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The paper aims at giving a generalization of the classical Hamilton- Jacobi canonical 
formalism to the case when the Hamilton function H depends on the control function (parameter ) u, 
ll ( t, :<, y) = m,!lx H( t. x, y, u ). The theory is iUustrated in two lields: mechanics and optimal 

control theory. The theorem on Poincare - Cartan's integral invariant IS generalized and the sufficient 
condition for a minimum in a control problem is given. 

Introduction 

Many modern questions of astronautics, mechanics and the theory of 
extremal problems are described by means of functions which depend on an 
additional control functions that plays the role of a parameter (see, for instance, 
[ 4 ], Ch. 11. 2. ). 

The control function is, in general, only a measurable function in time (at 
best, piecewise continuous) and this, in turn, causes that the functions 
determining processes are only measurable, too. Examples of such problems can 
be found in astronautics, mechanics, optimization theory (see e.g. [ 7 ], intr. to 
part JJ ). The fundamental function which then appears is the Hamilton function 
H which, in most cases, is not a continuous function in time. 

Jn the classical theory of the Hamilton- Jacobi canonical formalism ( [ 1 ], 
[ 3]) it is assumed that His at least a C 1- function and that the tlow trajectories, 
i.e. the integral curves of canonical equations, can never intersect. That is why the 
classica l theory leaves out, except particular cases, the problems mentioned 
above. Therefore, it appears to be quite natural to look for the generalization of 
the classical formalism in such a way that it would be possible to apply it to most 
of the problems described by a control function. 

What this paper presents is just an attempt of such a generalization. 
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Jn Section 1 we define an abstract Hamilton function H ( t, x, y) = 
max H ( t, x, y, u) and the 1 -form ydx - Hdt associated with it. Next, we note 
(Th. 1.1 ), under additional assumptions on H, that, as in the classical 
investigations, the characteristics of the form ydx - H dt are the pairs ( x ( t ), 
y ( t)) which satisfy the system of canonical equations ( 1.4 ), ( 1.5 ). This fact is 
the starting point for further considerations. Namely, omitting the additional 
assumptions on H, we consider some family of functions satisfying ( 1.4 ), ( 1.5) 
which depend on parameters a, p. Next, we study the conditions this family 
should fulfil in order that the integral of ydx - Hdt should possess al1 the basic 
properties such as: invariability (Theorem of Poincare- Car tan), completeness 
(independence of integration path), the relationship with the activity function 
- the value function. 

It becomes evident that we can omit most of the classical smoothness 
assumptions and we shall still have the above- mentioned properties. Moreover, 
the assumption about non- intersecting trajectories can be replaced by an 
essentially weaker one about the descriptivity of a suitable transformation. 

The general results obtained in the paper are illustrated in two fields: 
mechanics and optimal control theory. 'The generalization of the theorem on 
Poincare- Cartan's integral invariant is proved and some of its consequences are 
derived. Adapting the theory obtained to control problems, we prove the 
sufficient condition for a minimum of the functional in the classical optimization 
problem. This condition ( Th. 6.1 ) generalizes the sufficient condition of 
Weierstrass from the calculus of variations ( [ 7 ], Ch. I.). 

The substantial advantage of the method we use here is the avoidance of 
multivalued functions that appear in a natural way if one allows the extremal 
trajectories to intersect ( comp. [ 7 ], [ 6 ]). As a consequence, we obtain an 
essential simplification of ideas and calculations in many considerations. 

1. Canonical differentia) equations 

Let U be a Bore! subset of the Euclidean space R"'. We shall be dealing with 
a measurable function u ( t): [a, b] ~ U where [a, b] is any interval of R 1• In the 
sequel, u ( t) will appear as a parameter or control function. Along with the 
function u, we shall consider a function u (feedback function) where u = 
u ( t, X, y) : R X R " X R " ~ U. 

We use Hto denote a scalar function of variables t, x, y, u and suppose the 
following hypothesis satisfied: 

the function H ( t, x, y, u) and its partial derivatives 
( h 1) H~ ( t, x, y, u ), H v ( t, x, y, u) are continuous m the product 

R X R" X R" X u. . 

We assume that thefeedbackfunction u satisfies the maximum relation 
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H(t, X, y) = H(t, X, y, u(t, X, y)) = sup H(t, X, y, u) ( 1.1) 
ue U 

for any (t, x, y) E R2 n + l 

The function H = H ( t, x, y) of ( 1.1) will be called the Hamilton function. 

Suppose, for the use in Section 1 only, that H ( t, x, y) is a C 1 - function in 
the space R 2

" + 1• 

Let (7, .X, y) be any point of R 2
n + 1• To motivate further considerations, we 

shall impose, for this section only, the requirement that at the point (i, .X, y) the 
derivatives 

a - - - -- H(t, x, y, u(t, x, y)), 
ox 

a - - - -- H(t, x, y, u(t, x, y)) are continuous and 
oy 

satisfy the relationships 

anc t, x, y) 

ox 
a - --- a --- -=- H(t, x, y, u(t, x, y)) + - H(t, x, y, u(t, x, y)), 

ox ax 

( 1.2) 

aH(t, x, y) a - -- - a -- - -
=- H(t, x, y, u(t, x, y)) +- H(t, x, y, u(t, x, y)). 

oy ay ay 

Formulae ( 1.2) are to hold at the point (i, .X, y ). 

Now, we can establish, in the space R 2
n+ 

1
, a differentiall-form 

w = ydx - Hdt . ( 1.3) 

Since H( t, x, y) is a C 1
- function, there exists a differential2- form dw and we 

may speak about "the field of directions of the rotation" (see [ 1 ], § 44) of the form 
ro. Integral curves of this field are called " rotational lines" ( comp. [ 1 ], § 44) or 
characteristics of the form ro. 

We prove the following 

Theorem 1.1 Characteristics of form ( 1.3) in the ( 2n + 1 ) -dimensional Euclidean 
space of variables t, x, y have the description: x = x ( t ), y = y ( t ), t E ( rx, jJ). 
The functions x ( t ), y ( t ), t E ( rx, jJ), satisfy the canonical differential equations 

X = Hy ( t, X, y, u ( t, X, y) ), 

Y =- Hx(t, X, y, u(t, X, y)) 

where the dots over x and y denote the derivatives in t . 

( 1.4) 

( 1.5) 
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Proof. First, we note (by ( 1.1 ), ( 1.2)) that if we fix the first three variables in 
H(t, X, y, u) by setting t = 7, X= X, y = y, then 

a -- - -- H(t, x, y, u(t, x, y ) ) = 0, ox 

8 -- - -- H ( t, x, y, u ( t, X, y)) = 0. ay 
Hence the differential of form ( 1.3) has the form 

dw = dy 1\ dx- H<(t, X, y, u)dx 1\ dt - il.~. (t, X, y, u)dy 1\ dt. 

The matrix of this 2- form in the variables y, x, t is equal to 

A [_; -E 
0 

H_,. ] 
Hx 
0 

where E is the unit matrix of degree n. The rank of A is 2n, so the form dw is 
non- singular. It is easy to check that the vector ( -H.<. H ,., 1) is the eigenvector 
of the matrix A with the eigeovalue zero for any fixed triplet ( t, x, y ). That vector 
defines the direction of the rotation of w. Therefore the characteristics of w have 
to satisfy equations ( 1.4) and ( 1.5 ), so the proof is now completed. • 

Let us note that from the above proof it follows that each pair ( x ( t ), y ( t)) 
satisfying ( 1.4 ), ( 1.5) is a characteristic of form ( 1.3 ). 

In what follows we shall only consider functions x ( t ), y ( t) which satisfy 
canonical differential equations (1.4 ), ( 1.5 ), but with essentially weaker 
assumptions imposed on the function H. 

2. Canonical flow 

From now on, we shall only suppose the function H to satisfy ( h 1 ). All 
further assumptions will concern some special family of functions. We want to 
stress that upon the feedback function u ( t, x, y) no requirements are imposed. 

Each Junction x ( t ), t e ( t 1 , t 2 ), ( t 1 , t 2 ) c [a, b], that satisfies ( 1.4) will be 
termed a trajectory ( comp. [ 7 ], p. 263) and each pair of functions x ( t ), y ( t ), 
t E ( t 1 , t 2 ), satisfying ( 1.4 ), ( 1.5) a canonical pair ( comp. [ 7 ], p. 265 ). 
A trajectory and a canonical pair will usually be associated with the correspon
djng control function u ( t) = u ( t, x ( t ), y ( t)) and, for brevity, we shall speak 
of the trajectory 

(x( t), u(t)) (2.1) 
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and the canonical pair 

x(t), y(t), u(t). (2.2) 

Consider extended real - valued functions t - (a) , t + (a) where 
- oo ~ t - (a) < t- (a) ~ + oo, CJ E G and G is an open Euclidean set. 
The points CJ at which t- ( CJ) =I= + oo or t+ ( CJ) =1= + oo are to form an open set 
and the two functions are to be C 1

- functions, except for the case of c (a) or 
t+ ( CJ) at any point where the values - oo or + oo are taken. 

We further suppose thatasetR of points pis also open in a Euclidean space 
and we put G = G x R. By Z we shall denote the set of ( t, a) for which CJ e G and 
t is subject to the condition 

(2.3) 

and let z* stand for the set of ( t, CJ, p) for which (a , p) e G and t satisfies ( 2.3 ). 
Having introduced the above sets, we consider a family F of canonical 

pairs given by 

x(t, CJ, p), y(t, CJ, p), u(t, CJ, p) * ( t, Cl, p) E Z . (2.4) 

Here CJ, pare "labels" which distinguish a member of the family, i.e. CJ, p remain 
constant on a member ofF and this member then corresponds to the interval 
t- (CJ) ~ t ~ t+(CJ). WeuseDtodenotethesetoftriples ( t,x,y) wherex = x(t, 
CJ, p), y = y(t, CJ, p), (t, a, p) E z*. 

We say that the map ({J: z* -+ D is descriptive if, for each point ( t , CJ, p) 
e z*, the following condition is satisfied: for each rectifiable curve Cc D (i.e. 
with a finite length) with the initial point cp ( t, a, p ), there exists a rectifiable 
curve r c z* with the initial point ( t, CJ, p) such that each sufficiently small arc 
C c C with the same initial point as C is the im!lge under the map ({J of 
a sufficiently small arc r c r starting from ( t, CJ, p) ( comp. [ 7 ], p.266) 

Let us set 

J(t. x, y) = H
1

(t, x, y, u(t, x, y)), (2.5) 

L(t, X , y) = yj(t, X, y)- H(t, X, y, u(t, X, y)). (2.6) 

Finally, when (t, CJ, p) e z*, we shall write 

- - t+(.S) -
L(t, CJ,p), f(t,CJ,p),J L" (t,CJ,p)dt 

I 

instead of the expressions 



98 J. BARANOWICZ. A. NOWAKOWSKI 

L ( t, x ( t, a, p ), y ( t, a, p) ), /( t, x ( t, a, p ), y ( t, a, p) ), 

We now suppose the following hypotheses satisfied: 

the function l(t, a , p) is continuous in z*; 
!here exist c~ntinuous d~riva~ves LP ( t, a, p ), l a ( t, a, p ), JP ( t, a, p ), 
fa(t, a, p), L"P(t, a, p) m Z; 
for each fixed ( t , x, y) E D there exist derivatives 

~ H(t, x, y, u(t, a, p)) , ~ H(t, x, y, u(t, a, p)), satisfying the 
op oa 

relations 

al - a 
- = yf, - H _. xP -- H(t, x, y, u(t, a, p)) , 
op ap 

al - a 
- = Yfa - H_, X

11 
-- H(t, X, y, u(t, a, p)), 

oa aa 

for any( t, x,y)wherex = x ( t, a, p ),y = y ( t, a, p) and (t, a, p )eZ*; 

( h 3 ) the function y ( t, a, p) is continuous in the set z* 

( h4 ) for ( t, a, p) in z*, the derivatives x, ( t, a, p ), x" ( t, a, p ), x P ( t, a, p) are 
continuous; 

(h 5 ) the map z*~D defined by (t, a, p)-+(t, x(t, a, p), y (t , a, p)) is 
descriptive. 

The above hypotheses are of fundamental importance in our further 
considerations. If all of them are satisfied, the family F is called a canonical flow. 
In the classical mechanics the R 2

n + 1- space of( t, x, y) is called a phase space and 
the family Fa phase flow (see [ 1 ], § 16 ). 

3. Preliminary lemmas 

Suppose we are given a canonical flow as described in Section 2. 
LEMMA 3.1. Let C be a rectifiable curve situated, together with its end points, in D. 
Then, the function H (t, x, y) defmed by ( 1.1) is bounded and Bore/ measurable 
along C. 
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Proof. By ( h 5 ) , to each point of C, including its end points, there corresponds 
a neighbourhood (in the topology of C induced from R2

n + 1) that is the image of 
a curve r, r c z*. From Borel's covering theorem it follows that we can suppose 
C so small that the corresponding ( t, a, p)- curve is just the r. By ( 2.6) and ( h2 ), 

(h 3 ) the function H( t, O", p) = H( t, x ( t, a, p ), y ( t, a, p)) is continuous in z* 
and thus, bounded on r. To each point ( t, x, y) E C we can now attach the first 
point ( t, a, p) ofr at which x ( t, a, p) = x, y ( t, (J, p) = y. Putting these values 
into H ( t, O", p ), we obtain a Borel measurable function ii ( t, x, y) defined on C. 
This function is also bounded. But, of course, ii ( t, x, y) = H ( t, x, y) on C; this 
completes the proof. 

For t - ( <J) ~ t ~ t+ ( (J) and ( (J, p) E G, we set 
1 +(a) 

s ( t, X ( t, (J' p ) ' y ( t, (J' p ) ) = f L ( T' X ( T, (J' p ) ' y ( T' (J' p ) )d 7;. 

We shall prove the following 
LEMMA 3.2 Let B c z* be any simply connected closed domain and let r denote 
any rectifiable curve in B with ( t0 , (J 0 , p 0 ) as the initial point and ( t 1 , (J 1 , p 1 ) as the 
terminal one. Then 

t+(a) t +(a) 

JLdr - CJ i"d-.)d<J - (J l pd-.)dp= 
r 

P r o o f. Let us note that, by ( h2 ), the expression 

1 + (a) r +(a) 

Ldt - ( J l"d'C)d<J - ( J lpd-.)dp 

is an exact differential in the variables ( t, <J, p) of some function Q ( t, (J, p ), 
( t, <J, p) E B. Assuming Q ( t0 , (Jo, p0 ) = 0, we see that the function Q ( t, (J, p) 
has the form 

1+(a0) 1+(a) 

Q(t,(J,p) = ( J L('C0 ,(J0 ,p0 )d'C - ( f l('C, O",p)d'C. 
I 0 

From the above formula we get 

I +(a) I +(tr) 

fLdt - (f Lad'C)dO"-(J lpd-r)dp= 
r 

as asserted. • 
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The next lemma appears to be a restatement, under our weakened 
assumptions, of the well - known theorem of Malus from geometrical optics (see 
[7], § 26). 

LEMMA 3.3. On each canonical pair of the canonical flow F the expressions 
,+(11) t+(p) 

yx11 + J L 11 d-r, yxP + J L Pd-r, (3.1) 

are constant. 
In this statement x and y stand for the functions x ( t, a, p ), y ( t, a, p) and the 

property is to hold for ( t, a, p) E z*. 

Proof. We shall show that expressions ( 3. 1) depend only on (a, p ), i.e. do not 
depend on t. 

Let (l, u, p) be any point of the set z* and x ( t ), y ( t ), u ( t) the 
corresponding values of the functions x ( t, u, p ), y ( t, u, p ), u ( t, u, p ); 
7 ~ t < t+ ( u ). Let further ex, j3 stand for any coordinates of a E G, p E R, 
respectively, and a ( t ), b ( t) for the values of 

0 ~ ~ . 0 ~ ~ 
-H(t, x(t), y(t), u(t, a, p)), -H(t, x(t), y(t), u(t, a, p)) 
acx o./3 

at (t, u, p ), t ~ t < t+ ( u ), accordingly. By integrating with respect to t, then 
differentiating with respect to ex and again differentiating with respect to t, from 
( 1.4 ), taking into account ( 2.5 ), we obtain the following relations calculated at 
the point (t, u. p), 1 ~ t < t •(u), 

I 

xa(t, a , p) - x a(7, a, p) = Jh(-r, a, p)d-r; 

I 

Xp(t, a, p) - xft(i, a, p) = Jh(-r, a, p)d-r. 

0 - 0 -
- x"(t, a, p) = fr.(t, a, p), - xfJ(t, a, p) = /p(t, a, p). (3.2) at at 

From equation ( 1.5) we see that at the same point ( t, u, p) the equalities 

hold. 

a - - ~ -xa(t, u, p) - y(t) =- x"(t, a, p)H.(t, x(t), y(t), u(t)), at --

a ~ ~ ~ ~ 
xft(t, a, p) - y(t) =- Xp(t, a, p)Hx(t, x(t), y(t), u(t)) at 

(3 .3) 
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Multiplying relations ( 3.2) by y ( t) and adding the results to ( 3.3 ), respectively, 
we obtain- with the use of ( 2.5 ), ( 2.6) - at this very point 

..E._ {yx,.}- I "" = a(t), _E._ {yxp} - Lp = b(t), 7 ~ t < t+ (u). (3.4) ot ot 
Since G and R are open sets, the maximum relation ( 1.1 ) implies 

a ( t) = 0, b ( t) = 0, 7 ~ t < t t ( u ). 
Integration of ( 3.4) over the interval [1, t + ( u)] yields 

•+<u> 
.Yxcr+J L,.dt = y(t+(a))xa+L(t+(a), u, p)t/(u), 

(3.5) 
, +<u> 

y X p + J I p d t = y (t + (a) ) X jl• 

where the left- hand sides are calculated at (7, a, p) and the right- hand ones at 
( t """ ( u ), a, p ). Now, we see that the right- hand sides of ( 3.5) depend only on 
( u, p) and do not depend on t. Hence, in view of the free choice of the point (7, a, 
p) e z* and the coordinates a, jJ we infer that expressions ( 3.1) take constant 
values on each ftxed member of the canonical flow F. The proof of Lemma 3.3 is 
now completed. • 

4. Theorem on Poincare - Cartan's integral invariant 

For each point (t 0 , x 0 , y 0 ) e D, we consider the integral 
,. 

S(t0 , x 0 , y 0 ) = J L(r:, x(r:), y(t))dt ( 4.1) 

"along" a canonical pair x( t ),y( t ), te [ t - , t +], t - ~ t 0 ~ t +,of the flow Fsuch 
that x(t0 ) = x 0 , y(t0 ) = Yo, where t-, t+ are the points from the loci 
t = t - ( u ), t = t + ( u ), u e G, respectively. Of course, through each point 
( t 0 , x 0 , y0 ) e D there may pass more than one member of F. Therefore, an 
additional principle is formulated to be satisfied by the canonical flow F: 

( h 6 ) If, through any point ( t 0 , x 0 , y 0 ) e D, there pass two members ofF, then 
the values of integral ( 4.1 ) along each of them are the same. 

Thus the functionS( t, x,y) of( 4.1) is uniquely defined in D. Tbis function 
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in mechanics is called the activity function, while in optimal control theory - the 
value function. 

Let C be any rectifiable curve lying in D with the description 

l = t(s), X = x(s), y = y(s), 

where s is the arc length parameter. On the curve C we define the curvilinear 
integral 

c dx - - - dt 
Jydx-H(t,x,y)dt = J[y(s)- -H(t(s),x(s),y(s))- ]ds (4.2) 
c o ds ds 

That this integral is well defined follows from Lemma 3.1. 

We say that two curves C 1, C 2 in D cut the same subfamily F( C 1 , C2 ) of the 
canonical flow F if, for each point of C 1 , there existpoints of C 2 and, a member 
ofF( C 1 , C2 ) which passes through these points and, conversely; for each point 
of C2 , there is a point of C 1 and a member ofF( C 1 , C 2 ) which passes through 
these points. 

We now come to our main result on some integral invariant. 

THEOREM 4.1. Let two closed rectifiable curves C 1 , C 2 lying in D and cutting the 
same subfamily be given. Let further f 1 , f 2 denote rectifiable curves of( t, a, p)
space such that C 1 , C 2 are their images under the map ( t, a, p) ~ ( t, x ( t, a, p ), 
y( t, a, p) ). We also assume that f 1 , f 2 are included in some simply connected sets 
contained in z* and that the sets of values off1 andf2 in coordinates a, p coincide. 

Then the curvilinear integrals of the form w = y dx- H dt along C 1 and C 2 

are equal, i.e. 

J ydx- Hdt = J ydx-Hdt. 
c

1 
c

2 

( 4.3) 

Proof. In view of ( 1.4 ), (2.5) and (2.6), we have 

J ydx - Hdt = Jyx"da+yxPdp+Ldt = 
c

1 
r

1 

1+(<1) ,+(<1) 

=J{yx"+<S L"d-r)}da+{yxp+<S Lp)}dp+ 
fl I I 

I.L.(<1) I +( <1 ) 

+JLdt - (J L,d-r)da-CJ Lpd-r)dp. 
r 1 I I 

Since C1 is closed, Lemma 3.2 now implies 
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I + (q ) I +(q) 

J w = J{yx" + ( J L"dt)}da+{yxP+ ( J LPdt)}dp (4.4) 
c l rl 

Analogously, we get 

1+ (u) t+(u) 

Jw=J{yx"+( J L"dt)}da+{yxp+( J LPdt)}dp (4.5) 
c

2 
r

2 
1 1 

By the assumptions of the theorem, the sets of values of r 1 and r 2 in 
coordinates a, p coincide; hence, from Lemma 3.3 we conclude that the 
right - hand sides of ( 4.4) and ( 4.5) have the same value. The proof is now 
~~~ . 
REMARK 4.1 . The above theorem generalizes the well- known theorems of this 
type (cf. [ 1 ], § 44) not only because here weaker assumptions on Hare imposed 
but mainly, because the members of Fmay intersect. The form w = y dx - H dt 
is called Poincare- Cartan's integral invariant. 

Consider the particular case when the curves C 1 , C2 lie in the hyperplanes 
t = const. Along such curves J w = J y dx. Let 

I 

D 0 = { (t, x, y) e D: t = t 0 }, 

I I } D = {(t,x,y)eD: t = t 1 

and consider the map g ' 1 
: D' o -+ D 11 defined by the canonical flow F when 

t varies from t 0 to t 1 , t -~ (a) ~ t0 ~ t 1 ~ t + (a), a e G. We note that this map 
may be multivalued. 

We now assume, in addition, that the map ( t, a, p)-+ ( t, x ( t, a, p ), y ( t, a, p)) 
is such that any closed curve Cc D 10 is the image under this map of some 
rectifiable closed curve r of ( t0, a, p)- space included in some simply connected 
set. We also suppose y ( t 1, a, p) to be a C 1- function for (a, p) e G. 

Let C,
0 

be any closed rectifiable curve in D'o. As its image under the 
mapping g,' 1 we understand the rectifiable curve C, obtained in the following 
way. We t~ke r 0 whose image is C1 • To the cu}ve r 0 there corresponds 
a rectifiable curve r 1 such that ( t1, a, p) ~ r 1 if ( t0, a, p) e r 0 • Now, C 1 is defined 
as the image ofr1 under the map ( t 1, a, p)-+ ( t t> x( t 1, a, p ), y ( t 1, a, p)). In the 
sequel, the image of C, under the map g,' 1 will always be understood in the above 
described way. 0 0 

Theorem 4.1 implies the following, self- evident but essential 
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COROLLARY 4.1. Let g,'1, C1 , C, be as described above. 
Then ° 0 1 

f ydx = f ydx. 
c c 

lo ' • 

REMARK 4.2. The form y dx is termed Poincare's conditional invariant. This 
fonn has a simple geometric interpretation. Assume that there exists 
a two- dimensional oriented chain y '• with C,. as its boundary contained in D1• 

and, analogously, a chain y, with C, as its boundary, C1 c D, . The curve C, is 
I I I I C 

obtained from c,. by using the map g/
0

1. Now, we have 

f dy 1\ dx = J dy 1\ dx. 
7 
' • 

Indeed, Stokes' theorem implies 

J y dx = J dy 1\ dx, 
C V 

t 0 I o 

hence Corollary 4.1 gives ( 4.6 ). 

We say that a mapping g : R2" ~ R2" is canonical if 

Jy dx = Jydx 
C gC 

( 4.6) 

where C, Cc R2", denotes any rectifiable curve and gC stands for a rectifiable 
curve being the image of C under the mapping g. 

From Corollary 4.1 we immediately have the following 

REMARK 4.3. The map g,'. : D,. ~ D, , c- (er)~ t. < t::;; r+ (er), erE G, t. - fixed, 
defines in D the canonical map (g/. , D,. , D1 are understood as in Corollary 4.1 ). 

In this way one can further study consequences of Theorem 4.1; we shall 
not do this here. We come back to form ( 1.3) and to functions ( 1.1) and ( 2.6 ). 

5. Properties of the activity function, Hamilton- Jacobi- Bellman equation 

In this section we give more exact relations between the functions L, Hand 
the fonn w defined in Sections 1 and 2. These relations have misce11aneous 
applications, e.g. in mechanics, in optimal control theory. 

We put 
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z*+ = {(t, a , p):t = t+(a), aeG, peR} 

(for G and R see Section 2) and , next , 

D+ = {(t,x,y) :x = x(t,a,p),y = y(t,a, p ), (t,a,p)ez*+ }. (5.1) 

From now on, in place of hypothesis ( h 5 ), we shall only suppose that the 
map z* \ z* + -+D \ D +, defined by (t, a, p)-+ (t, x( t, a, p), y(t, a, p)), is 
descriptive. . . 

A subset D of D is called an exact set if, for each rectifiable curve C, Cc: D , 
with end points ( t1, x 1, y 1 ), ( t 2, x 2, y2 ), the equality 

( 5.2) 

holds. 

(h7 ) In what follows we suppose n + to be an exact set. We shall, at the same 
time, assume the integrand on the right of ( 4.2) to be Lebesgue integrable. 

If ( h7 ) is satisfied, then, of course, the right- hand side of ( 5.2) is equal to 
zero for cc: n +. 

L EMMA 5.1. The quantities 

yx, + Lt, +, yxP 

are identically zerO in the Set zH. 

Proof. Let ( t0, a0, p0 ) be any point of the set z* + and r -any sufficiently small 
rectifiable curve in z* + which corresponds, by setting t = t + (a), to a small 
segment parallel to one of the a - axes, with the initial point ( a0 , p0 ). Let C, 
Cc D +,stand for the image ofrunderthe map ( t, a, p)-+ ( t, x( t, a, p ), y ( t, a, p) ). 
Since D + is exact, we have 

0 = Jydx -Hdt = Jyx,da+Ldt = J(yx,+ Lt/ )da. 
c r r 

Hence, taking into account that r was chosen arbitrarili', and that y x, + Lt" + is 
a continuous function in zu, we infer that y x, + Lt, + is equal to zero at 
(t +(ao ), ao, Po), i.e. at any point of zH. 

The proof concerning y xP is analogous. • 

COROLLARY 5.1. The expressions 
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1+(o) 

YXo+ f Lad-c' 

1+(a) 

yxP + f LPdr 
I I 

vanish in z*. 

Pro o f. These expressions are continuous functions in z* by ( h 2 )- ( h 4 ) . Lemma 
3.3 now implies that the expressions are constant on each member ofF, therefore 
the assertion follows from the above lemma. 

Let C be any rectifiable curve contained in D \ D + with parametric 
description 

l = t(s), X= X(S), y = y(s), 0 ~ S ~ (, 

where s is the arc length parameter. Then function ( 4.1 ) restricted to the curve 
C has the form S (t ( s ), x ( s ), y ( s) ), i.e. is the function of the variable s for 
SE (0, (). • 

The next theorem will show that form ( 1.3 ), introduced in the artificial 
way in Section 1, appears in the natural way in mechanics or optimal control 
theory. Namely, we prove the following important. 
contrl21-Control and Cybernetics-skl-G.P. korekta DM 

THEOREM 5.1 The function s ~ ( S (t ( s ), x ( s ), y ( s) ), s e [ 0, ( ], is absolutely 
continuous and, for almost all s in [ 0, ( ], the relation 

d - - - - dx - - - dt - S(t(s),x(s),y(s)) = - [y(s) - - H(t(s),x(s),y(s))-] (5.3) 
~ ~ ~ 

holds. 

Proof. First, we prove the absolute continuity of S 0 ( s ), x ( s ), )i ( s)) as 

a function of s. The function ( d t , dx ), defined for almost all s e [ 0, ( ], is 
ds ds 

integrable over [ 0, ( ). 

So, let s0 e [ 0, (] be any point such that (dt , dx) is approximately continu
ds ds 

ous at it (almost all points in [ 0, (] are such). We introduce the notations 
-t = dt(s0 ) 

ds ' 
-

~ = d:;so), Y = y(so), H= H(i,x,y). 

Let (7, a,p) be any point of z* \ Z*+ for which x(l, a,p) = X, y{l,a, p) = y. 



General canonical formalism 107 

Denote by r a rectifiable curve in Z * \ Z * + such that small arcs of the 
curve C, issuing from (t,x,y), are, in accordance with (h 5 ), the images under 
the map ( t, u, p) ~ ( t, x ( t, a, p ), y ( t, u, p)) of small arcs y of r issuing from the 
point (7, u, p ). Let us now find a parametric description of the curve 

, = r(J..), u = u(}.), p = p(J..), o~J..~11. 

such that the point (t, u, p) E r corresponds to zero, while J.. is the arc length 
parameter. We can then define a continuous increasing function s = s(J..), 
J.. E [ 0, 11 ], such that s ( 0) = s0 , which gives rise to the corresponding arc length 
along C, i.e. which satisfies in any subinterval [ 0,17 1 ] c: [ 0, 11] the relations 

t (s(A.)) = 7()..), x(s(A.)) = x(7 (/.), a ( .'.), p (A.)), 

y(s().)) = y(l(J..), u().), p (J..) ). 

Let now y be a sufficiently small arc of r issuing from the point (7, u, p ), 
described above, defined in the interval K = [ 0, 17 1 ]. Denote by ~s and ~ S the 
corresponding differences in s and in S ( t, x, y) at the ends of a small arc of 
C issuing from the point (1, x, y ), being the image of y . Let further 

t+(a) t•(a) 

~s = J idt- c J lad-c)da- c J lpd-c)dp 
1 I 

( comp. Lemma 3.2). We have~S = -~S. On the other hand, by Corollary 5.1, 
along y we obtain 

1 +(al I + (C7) 

YXa+J iadt=O, yxP + J LPd-c = 0. 
I I 

Hence, using ( 2.5) and ( 2.6) 

- - dx - dt 
~S = J (yx,- H)dt + yx.,da + yxPdp = J (y- - H- )ds(A) ( 5.4) 

Y K ds ds 

- - -where - H = L - yf By the assumptions imposed upon the functions L,f, y in 

Z*, we get the boundedness of if in K and next, from (5.4), the uniform 

boundedness of ~~ as ~ ~ 0. This means that S is a locally Lipschitz 

function of the variable s and, hence, absolutely continuous in s. 
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To prove ( 5.3 ), we note that the approximate continuity of ( ~; , ~:)at s0 

it:nplies that, given e > 0, there exists a closed set B of values of s such that, for 

each sufficiently small interval B0 = { s : s0 ~ s ~ s0 + (J }, the inequalities 

(i) 
dt dx ~ ~ 

I ( ds , ds ) - ( t, x) I < e s E B n B 0, 

(ii) meas (B 0 \ B)< e(J 

hold (I · I stands here for the Euclidean norm). 

Denote by A the set of those values of A for which s (A) E B. In view of the 

b .d . d h . dx H- dt fu . a ove const erattons, we can regar t e expresswn y ds - ds as a nctton 

· dx - dt ~~ ~-
ofA.inK. Thus, ifwesetg = g(A.) = (y-d - H-d )-(yx - Ht),thenwe 

s . s 
have 

~s ~~ · ~ ~ 1 · · • 
- - (yx - Ht) = ~ J g().)ds(A) = 
~s ~s K 

As J g (A) ds (A.) + 1 J g (2) ds ().). 
l.l K r. A ~S K\ A 

( 5.5) 

For a sufficiently small segment k, g is· bounded in K\ A and this set has 
s (A)- measure less than eJ, by ( ii) ahove with (J = ~s. The s (A.)- measure of the 
set K n A is at most J. From ( i) and the co~tinuity of Handy it now follows that 
the absolute value I g I of the integrand ih (5.5) does not exceed in the set K n A 
a fixed multiplier of e. This means that the last two terms in ( 5.5) cannot exceed 
certain fixed multipliers of an arbitrarily small positive e. The proof of the 
theorem is now completed. . • 

From Theorem 5.1 we derive the following (also important) corollary. 

COROLLARY 5.2. The set D is exact, i.e. equality ( 5.2) holds for each rectrifiab/e 
curve C of D. . 
Pro o f. Since D + is an exact set, we can confine ourselves to show that the set 
D \ D + is exact. By integrating ( 5.3 ~'in view of Theorem 5.1, we obtain ( 5.2 ). • 

COROLLARY 5.3. Let C be any rectifiable curve in D with the arc length parametric 
description 
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t = t0 , x = x0 , y = y ( s) , 0 ~ s ~ '· 
Then, for all s, 0 ~ s ~ ( , we have 

Proof. First, we note that if the curve C lies in D +, we have the assertion at 
once; hence we assume C to be included in D \ n+. By ( 5.3 ), we conclude that 

d -- S(t0 ,x0 ,y(s)) = 0 a.e. in [0, ( ]. 
ds 

From Theorem 5.1 follows the absolute continuity of S ( t 0 , x 0 , y ( s)) in [ 0 , ( ]. 
Thus S(t0 ,x0 ,y(s)) is a constant function equal to S(t0 ,x0 ,y(O)), • as 
required. 

Corollaries 5.2 and 5.3 immediately imply 

P1 = { (t,x,y): t = t1, 

P2 = { (t,x,y ): t = t2 , x = x2 , yE R"} n D. 

are connected. If C is any rectifwble curve in D with its end points in P1 and P2 , 

respectively, then 

REMARK 5.1. The word "connected" in this paper is understood as follows: 
"A set B is connected if, for any two points of B, there exists a rectifiable 

curve in B which joints them". 
In the special case when the points (t 1,x 1,y1), (t 2,x2,Y2 ) are joined by 

a curve y which belongs to the canonical flow F, Corollary 5.4 is known in 
mechanics as the principle of the least activity. The curve y is then called the 
extremal curve of the integral J ydx - H dt. 

Denote by D" a set of ( t, x)- space covered by graphs of trajectories x ( t) 
such that x ( t ), y ( t ), u ( t) is a canonical pair and member of the flow Fat the 
same time. Assume also that, for each (t0 , x 0 ) E Dx, the set 

P0 = { ( t, x, y,) : t = t 0 , x = x 0 , yE R n} n D 

is connected. Then, by Corollary 5.3, the function 
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( 5.6) 

is uniquely determined in D <, where S ( t0 , x0 , y ), ( t 0 , x 0 , y) E P0 ,is defined by 
( 4.1 ). Suppose further that D .. is an open set and that there are continuous 
derivatives S,, Sx. Then from Theorem 5.1 we infer directly that the function 
S ( t, x) satisfies in D, the Hamilton- Jacobi- Bellman differential equation 

-S,+H(t,x, -s.< ) = o. 
Indeed, in classical mechanics the function S ( t, x) is called the activity 

function, thus our function S(t,x,y), (t,x,y) E D is its generalization. 

REMARK 5.2. Considering the particular case when the function H(t,x,y,u) 
does not depend on the function u, i.e. H ( t , x, y) = H ( t, x, y, u ), we see that all 
we have done so far forms the generalization of the classical theory of the 
canonical formalism (see [ 1 ), Ch.9 ). 

6. Adaptation to optimal control theory 

Let, as in Section 1, U denote a Borel subset of R"' and let u ( t) : [a, b] --+ U 
be a measurable function which will now be called a control or an admissible 
control. 

Consider a vector function j; f = f( t, x , u ), where 
f : [a , b] x R" x R"'--+ R" and a scalar function L defmed in [a, b] x R" x R"'. 
We asswne these functions and derivatives/, ( t, x, u ), Lx ( t, x, u) continuous. 

An admissible trajectory x ( t) corresponding to a control u ( t) is an 
absolutely continuous function x : [a , b] --+ R" satisfying 

x(t) = f(t,x(t),u(t)) ( 6.1) 

for almost all t in [a, b]. 

We shall consider the following problem: 

"Find a minimum of the functional 

h 

I(x,u) = J L(t, x(t),u(t))dt ( 6.2) 

over all admissible trajectories x( t) and corresponding controls u ( t) such that 
x(a) = c,x(b) = d,wherec,darefixedpointsofR"". 

To solve this problem, we put 

H(t ,x, y , u) = yf(t,x,u)-L(t,x,u); 
( 6.3) 

( t, x, y, u) E [a , b] x R" x R" x U. 
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An admissible pair of functions ( x, u) will be said to satisfy the maximum 
principle ( comp. [ 2 ], Cor.2) if there exists an absolutely continuous conjugate 
function y : [a, b] -... Rn such that 

(i) y( t) =- H .• (t,x(t),y(t),u(t)) 
( 6.4) 

( ii) H (t,x (t),y(t),u(t)) = sup { H(t,x( t),y(t) , u :u E V}. 

As in Section 2, we shall call each pair ( x ( t ), u ( t) ), t E [a, b ], satisfying the 
maximum principle a trajectory. We term a canonical pair a trio of functions 
(x(t),y(t), u(t)), t E [a,b] , such that (x(t), u(t)) defines a trajectory and 
y ( t) is the corresponding conjugate function which satisfies ( 6.4 ). Thus, we can 
further consider a canonical flow F, if it exists, i.e. a family of canonical pairs 
which satisfies ( h 1 ) - ( h7 ). Of course, all these assumptions do not exclude the 
case when, at some point of D, the canonical pairs intersect. Having this in mind, 
with each point ( t, x, y) of D we associate the set 

U(t,x,y) ( 6.5) 

of values of such controls uatthe pointt for which thecorrespondingmembers of 
the flow F take, at the point t, the values x, y, i.e. the set of values of the function 
u ( t , er, p) at those points ( t, er, p) of Z* where x ( t, er, p ), y ( t, er, p) take the given 
values x, y, respectively. Naturally, ( 6.5) may be a multivalued function. We 
shall call it the generalized feedback control. By an admissible feedback control we 
shall mean a single- valued function u ( t, x, y ), u (t, x, y) E U ( t, x, y) for ( t, x, y) 
E D, such that at each point (t,x,y) the point (t,x,y, u(t,x,y ))lies on 
a canonical pair of our flow F. It is clear that at any point ( t , x,y) of D we have 

H(t,x, y) = H(t ,x, y,u(t,x,y)) = sup{H(t,x,y,u):ue U} (6.6) 

for all admissible feedback controls u ( t, x, y ). 
It is evident that if we take for H ( t, x, y, u) from Section 1 function ( 6.3) 

with u = ii ( t, x, y ) , then our functions f and L from ( 6.1 ) and ( 6.2 ), also with 
u = ii( t,x,y), are the same as the functions/and L computed from (2.5) and 
(2.6). 

Now, we have the following lemma which is quite similar to Lemma 3.1. 

LEMMA 6.l. Let C be any rectifiable curve situated, together with its end points, in 
D \ D +. Then, there exists along can admissible feedback control urn (I, X, y) such 
that the function 

H(t,x,y ) = H(t, x ,y, um( t, x,y) ), 

given by ( 6.6 ), is bounded and Bore/ measurable. 
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Having done all that, we are now in a position to apply the results of 
Section 5. Indeed, we have defined the ftmctions L,f, Hand the sets D, Z*, D+, 
z*+, Dx as well as the functionS( t, x, y) in D. Therefore, we are able to prove the 
following 

THEOREM 6.1. (Sufficiency Theorem). Assume that a canonical flow F exists and 
that the set 

Pa = {(t,x,y):t = a, x = c, yERn}nD 

is connected. flan admissible trajectory x ( t ), x (a) = c, x (b) = d, under control 
u ( t ), t E [a, b], is a trajectory of the flow F, then,for this pair ( x. u ),functional 
( 6.2) attains its minimum relative to all admissible pairs ( x, u) such that: 

( j) X (a) = C, X (b) = d; 

( ii) graphs of the trajectories x ( t) lie in the set D , ; 

( iii) there exists a rectifiable function y ( t ), t E [a, b], such that the triplets 
( t, x ( t ), y ( t)) E D for t E [a, b ]. 

P r o o f. Making use of Corollary 5.3 and of ( 5.6 ), we have 

b 

S(a,c) = S(a,c,ya) = f L(t,x(t), u(t))dt ( 6.7) 
(J 

for all Ya E P
0

• From Corollary 5.2 we conclude that the set D is exact, which 
implies the equality 

J ydx- Hdt = S(a, c,y0 ) ( 6.8) 
c 

for each rectifiable curve C, Cc D, with ends (a , c,ya) E P, (b,d,yb) E D +. In 
particular, ( 6.8) holds for all curves ( x ( t ), y ( t)) that satisfy conditions 
(i)- (iii) of the theorem. Comparing ( 6.7) and ( 6.8) and taking into account 
that x ( t) satisfies ( 6. I ), we obtain 

b 

I(x, u) = J L(t,x(t),u(t))dt = 
(I 

b 

= J [y(t)f(t,x(t),u(t))- H(t,x(t), y(t),u(t,x(t),y(t)))]dt 
a 

for some admissible feedback control u ( t, x, y ). Since 

b 

I(x,u) = J L(t,x(t),u(t))dt, 
(l 
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we have 

I(x,u)- I(x, u) = 
( 6.9) 

, 
= J { H[t, x(t),y(t),u(t,x(t),y(t))]- H(t, x (t) , y(t),u(t,)) } dt . 

a 

By virtue of relation ( 6.6 ), the inequality 

J(x,u)- I(x, u);;:: 0 

holds, as asserted. This completes the proof of our sufficiency theorem. • 

REMARK 6.1. Let us note that formula ( 6.9) generalizes Theorem 3.1 of [ 5]. In 
particular, the integrand in ( 6.9) is a generalization of the Weierstrass excess 
function . 

REMARK 6.2. Theorem 6.1 generalizes the classical sufficiency theorem of 
Weierstrass from the calculus of variations. Indeed, Jet U = R" and 
f( t, x, u) = u, i.e. x = u. Suppose the classical assumptions fulfilled: the 
function L ( t, X, u) is a C2

- function; the family of extremal trajectories 
x ( t, <J, p) (trajectories of our canonical flow) is independent of the parameter p, 
i.e. has the form X ( t, <J ), ( t,<J) E Z and X ( t, <J) is a C2 - functiOn in Z, X~ # 0 in 
Z \ Z + (z+ = { (t,<J):t = t +(<J), aEG });thesetZ \ Z + issimplyconnected 
and through each point of Dx \ D;/ (D/· = { ( t + (<!) , x( t+ ( <J), a)): a E G }) 
there passes one and only one trajectory x of the family x ( t, <J ). We notice that in 
this case the map (t,<J)-+(t,x(t,<J)): Z \ Z + -+D.Y\ D y+ has the inverse 
C1-map (t, x)-+(t,a(t,x)), which implies that it is descriptive. We set 
y ( t, <J) = Lu( t, x( t , <J ), x,( t, a)). Of course, y( t, <J) is a C 1 - function in Z and 
the map (t,a)-+(t,x(t,<J)), y(t,<J)) is descriptive in Z \ Z +. The set G is 
connected, so the set Pa from Theorem 6.1 is connected. If the E- Weierstrass 
function is non- negative, then condition ( 6.4) ( ii ) is fulfilled. The family 
( x ( t, a), y ( t, <J) ), a E G, forms a canonical flow. As the function 
y( t, <J) = y( t, a ( t, x)) is a C 1

- function in D,. \D./, we have assumption ( iii) 
of Theorem 6.1 satisfied, too. Hence we can finally conclude that if the classical 
assumptions of Weierstrass' theorem are satisfied , then a ll the assumptions of 
Theorem 6.1 are also satisfied. 

Now, we give a simple example from the classical calculus of variations to 
show the value of the above theory and, in particular, of Theorem 6.1. 

EXAMPLE. Consider the optimal problem 

minimize__!_ ( ( - x 2 
( t) + y 2 

( t) )dt 
2 0 

( 6.10 ) 
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in the space of absolutely continuous functions with x ( 0) = 0, x ( n) = 0. It is 
known that this problem cannot be solved by any classical method (the field 
theory of extremals or conjugate points) and by a generalization of the field 
theory described in [ 6], either. 

The function H ( t, x, y) is now equal to 

( ) 1 , I y2. 
H t, x , y = 2 x-+2 

The canonical triplets satisfy 

x(r) = y(t), y( t) - x( t). 

We choose the family 

X ( t, <J) = <J sin t, y ( t, <J) = <J COSt, t E ( 0, 1t], <J E R. 

Hypotheses(h 2 )-(h5 )aresatisfied(D = { (t,x, y ):x = x(t,<J),y = y(t, <J), 
t E [ 0, n ], <J E R} ). The set P0 = { ( 0, 0, y) : y E R} is connected. 

Therefore, by Theorem 6.1 , x ( t) = 0 , t E [ 0, n] , affords ( 6.10) the global 
minimum. 

We notice that in [ 6] it is required that the map ( t, <J)-+ ( t, x ( t, <J) ), 
t E [ 0, n ], <J E R, be descriptive, which is not true in our example, while in the 
theory described here we require that ( t, <J) -+ ( t, x ( t, <J), y ( t, <J)) have to be 
descriptive and this holds in the above example. 
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Uogolniony formalizm kanoniczny z zastosowaniami 

Celem pracy jest uogolnienie klasycznego forrnalizmu Hamiltona- Jacobiego na prt.ypadek, 
w ktorym funkcja Hamiltona H zale:Zy od sterowania ( parametru) u. 

H(t.x,y) = max H(l,x,y,u) . 
Podana teoria jest zilustrowana dwoma przykladami zastosowan: w mechanice i teorii 

sterowania optymalncgo. Uogolniono twierdzenie dotycZ<tce calkowego niezmieonika Poioca
re- Cartana oraz podaoo warunlci wystarczaj:tce dla istnienia minimum w pewnym zadaniu 
sterowania. 

06o6~ellbiH KaHOIIIt'feCKHii cjlopMaJIHJM C npeMelleiUUIMJf 

UC!IblO pa6oTbl l!B!Jl!CTCl! o6o6menue KJ13CCJ.I'ICCKOro <j>opMa!IH3Ma raMH!IbToHa-51Ko6H )lJTll 
C!Iy'lall, Kor.na <i>YHKUHII raMIUibTOHa H 33BHCIIT OT ynpaBJlCHlUI napaMCTpa 11, 

H (t, x. y) = max u H (1. x, y, u) 

flp»BC.!lCHHal! TCOplillliJUilOCTPHpyeTCl'l,liB}'Ml! OpHMCpaMn rrpliMCRCHHH: 8 MCXaHHKC H 8 TCOpHH 
OnTKMa!IbHOfO ynpasneHHl'l. 06o6meaa TCOpeMa, K3caiOUI311CA HHTerp3JlbHO!i DOCTOl'IHROH 
nyaHKape-KapTaHa, a TaJOKe ,!laHbl ,!lOCT3TO'IHbiC yCJJOBIHI CYtUCCTBOBaHKll MIUIKMyMa .!lJill 
IIOKOTOpOH 3aJta'IJ.I ynpaaJJeHID!. 




