neighborhood of each (t, 0 , for each}. 

(This is actually a form of 'upper convergence' for switching systems. It would be 
plausible to adjoin the condition 

~ 0 eS/k only if there is a sequence e" - eo with e"ES/k 

as a complement to (iii) above. Since we will only seek to prove an upper 
semicontinuity result for the solution set, the definition (3.19) is adequate for our 
purposes.) 

4. Basic Results 

In this section we formulate and prove our basic general results. The first two 
results give a kind of continous dependence of the solution set on the initial data 
and the system: we show (under suitable hypotheses) that the limit of solutions is 
a solution when such a limit exists and that such limits always exist for 
subsequences corresponding to the possible choices when nonunique con
tinuations are permitted by the switching rules (3.6). We also provide an 
existence result in a somewhat more restricted setting. 

For the first results we must introduce a suitable notion of convergence for 
sequences {[x", j"l}. For the state trajectories {x"O} we use, simply, uniform 11 

convergence on [0, T]- uniform on finite intervals [0, T'] if T = oo. For the index 

11 We will always take X to be a metric space (or a topogical vector space) so such uniformity is 
meaningful. 
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functions {j''(.)} the relevant notion is again the natural one but is a bit more 
difficult to describe. It is convenient, here, to think of an index function}(.) as 
being specified by its sequence12 of switching times 

0 = : t0 < t 1 < ... < tP : = T (4.1) 

and the assumed interswitchingindices {i.: v = 0,1, ... , v} wherej(O) = j 0 and, for 
v=l, ... ,v, 

j(t) = J. for t,,_, < t ~ t,, . (4.2) 

Suppose we have an index function/(·) with isolated switching times {t~: v = 0, 
... , v0} as in (4.1.). If v0 = oc we say thatf 0 --+ l 0 if v" --+ ex: = v0 (e.g., v" 
= oc for n large) and, for each v = 1,2, ... , one has: 

(i) t~ --+ t~ as n --+ oc; 
(ii) j~ = j~ for n ~ n •. (4.3) 

Ifv0 < oo we ask instead that v" ~ v0 for every (large enough) nand that we have 
(4.3) for eauch v = 1, ... , v0

. (We will also require (4.3) (ii) for v = 0 although the 
initial indexj0 has no direct effect on the state trajectory since the condition (3.4) 
(ii) is effectively applicable only for nontrivial intervals.) 
THEOREM 1: Suppose U:"} is a sequence of switching systems on X converging to 
a switching system _L0 in the sense of(3.19) and suppose [x",j"] is a solution of 'L" on 
[0, Tjfor each n = 1,2, .... Let [x0,/]: R + --+ X x J with/(·) satisfying (3.4)(i). 
Then, if [x", j"] --+ [x0, /] as above, [x0, /] is a solution of"[} on [0, TJ. 
Proof: This is just the assertion that the limit of solutions is a solution ( modulo 
independent verification of the regularity condition that switching times are 
isolated for the limit). The proof is quite straightforward. 

We have already defined the switching times { t7,: v = 0, ... , v"; n = 0,1, ... }and 
now define the corresponding switching points e';: = x" (t~). By the uniform 
convergence, we have x0 0 continuous and, using (4.3), we see that e~ --+ e~ as 
n-+ oo for each fixed v = 1, ... , v·. We must verify the switching rules (3.6) for 
[x 0

, j 0
) and also (3.4) (ii), with (3.4) (i) given by assumption. 

Fixing v, we setj: = j~_, ( = }'',..1 for large n by (4.3)) and k: = Je (=}';)so at 
r : = le one has a switch: j .......... k for l o. Since e7. E s J,k for each n = l ,2, ... and e~ 
--+ ee, we have e~ E s~.k by (3.19) (iii). Next, suppose one were to have~ : = x0 (l) 
ER~ for some f which is not a switching time and hadj0 (l) = j. We would then 
have j" (l) = j for large n since l must be in the interior of the interswitching 
interval (t',~1 , t';) for each large n with v fixed. Hence ~" : = x"(r) --+ ~ would 
imply en ER~ for large enough n since, by (3.3) (iii), R~ is open. But (3.19) (ii) 

12 Note that (3.4) (i) prohibits having v = oc for finite Tbut when T = oc we 
can have either v < oo or t,, --+ oo as v --+ oo =: v. 
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Fig. 2 

would then give e" E R~ which is a contradiction. Thus (3.6) (ii) holds at 
non-switching times. Since x0 0 is continuous, x0 (t~) ER~ would also give x0 (T) 
ER~ for nearby times since R~ is open; that is impossible. Thus (3.6) (ii) always 
holds. 

The verification of (3.4) (ii) fort , sin the interior of a interswitching interval 
(flf-1, t~) is an immediate consequence of (3.19) (iv) since 

x0(t) = lim x" (t) = lim nk (t- s, x" (s')) 
= nk (t- s, lim x" (s)) = nk (t- s, x0 (s)) 

and this extends to the endpoints by continuity. • 
Theorem 1 shows that a limit, when it exists, must be a solution. To 

complement this, we next show that, in some sense, sw:h a limit always exists. 
A certain additional condition is needed and we say that a set of index functions 
(or the corresponding solutions) is uniformly regular if, for each finite T' (we 
considex only T' = T if T < oo ), there is a minimum length y = y (T') for 
interswitching intervals in [0, T'] -more formally, if 

l,. .:5 T' => l v- 1 + 'Y ( T') .:5 l, (4.4) 

for each (t,,_1 , t.) associated with} (·)in the set. 

THEOREM 2: Suppose {I"} is a sequence of switching systems converging to I • in 
the sense of(3.19) and suppose [x",J"] is a solution ofl:" on [0, T]for each 
n = 1,2, .... Assume{j"}isuniformlyregularon[O, T]andx"(O) =: ( 0 ---+ (~, 
}" (0) = } 0. Then there is a subsequence n (m) such that [ x n(m), j"(m)] converges to 
a solution [x0

, }
0

] of I 0 with x0 (0) = ( ~ . 

PR 0 0 F: We will proceed by repeated extraction of subsequences, followed by 
a Cantorial diagonal argument. Abusing notation slightly, we continue to write 
{ [x",j"] }, etc. , for the subsequences at each stage. For exposition we treat only 
the case T = oo ( so 'solution' means a global solution), leaving the trivial 
modification for T < oo to the reader; we also, similarly, assume lim v" = oo 
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although it may or may not turn out that i/0 = oo . As above we denote the 
switching points by ~~;:= x" Ct:). 

The construction proceeds by recursively (in v) obtaining}~ and then t~. ~~· 
This will determine [x0 (-), } 0 0 l The construction will immediately give the 
convergence [x",J"] --+ [x 0,j0 ] with (3.4) (i) following from the assumed uniform 
regularity. Application ofTheorem (T1) then shows [x0,j0

] is a solution of2::0 as 
asserted. 
Wehavej ~ =}~and ~~--+ ~~byassumptionand,ofcourse,t~ = 0 = t~.lt 

may be that j~' = 13 = jg (infinitely often) but it is also possible that t 0 is 
(infinitely often) a switching time for 1" (-). In the latter case, having a switch: 
j := jg ,..,.k(n) := 1;'wemusthave~~ E S/k(n)· By(3.19)(iv)and the fact that 
~ 0 --+ ~~,this means k (n) E K = K1 (~~)for all ~ut finitely many n. Sine~ K is 
finite, this means there must be at least one index k E K such that k(n) = k for 
infinitely many n. Choose j ~ = k and extract the sequence for which 
k(n) = k = 1~· 

Working now with this subsequence (still denoted by [x ", }"] ), consider { t 7} 
which necessarily has a convergent subsequence (noting that we will accept 
convergence to oo ); we take t~ to be the limit so, extracting thjs subsequence, we 
now have t~' --+ t~. Note that the uruform regularity condition ensures that 

t'! = t'!- t 0 2: min {1, y (1)} = : y1 > 0 

so, in the limit, t~ - t~ 2: y1• Fort~< s' < t' < t~ we have (withj = 17 = Jn 
x" (t) = nj (t- t 0, ~ 0 )--+ nJ (t- t~, ~g) (4.5) 

uniformly on [s', t'] by (3.4) (ii), (3.1), and (3.19) (v). It follows that this can be 
taken tO define X O (-}as a continUOUS function On ( t g, t n (On ( t g, 00) if t ~ = 00) 
with~~: = x 0 Ctn well-defined if t? < oo. We obtain (3.6) (ii) for x 0 0 on 
[ t g, t ~] exactly as in the proof of Theorem 1. 

Assuming t? < oo, it is clear from (4.5) and (3.19) (v) that 
~7 := x"(t'!) --+x 0 (tn =:~~.As before, since each t7 is a switching time we 
have~'{ES1:k(nlforeachnwithj = 17 = J?andk(n) =n =j"(t'! +).A~ before 
we can select k E K1 ( ~? ) and extract a subsequence such that each j 2 = k =: j~. 
As before, we extract a subsequence for which t2-+ t~ with t2- t'! 2: min {1, 
y (t~ +I)} =: y2 sot~- t? 2::. y2• As before we have 

X 11 
( t ) = 1t J ( t - t '{ , ~ '{ ) -+ 1t J ( t - t ~ , ~ ?) = : X 0 ( t ) ( 4. 6) 

uniformly on any [s', t'] c [ t?, tg], defining x 0 (·). 

Note that the.switchlng times cannot 'bunch up' since, for any T' < oo, we 
must have t~ 2::. vy(T') if t~ ~ T' so v ~ T'f y (T'). The same argument given 
above for construction of J?, t~, x 0 0 on [t ~, t~], and~? shows that we can 
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proceed recursively with t~ --+ oo unless we have t~ = oo for some v = v0 < oo. 
The argument also shows that [xn,rJ--+ [x 0,j0 ] on [0, T.0 ] for each v (up to 
v = v if v < oo) where, of course, this refers to the resulting subsequence 
remaining after all the extractions to this point. Clearly this convergence carries 
over to the subsequence (of the orginal sequence) obtained by a Cantorial 
diagonal construction since, from some v-dependent point on, this coincides with 
the subsequence directly associated with arriving at /~. The definition of 
convergence on [0, oo ) shows that we must necessarily have [x nCm>,rcm> ] --+ [x 0, 

j 0
] on [0, oo) for the diagonal subsequence, as asserted and, by Theorem 1, we 

then also know that [ x 0, j 0
] is a solution of ~ 0. • 

We turn next to an existence theorem for global solutions, i.e. , on [0, oo). We 
first provide a cautionary example, showing that even in a case with J = {1, 2} 
with each 1t i asymptotically stable it is (surprisingly?) possible for the switching 
system to support ' blowup'- solutions which 'escape to infinity' in finite time. 

EXAMPLE 3: Take X= R2 and let n 1, n 2 be the solution operators associated with 
the ordinary differential equations: 

( 4.7) 

respectively. Clearly the solution paths in R2 are the same as for the linear 
equations: 

(i) u = u + 5v + 10, 
v = -5u -2v - 4; 

(ii) u = u- 5v+ 10, 
v = 5u -2v +4; 

( 4.8) 

which are easily seen to be exponentially stable: the characteristic exponents for 
( 4.8) are [ - 1 ± 4i] I 2. For any starting point, then, ( 4. 7) has bounded solutions 
so the velocities are also bounded and the-solutions go exponentially to the same 
attractors: ( 0, - 2 ), ( 0, 2 ). 

Now take 
R, : = { ( u, V) : V < - 1 }, R2 : = { ( u, V) : V> 1 } 

s,,2 := {(u - 1)}, s2,1 : = {(u,l)}. 

One easily sees that every solution of the resulting switching system 1: will 
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alternate modes with switching points alternately on v = ± I so (eventually) 
one keeps I vI ~ 1. lf one then has u (t) ~ 0, we subsequently have 
it > 5 ( 1 + u2 

), giving blowup before I+ n / 20. (Similarly, u (l) ~ - 16 gives 
it < - (I + t? ). ) 

Note that if we had used the linear equations ( 4.8 ), instead of ( 4. 7 ), to define 
the modes n 1 , n2 then we could not get blowup in finite time but nevertheless 
would obtain instability (unbounded solutions) for a switching system comp
rised of exponentially stable modes. 

THEOREM 3 :Let L : = [ J, { n1} , { S1.k }] be a switching system. Suppose the index 
set J is finite and each_S

1
,k (j # k) is compact. Then for any consistent initial data 

( (,]) E ! x J ( i.e.,J ~ R j ) there is global regular solution 13 
[ x ( · ), j ( ·)] with 

x(O) = Lj(O) = j. 
P r o o f: Simply follow the condition ( 3.4) ( ii) in developing the evolution of 
x (·)with switching as permitted I required by ( 3.6 ), choosing almost arbitrarily 
when nonun.ique choices may occur. We show that switching times wiiJ 'almost 
automatically' be isolated and that the construction cannot stop (i.e., one can 
neither have finite escape time nor an impasse for which no admissible 
continuation exists). 

We set ~0 = ~, j 0 = j( 0) : = ]. This is permissible since, by assumption, 
e rt R j . It is possible that~ E S; . k for some k #],in which case we can choose to 
switch immediately, making 0 = t 0 a switching time andj1 = k # j 0 = ] . If one 
had e E 8R 1 with 1t j entering R 1 ate then an immediate switch is mandatory by 
( 3.6) ( ii) and some switch is permissible by ( 3.3) ( iii ); else one could permissibly 
choosej1 = j 0 = ]. 

Now proceed in the mode n1(j = j 1) until at time 7 one arrives at some 
~.k (k # j). Either~~: = x(t) := n1(i -t0 , eo) is in 8R1 and n1 ate, so, as 
above, a switch is mandatory by (3.6) (li) and available by (3.3) (iii) or an 
optional choice is available and one can choose either to continue in n1 or to 
switch, making I a switching time t 1• 

Next, we observe that there is an absolute minimum interswitching timer> 0 
before mandatory switching 14

• To see this, note that if we make a switch :j,... kit 
must be at some ~ E SJ.k. Then the evolution proceeds in mode nk and 
a subsequent switch cannot be mandatory unless / untilnk(l' e) = : ~would be 
in aRk for some t (and nk enters Rk at~). By ( 3.3) ( i ), the closed sets Sp and Rk 
are disjoint so, by the continuity of 1tk' there exists r = rk a) > 0 and 
N = Na) such that nk(t, 0 E Rk for (t. e) E [0, r] X N. By the as~umed 
compactness of S1.~.:, we can cover S1. ~.: by a finite number of these neighborhoods 

u Indeed, we see that (almost) every solution constructed following the switching rules ( 3.6) is 
regular (satisfying ( 3.4) ( i)) and global. 

1• Note that in many contexts it is reasonable to have: SJ. 4 c oR1 fork 'I: j. In this c.ase one would 
have the same minimum r for voluntary switching as is obtained here for mandatory switching. 
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and let r1.k be the smallest of the associated r 's. The minimum of these (over the 
finite set { (}, k) E J X J : j # k}) is then r. 

The assumptions made for this theorem do not imply disjointness of ~.k and 
Sk.i (k # i ,j), etc., so it would be conceivable that the geometry would permit 
such voluntary switching as to violate the condition (3.4) (i). This is the point of 
the use of "almost" in the first paragraph of this proof: we must15 restrain our 
voluntary choices so as to avoid violation of ( 3.4) ( i ). Certainly the minimum 
timer for mandatory switching means that it is always possible to avoid violation 
of ( 3.4) ( i) -e.g., one could choose to switch only when this is mandatory. 

Clearly the construction of[ x ( · ),j( ·)]then proceeds fort-+ oo. Note that the 
number of switching times may be infinite, with x (·)defined inductively on the 
interswitching intervals by the appropriate mode: x ( t) = n1 ( t - t. _ 1 , ~. _ 1 ) for 
tv - I ~ t ~ t,, with e. then given as X ( t,, ). On the other hand, there may be a last 
switching time 7 with x ( t) = nj ( t - 7, ~) for 7 ~ t < oo (assuming this never 
would give x ( t) e R1 , triggering a mandatory switch). In either case, this defines 
[ x ( · ), j ( · ) ] : R+ -+ X x J and it is clear from the construction that (assuming 
such restraint in voluntary switching as may be needed to avoid violating ( 3.4) 
( i)) any such [ x ,j] is, indeed, a solution of:E as desired. We may note, also, that 
all solutions are obtainable in this way. • 

One might feel that the restriction to finite J and compact S1.k forj # k avoids 
the difficulties observed in connection with Example 3. Indeed, Theorem 2 shows 
that 'escape to infinity in finite time' is then impossible. It is tempting to 
conjecture that, with these restrictions, if each component mode has the 
boundedness property: 

for each solution the set { x ( t) : t e R+ } is bounded ( 4.9) 
then the same would be true for the switching system. We will see that this need 
not be true even if the state space X is .taken to be locally compact: we provide 
a counterexample with X = R 2 and two modes. 

EXAMPLE 4: Begin by defining a mode n1 as the solution operator for 
a differential equation: x = f( x) for x = ( u, v) e R 2 =: X. The direction of 
(the 2- vector)/( x) will be specified by describing the integral curves; the speed 
lf(x) I along the curves can be specified independently. We first set 

s : = { u ~ - 2} u { I V I ~ 1 } u { ( U, 0): I u I ~ 2}. 

This will be the set of stationary points for the flow (f( x) = 0) and elsewhere we 
set 

1/(x)l := dist(x, S). 

IS Alternatively, we could work with a more general notion of solution but this leads to technical 
complications and we do not discuss this here; see Section 6, however. 
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Fig.3 

The direction off is irrelevant (undefined) on S. particularly for { u ~ - 2} and 
{ I vI ~ I } , and need only be determined on 

{( u, v):u> -2, I vi< I } \ {( u, O):u> -2}. 

For u ~ 2 we take/( u, v) to be of the form: (a, 0) with sgn a = -sgn v. Finally, 
we fill out the half- strip { ( u, v): u > 2; I vI < I } with the family of integral 
curves { C (A) : 0 < J.. < 1 } given by 

c (A) : = { ( 2 + [ J2 - u ][A + V] I [ I - A.], V) : -A < V < .J}. } . 

Each point x = ( u, v) in the (open) half- strip is on a unique curve C (A.) and we 
take the direction of/( x) to be tangent to that curve, oriented so that motion 
along the curve is counterclockwise; see Figure 3. This defines n 1• 

Now define another mode n2 by setting n2 ( t, 0 : = - n 1 ( t, - 0 on R+ x R 2
• 

Clearly we have ( 3.1) for each n = n1 ( j E J: = { 1, 2}) and it is easy to see that 
( 4.9) holds for each mode since, for n1 , the set { x ( t) : t E R + } for a solution 
consists either of a single point in S or of (part of) a segment { ( u, .J.?,. 
: - 2 < u ~ 0} with 0 < .?,. < 1 together with (possibly) (part of) the curve C (.?,.) 
together with (possibly)(part of) the segment { ( u, -A. ): - 2 < u ~ 0 }. We set 

Rl : = { ( u, V) : -2 < u < -I; 0 < V< I }, Su : = oR); 

R2 : = { c u, v) : 1 < u < 2 ; - 1 < v < o } , S2. 1 : = oR2 ; 

to complete the specification of 1:. 
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Now consider the (unique) solution of :E starting in mode 
n1 (i.e.,j(O) = } 0 = } 1 = 1) at x(O) = ~0 = (0, -).1 ) with 0 < ?.1 < l. The 
state moves (in mode n 1 ) to the right until reaching ( 2 - 21 ), then loops around 
on C ( 21) until reaching ( 2, 22 ) with ~ : = .J 21 , then moves left until reaching 
the switching point ~ 1 : = ( -1, )'"1 ). All of this takes finite time so the speed is 
bounded away from 0 (since the path is bounded away from S). Now the state 
continues moving left (in mode n2) until reaching (- .b. 2.2), then follows 
- c u2) around until reaching ( -2, - )..3) with 2.3 : = .J )..2' then moves right 
until reaching the switching point ~2 : = ( 1 , - 2.3 ). Etc. The complete path of this 
solution is an expanding 'spiral' which is composed, alternately, of curves 
C (/. 2" _ 1 ) and - C ().211 ), connected by straight segments along v = ± A. ... Note 

that 2 ,. + 1 = .J 2,. ( v = l, 2, ... ) so A.., -7 1. Since each curve C ( 2 .. ) includes the 
point ( 2 + 2,,312 f [ 1 - 2..], 0 ), this shows that the complete path is unbounded: 
( 4.9) fails for :E. 

5. Linear Switching Systems 

As a particularly interesting and important case, we consider certain bimodal 
systems ( J = { 1, 2}) with linear dynamics. 

Let X be, e.g., a real Banach space and suppose A is the infinitesimal generator 
of a C0 semigroup S of linear operators on X: 

( i) s ( t + s) = s ( t) s ( s ), s ( 0) = 1 ; 
(ii) /-7S(t)~ continuous in t for each~ EX; (5.1) 
(iU) IIS(t) 11 ~ Mew1 fortE R +. 

We now assume the two modes are given by 

x =A x + u1 (J= 1,2) ( 5.2) 

where u1 , u2 are specified (constant) elements of X so the standard variation of 
parameters formula gives 

n1 ( t, 0 = S ( t) ~ + [J S ( s )ds] u 1 
0 

We also suppose 2 E X* is specified (with 2 =F 0) and set 

R 1 : = g EX: < 2, ~) < a1 }, 

R1 : = {e E X : < 2, ~) < a2 }, 

s 1.2 : = { < )., ~ > = a I } = oR I' s 2.1 = {<A' ~ > = a2 } = oR2 

( 5.3) 

( 5.4) 
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where a 1 < a2 are specified scalar values. A switching system L specified as in 
( 5.3, 5.4) will be called a linear switching system. What characterizes linear 
switching systems is the representation for solutions: 

x(t) = S(t)~ + J S(t = s)uj (sl ds 
0 ( 5.5) 

= x0 (t) + J 0'1 (s)[S( t - s)u1 ]ds + J 0'1 (s)[S(t - s)u2 ]ds 
0 0 

where x0 ( t) : = S ( t) ~ with ( : = x ( 0) and 

0' k ( t) : = { 1 if j ( t) = k ; else 0 } (k = 1,2) 

Although the switching surfaces Sp are not compact, as assumed for Theorem 3, 
we see that one still has global existence: 
THEOREM 4: Let L be a linear switching system. Then for any consistent initial data 
( ~. ]) the set of global solutions is non- empty and equicontinuous with a lower 
bound r ( T') on lengths of interswitching times. 

Pro o f: The argument for existence is exactly as in the proof of Theorem 3 except 
for the discussion of the minimum for interswitching intervals. Since the 
switching surfaces Su , S2. 1 are parallel hyperplanes, we see that any interswit
ching interval must permit time for a transit across the gap. 

From the representation ( 5.5) we can see that any such function (i.e., whether 
or not one obeys the switching rules ( 3.6)) satisfies 

-
I 

I x (t) - x ( t) I ~ I x 0 (7) - x0 ( t ) I + J IS ( t - s ) uj (s l Ids 
0 

(5.6) 

where 

If ( t, t) is an interswitching interval, then ( 5.4) gives 

C( 2 - C( I = I < A, X (7) - X ( t) ) I ~ I A I I X (7) - X ( t) J. 

Given any T' < oo, x0 ( · ) is uniformly continuous on [ 0, T'] so there is some 
r0 = r0 (T') such that 

I X 0 (7) - X 0 ( t) I < (ft- a) / 21 A I if (i-t) < r0 

for 0 ~ t < 7 ~ T'; we also set 
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Then ( 5.6) gives the lower bound 

(i- l ) ;?; min { r0 , r1} =: r(T') ( 5.7) 

as well as the equicontinuity. • 
REMARK 2: Suppose qJ ( s) is a nondecreasing bound for IS ( s g - ~I on ( 5.1) 
( ii) gives qJ ( s) -+ 0 as s -+ 0; let t/1 be the inverse function of qJ. Since 

I X 0 0) - X 0 ( l) I ~ 11 S ( l) 11 I S Cl - t ) ~ - ~ I ~ Me w 1 qJ (i - t ), 

we can use !/J([a2 -cx 1] /212 1 Mmax{!, evJT'}) as r0 (T'). In particular, if 
~ e D(A) we can take qJ (s) : = MI A~ Is for small s (any M bounding Me ws) 
and this gives r (·)decaying at worst like e -wr· if w > 0 and fixed (independent 
of T') in the stable case: w < 0. Since what we are really estimating is 

( A, X 0 0) - x0 ( t) ) = ( S* 0 - f) J.. - J., S ( l )~ ) , 

we could proceed rather similarly if we bounded IS* (7- t)). - J.l instead. In 
particular, if A* generates an adjoint semigroup S* (·)on X* and if J. E D (A*), 
then we obtain the same 'at worst exponential' decay rate for r ( · ), now for 
arbitrary ~ e X. 

We call a linear switching system l: stable if the defining semigroup S( ·)is 
( exponentially) stable: w = -a < 0 in ( 5.1 ) ( iii ). Note that in this case 

defines an equivalent norm16 on X( I ~ I~ I~ I*~ MI ~I) and use of this nonn 
makes M = 1 in ( 5.1) ( iii ). Without loss of generality we henceforth assume 
that M = I so 

with ex = - w > 0. If, in addition, one has 

S (a) is compact [so S ( t) is compact for t ;?; a] ( 5.8) 

16 Alternatively. we could take 

I~ I. ; = [ J e 2 
r Is ( ( >e 12 dt I I 2 

0 

to retain a Hilbert space structure for X if it is originally Hilbcrtian. 
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for some CJ > 0, then we call I: compact but we note that stability alone, without 
( 5.8 ), already gives certain compactness. 

LEMMA I: Let S ( ·) be stable and, for U c X, set 

S0 = S0 ( U) : = { 0} u { S ( t) u : t E R + , u E U}, 
T 

Ir = Ir( U) := {J S(t)u(t)dt : u(') measurable, U- valued}. 
0 

Suppose U is compact. Then S0 is compact and, for each T > 0 (including 
T = oo ), Ir ( U) is precompact in X. 

Pro of: Note that ( 5.1 ) gives continuity of S ( t )u jointly in ( t, u) so the image of 
[0, T] x U is compact for any T < oo. On the other hand, the tail is covered by 
any e-ball at 0 if T> [log f-L f e] l a where fJ- := max{lul: u E U} < oo. This 
makes S0 precot~pact and ne easily sees that it is closed in X, hence compact. 

For lr we consider T < oo first. Then one easily sees that Ir( U) c TS( U), 
hence is precompact. ForT = oo we show I ex, totally bounded. For any e > 0 we 
cover I r · by e I 2- balls, taking T > [log ( 2 f.l. I ea)] I a so, uniformJy, 

oc ex. 

IJ S ( t) u ( t) dt I ~ J e -« ' f.l. dt ~ e I 2 
T ' T' 

Then I'Y. is contained in thee- ball cover with the same centers: each integral in 
l oc. is the sum of one in l r · and a small tail. • 

THEOREM 5: Let I: be a stable linear switching system. Then there is a bounded 
invariant set B c X such that (the state component of) every solution of 
L: eventually enters and stays in B. For any compact set U c X there is a compact 
convex setS ( U) such that. (the state component of) every solution which starts in 
U will lie entirely inS ( U). Finally, ifi: is compact then B, above, can be taken to be 
compact. 
P r o o f: From ( 5.5 ), any solution of I: has 

oc 

x(t) = S(t)x(O) + JS(s)u(s)ds 
0 

with 

u(s) := { uJ<t-sl fors~ t; 0 fors> t}. 

Thus, x ( t) will be inS ( U) for all such x (·)with x ( 0) E U and for each t ER+ if 
we set 
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where I* : = I~ ( { u1, ~, 0 } ). Both S0 ( U) und r. are compact by Lemma ( Ll ) 
so this S( U) is compact and convex as desired. 

The same analysis gives x ( t) E [ B£ + I*]( Bt : = { ~ E X : I~ I ~ e}) when 
t ~ [log (I x ( 0) I I e)] I a so, e.g. , [ B1 + I*] =: B is globally attractive. This 
B will not, in general, be invariant so we take 

B:= {S(t)~+ l1 ({up t~}):~eB,teR+} . (5.9) 

Taking t = 0, we see that B c B so B is globally attractive; B is obviously 
bounded and we need only show invariance. For ~ e B we have, from the 
definition ( 5.9 ), that 

I e = s ( t )~ + ss ( t - s) uj ( s) ds 
0 

for some~ e B, teR+,measurable}( ·): [0, t] ~ J. Any solution [ x( ·),)(·)]with 
x(O) = e will have, by (5 .5 ), 

I r 

x(r) = S(r)[S(t)~ + J S(t- s)u1<s> ds + J S(r- p )u1<11 >dp 
0 0 

1.:. r 

= S(t + r)~ + J S(t + r- s)u1u> ds 
0 

where we have set 

'"'"( ) {] (s) 1 s ·= 
. ](s-t) 

on [ 0, t], 

on ( t, I+ r l. 

This shows x(r) e B for any such x( ·),any re R +, i.e., B is invariant. 
Finally, suppose~ is compact, i.e., ( 5.8 ). Clearly, if x ( t) e B for any solution 

[ x(- ),)(·)]and some LE R+, then x( t +a) is in r 0 : = [ S(a)B +/*]which is 
precompact by ( 5.8) and Lemma 1; hence, the compact convex setr2 : = eo r 1 is 
a global attractor. Again, this may not be invariant but we can introduce 

which, as for B above, is an invariant global attractor. It is not difficult to verify 
from its form, noting the definition of r 2 , that r 3 is convex. Since r 3 
c [ S0 ( r 2 ) + I*], it is precompact. We set r : = r 3 and note that r is obviously 
convex, compact, and globally attractive. To see its invariance, note that if[ x ( · ), 
j ( ·)] is any solution Of~ Starting at ~E r (SO one has ek ~ ~ with ~k E r 3 ), then 
for any t e R ... 

I 

xk(t) := S(1)ek + S S(t- s)u1<J> ds 
0 

I 

~ s(t)~+ JS(t -s)t~ <s> ds = x(t) 
0 
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by the continuity of S( t ). On the other hand, the proof of invariance ofr3 shows 
Xk (t) E r 3 SO x(t) E r 3 = I . 

We conclude this section by considering solutions on all of R for a stable linear 
switching system~. For such a solution [ x ( · ),j ( ·)] : R ~ X x J, we refer to the 
restriction ofj (·)to ( - oo, t] as the switching history ( at time/) of the soh.ition; it 
is convenient to represent tbis by a { 0, I }- valued function '1 (I ) on R +: 

[ '1 (/) ]( s) = '1 (i ; s) : = j (/ - s) - 1. ( 5.10) 

At least for the class of bounded solutions ( i.e., with x (·) EL c.o ( R ..-.X)), we will 
see that the restriction of x (·)to ( - oo , t] can be recovered from '1i . This permits 
a canonical representation in terms of a system as in Example 2; abstractly, the 
dynamics and switching are characterized by the function t/t appearing in ( 3.13) 
and the values of cl' c2 in ( 3.17 ). 

TI !EO REM 6: Let L be a stable linear switching system as in ( 5.3 ), ( 5.4) such that 
each R1 is globally attractive for n1. Then, {([ x ( · ) , j ( ·)] is a bounded solution of 
L on ( -oo, t] and 11Ci;s) is given by (5.10), we have 

Xl 

x(t) = v1 + J,(l; s)(S( s )[u2 - uJl)ds 
0 

CL 

with v1 : = J S(s)u1ds. 
0 

Next, let L 0 be, as in Example 2, defined by ( 3.10 ), ( 3.17) With 

t/t(t):= c<J.. , S(t)[u 2 -ud > 

( 5.11) 

( 5.12) 

with c : = 1 I < A., v2 - VI > and using suitable constants cl , c2 in ( 3.17 ). Let 
[x ( · ),}( · )] : R ~X x J be a bounded solution on ( -oo, 0] = : R - ofL; define 
y ( ·): R + ~ XO by y ( t): = '1 ( t; ·)as in ( 5. 10 ) and let] be the restriction ofj (·)to 
R+. Then [x ( · ),j( · ) ]is a solution on. R+ ofL0 andx( ·)is given on R + by ( 5.1l ). 

Proof: Define x(t) on ( - oo, t] by the right hand side of (5.11) with t 

(variable) replacing/. Using ( 5.5) we have 

x (i) = S (i - t) X ( t) + J,' S (7 - S ) uJ(s) ds 

for t < 7 as the restriction of [ x (- ), j (-)] is a solution on [ t , t] of L. Since 

a bit of manipulation gives 
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X (I)- x(t) = S(t- t)[x( t) - x( t)] 

for arbitrary t :::;; l. As x( ·)is bounded by assumption and one easily verifies that 
x ( ·) is also bounded, this gives 

for some M and arbitrarily large (i- t ), whence x (t) = x (t) as desired. 
Our choice of c for (5.12) gives the normalization (3.12) (i); if we take 

q> ( t) : = c I A I e- «t in ( 3.8 ), then ( 3.9) and ( 3.12) ( ii) hold. The condition 
( 3.12) ( iii ) can be obtained along the lines of Remark 2 if either [ u2 - u1] 

E D(A) or A E D(A*) but we always have 

I if!(t)- if!(s)l:::;; q>(s)y(t- s) 
( 5.13) 

where y : R+ --+ R+ with y ( r) --+ 0 as r --+ 0, 

taking q> as above and y ( r): =I [S(r)- 1] [ u2 - u1] 1. Going over Example2 we 
see that (3.12) (iii) was used only to obtain a uniform lower bound on the 
interswitching intervals through Lipschitz continuity oftJ. We would now have 
(3.16) replaced by a uniform continuity estimate 

I & ( t) - & ( t') I :::;; I A I [ y ( t - t') + c It- t' I J 

and this again gives tv+ 1 - t. ~ r,;11 as in (3.18). We will be taking 

(j = l, 2) ( 5.14) 

for ( 3.17 ). One easily sees that v1 is globally attractive for rc1 (j = 1, 2) so the 
assumption that R 1, as given by (5.4), is attractive for rc1 implies, with our 
definitions, that 0 < C1 < C2 < 0. We see from ( 5.11) that 

(A, x(t)) = (A, VI)+ s:1](i; S)t/J(s)dsfc, 

&(i) = s:n(i; s)ljt(s)ds = c [ (A., x(t))- (A., vi)] 

so (5.14) gives 

( 5.15) 

with y ( t) = 17 ( t, ··)entering the region R/ under re/ (i.e., in the sense of ( 3.17 ), 
( 3.10)) precisely if x ( t) were entering R1 under n1 (in the sense of ( 5.3 ), (5.4) ). 
Thus the switching rules for I: and I: exactly correspond, specifying precisely the 
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same permissible and mandatory transitions. The validity of ( 5.11 ) and the 
dynamics for the switching components then give the desired correspondence 17 

of solutions. • 

6. Comments and Discussion 

It was already mentioned above that more detailed consideration of certain 
directions for further investigation will be presented in [ 6], [ 7 ]. We note here, 
quite briefly, some other possible extensions of the notions presented here and 
possible areas for further investigation. 

The most obvious of these would be consideration of time- dependent 
problems. This could involve either time- dependent modes or time- dependent 
sets { S1• k} or both. As noted, the usual trick of absorbing the time- dependence 
into an augmented state handles the local theory but unduly complicates the 
consideration of global (asymptotic) questions. No essentially new ideas seem to 
be involved here. 

Slightly more delicate would be the treatment of solutions for which one 
admits the possibility of a limit of switching times, a possibility we have eschewed 
here in restricting considerations to ' regular solutions'. If t would be a limit: 
t ,. ---+ t - with each t,. an isolated switching time for a switch:),. -+),.+', consider 
the set of pairs 

and note that this must be nonempty if we have ( 3.3) ( iv ). Then, without 
attempting to assign a value to j (i), it would be plausible to accept a solution 
with} ( ·) = k on an interval (t, ?) for any k. such that some(], k.) is in P since} ( ·) 
must take the value]infinitely often as t ,. -+ 7- and x(l) must be in ~.7<. Similar 
considerations would apply to consideration of} (·)constant on an interval ( ?, 7.) 
and then switching infinitely often to the right oft. These, however, would be 
only the simplest possibilities and it is not entirely clear how to define 'solution' 
so as to omit or significantly weaken the condition ( 3.4) ( i ). 

An interesting possibility, also, would be to weaken the implicit assumption 
that X is specified 18 before introducing the modes { n1 : j E J}. One could, 
alternatively, associate a state space X; with each n1 and then 'glue' these to
gether at the switching sets S1.k , i.e. , one would have (continuous) functions 

11 Note tha t :E may have unbounded solutions on R for which ( 5.11) does not apply and, of course, 
:E0 has solutions on R+ which do not correspond to any solution on R+ of :E . The correspon
dence is : ~ solutions of :E 0 on R } <--+{bounded solutions o f :E on R }. 

IR ln connection with this, one could also consider j- dependent index sets: 1; : = { k : one has 
( nonempty) sets Sj .k c: ~ }. Tt seems likely that one could always construct a 'universal' J and 
a universal X = v {X; : j E J } in such a way as to reduce this more general notion to the original. 
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~ k: xi => s,.k--+ xk and would have distinct left- and right-hand limits for x(.) 
across a switch: j .--.. k so x ( t - ) = C e SJ.k c X1 and x ( 1 + ) = ~+ : = 
TJ .k e Xk. In ( 3.4 )(ii) we would use C for x ( t) or~+ for x(s) in the obvious 

way. Note that each n
1 
would only be defined on X1( which might be thought of as 

manifold with boundary oR1 ) and , n1 enters R1 at~" would mean, simply, that 
~ E oR, : = ( bdry Xi ) is not a possible initial value for 1tj ; this involves, also, 
a modification of the notion ( 3.1) of 'mode'. One can generalize the notion of 
switching system by not requiring each n1 to be defined on all of R+ x X. Let us 
weaken ( 3.1 ) to: 

( i) for each ~ e X there exists an interval l ( 0 c R+ with 
~ --+ I ( 0 upper semicontinuous: if7 e l ( ~~~) for any 
~~~ --+ ~in X, then [0, I] c 1a); 

(ii) n(t, 0 e X is defined for~ eX. t E 1(0 
with 1t ( 0, 0 = ~; ( 6.1) 

(iii) t e I(n(s, ~))<=>(I+ s) c /(0 and then 
n(t + s, ~) = n(t, n(s. 0); 

(iv) if ~ .. --+~ eX and t e /(~11 ) , then 
n (', ~ .. ) --+ n (', ~) uniformly on [ 0, 7] 

Now suppose we are given an index set J, a family of state spaces { J0: j e J} 
and a family of modes { n

1 
:jeJ } each acting on lhecorresponding.xjas in ( 6.1) 

with the time intervals now denoted by 1/ e) fore E J0 ,j E J. Next, suppose we are 
given sets S1.k c ,X} (possibly empty) fork =/: j and maps TJ.k : SJ.k--+ Xk. We 

assume: 

(i) each s,.k is closed in~; each TJ.k is continuous from 
S1.k to xk \ Ek; 

( ii) for each e E X1 there is a neighborhood N of e for which 
{ k E J : [ SJ.k n N] =/: 0} is finite; ( 6.2) 

(iii) ~:= {~eX):f;(O = {0}} c S1 := u{Sp:k =Fj}. 

The specification 

!: : = { J, { (X;, n;) : j E J} , { ( SJ,k, 1J .A) : j, k E J, k :;C: j } }, 

as above, is then a switching system. 
It is now convenient to define a solution of !:(on an interval [0, T] with 19 

T < oo) as given in terms of a finite 20 partition 

19 We now define a solution on R+ by requiring that the restrictions be solutions on [ 0, T] for 
arbitrarily large T. 

20 This subsumes the regularity condition ( 3.4) ( i) from the original definition. 
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0 = t0 < t 1 < . . . < t-v = T. 

We assume we give, for v = 1 , ... , v, 

j = ),. E J and x,, (-) : [t. _ ~> t. ] ~ A} 

satisfying, for v = l, ... , v: 

(i) x,.(t) = n/ t- t,,_l, ev1) on [tv- l> t,, ] 

With} = fv and e. I : = X,, ( t,, _ 1) E AJ 
(implicitly this requireS ( 0, tv- t._ 1) C: .lj( evl) ); 
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( 6.3) 

(ii) x,.(t,,) =: e/ E S1.k and e.~ 1 = Ti .k(e/) (6.4) 

with j = J. k = J. + 1 for 1 ~ v ~ y (and for v = 0 

Unless), = Jo and e,L = eo). 

Note that we have [x( · ), j( · )]well-defined on [0, t] except at { t.: v = 0, ... , 
v- 1 }, with}(·) J -valued and x (·)taking values in the appropriate state space 
for each subinterval of the partition. It is then slightly awkward to define x ( t") 
but we have the limits x ( t.-) = ~/- 1 and x ( t,, +) = ~.L. 

It is not difficult to see that any switching system in the earlier sense becomes 
a switching system in the sense just defined on taking A}:= X \ R1 , each ~ .k to be 
the (suitably restricted) identity map, and each mode n1 'maximally defined' on 
R+ x A} to give ( 3.1) from ( 3.3 ). The requirement that ~. k not take valu~s in Ek 
is just a weaker form of the earlier requirement in ( 3.3) ( i) that Sj.k n Rk = 0 
since we recognize Ek as corresponding, for the original definition, to the set of 
points in oRk at which nk would enter Rk. The solution set for the re-interpreted 
switching system (new definitions) corresponds precisely to the original solution 
set. 

One advantage of this reformulation of the notion of switching system is to 
make it easy to define an extension of a switching system. We will call 
!:' : = { J', ... } an extension of !: and write !:' ::> !: (equivalently, we call 
!: a restriction of !:') if each is a switching system (in the sense of our 
reformulated definition) with 

J C: J ', ~ closed in JS' (j E J C: J'), SJ ,k C: SJ .. k, 

and if n1 , Tj .k are the appropriate restrictions of n/, Tj·,k· It is easy to see that 
every solution of!: is also a solution of!:'. Conversely, if we take S;.k to be S/. k 
n X; whenever}, kE J c: J', then any solution of!:' which stays in { X1 :j E J} will 
also be a solution of :L. In particular, whenever we would have an invariant set 
(as in Theorem 3) we could cut down the state space(s) in the obvious way to 
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obtain a restriction of :E-indeed, this is essentially what it means to have an 
invariant set. 

Finally, we note the interesting possibility of considering two-point boundary 
value problems and/or (optimal) control problems in the context of switching 
systems as a generalization of the usual problems for differential equations. 
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Przchtczajl!CC systcmy 

Zaproponowano model dla system6w przd<tczajljcych skladajl!cych si~ z pewnej liczby zasad 
post~powania ( np. r6wnan r6i.niczkowych) wraz ze zbiorem regul przel(4czania. Reguly przel<Jczania 
mogq· powodowac niejednoznacznosc ale jak pokazano zachowuj~t wlasnosc ci<4glej zalei.nosci 
i granica rozwillZl!•i jest rozwiqzaniem. 
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llepeKJUO'IaTCJlbHbie CHCTCMbl 

flpe,nnaraeTC.!I MO,lleJib ,llJl.!l nepeKJUO'IaTeJihHblX CHCTeM, COCTO.!IIll;liX H3 Hei<OTOpOrO 'l:HCJia 

DpHJil.ll:tnOB nOBe;:teHJHI (aarrp. ,nH<jl<jlpeHUHaJibRbiX ypaBHCHHH) COBMecTHO C MHOJKCCTBOM npaBUJJ 

nepei<JliO'l:CHH.!I. llpaBHJJa nepeKJIJO'ICRH.!I MOryT Bhl3BaTb HCO,llHa3Ha'l:HOCTb, O,llRai<o - KaK :)TO 

fiOI<a3aRO - COXpaHJilOT CBOHCTBO HenperrbiBHOM 3aBHCIIMOCTH H npe.nen perueHHH liBJlliCTC$1 

perueRHeM. 


