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The paper aims at giving a generalization of the classical Hamilton -Jacobi canonical
formalism to the case when the Hamilton function H depends on the control function ( parameter ) «,
H(t. x,y) = max H(t, x, y, u). The theory is illustrated in two fields: mechanics and optimal
control theory. The theorem on Poincare - Cartan’s integral invariant is generalized and the sufficient
condition for a minimum in a control problem is given.

Introduction

Many modern questions of astronautics, mechanics and the theory of
extremal problems are described by means of functions which depend on an
additional control functions that plays the role of a parameter ( see, for instance,
[4], Ch. 1L 2.).

The control function is, in general, only a measurable function in time ( at
best, piecewise continuous) and this, in turn, causes that the functions
determining processes are only measurable, too. Examples of such problems can
be found in astronautics, mechanics, optimization theory (see e.g. [ 7], intr. to
part I1). The fundamental function which then appears is the Hamilton function
H which, in most cases, is not a continuous function in time.

In the classical theory of the Hamilton - Jacobi canonical formalism ([1],
[3]) it is assumed that H is at least a C' - function and that the flow trajectories,
i.e. the integral curves of canonical equations, can never intersect. Thatis why the
classical theory leaves out, except particular cases, the problems mentioned
above. Therefore, it appears to be quite natural to look for the generalization of
the classical formalism in such a way that it would be possible to apply it to most
of the problems described by a control function.

What this paper presents is just an attempt of such a generalization.
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In Section 1 we define an abstract Hamilton function H(¢, x, y) =
max H (¢, x, y, u) and the 1-form pdx — Hdt associated with it. Next, we note
(Th. 1.1), under additional assumptions on H, that, as in the classical
investigations, the characteristics of the form ydx — Hdt are the pairs (x (1),
v (t)) which satisfy the system of canonical equations ( 1.4), ( 1.5). This fact is
the starting point for further considerations. Namely, omitting the additional
assumptions on H, we consider some family of functions satisfying (1.4), (1.5)
which depend on parameters o, p. Next, we study the conditions this family
should fulfil in order that the integral of ydx — Hdt should possess all the basic
properties such as: invariability ( Theorem of Poincare - Cartan ), completeness
(independence of integration path ), the relationship with the activity function
- the value function.

It becomes evident that we can omit most of the classical smoothness
assumptions and we shall still have the above - mentioned properties. Moreover,
the assumption about non-intersecting trajectories can be replaced by an
essentially weaker one about the descriptivity of a suitable transformation.

The general results obtained in the paper are illustrated in two fields:
mechanics and optimal control theory. The generalization of the theorem on
Poincare - Cartan’s integral invariant is proved and some of its consequences are
derived. Adapting the theory obtained to control problems, we prove the
sufficient condition for a minimum of the functional in the classical optimization
problem, This condition (Th.6.1) generalizes the sufficient condition of
Weierstrass from the calculus of variations ([7], Ch. L.).

The substantial advantage of the method we use here is the avoidance of
multivalued functions that appear in a natural way if one allows the extremal
trajectories to intersect (comp. [7], [6]). As a consequence, we obtain an
essential simplification of ideas and calculations in many considerations.

1. Canonical differential equations

Let U be a Borel subset of the Euclidean space R". We shall be dealing with
a measurable function u(¢):[a, b] - Uwhere [ a, b]is any interval of R’. In the
sequel, u(#) will appear as a parameter or control function. Along with the
function u, we shall consider a function u (feedback function) where u =
u(t,x, y) : Rx R"x R*"> U.

We use H to denote a scalar function of variables ¢, x, y, u and suppose the
following hypothesis satisfied:

the function H (1, x, y, u) and its partial derivatives
(hy) H.(t, x, y, u), H/(t, x, y, u) are continuous in the product

RxR"xR"xU

We assume that the feedback function u satisfies the maximum relation
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H(t, x,y) =H(t x,y,u(t,x,y)) =sup H(t, x, y, u) (1.1)

ue UV

forany (¢ x,y)e R*™*!
The function H = H(t, x, y) of (1.1) will be called the Hamilton function.

Suppose, for the use in Section 1 only, that H(¢, x, y) is a C'-function in
the space R*"*'.

Let (7, X, y) be any point of R*"*!. To motivate further considerations, we
shall impose, for this section only, the requirement that at the point (7, X, ) the
derivatives

ai H x5, u(t, x ), ai H(7, X, y, u(t, x, y)) are continuous and
X Y

satisfy the relationships

BT _ D gy adw L mEE L
ax dx Ox
(12)
s A B
PHEREY _ O g 0 3008 5502 #5550, 5301
ay oy dy

Formulae (1.2) are to hold at the point (7, X, ).
Now, we can establish, in the space R*"* ', a differential 1-form
w = ydx — Hdt. (:1:3)

Since H (¢, x, y) is a C'-function, there exists a differential 2 - form dw and we
may speak about the field of directions of the rotation™ (see [ 1],§ 44 ) of the form
. Integral curves of this field are called “rotational lines” (comp. [1], § 44) or
characteristics of the form w.

We prove the following

Theorem 1.1 Characteristics of form (1.3 ) in the (2n + 1) - dimensional Euclidean
space of variables t, x, y have the description: x = x(t),y = y(1),te (o, f).
The functions x(t), y(t), t € («, ), satisfy the canonical differential equations
x = H,(t x,p u(t,xy)), (1.4)
j)=_Hx(t'x1y!§(t7xly)) (1'5)

where the dots over x and y denote the derivatives in t.
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Proof. First, we note (by (1.1),(1.2)) that if we fix the first three variables in
H(t, x,y,u)bysettingt =7, x = X, y = y, then
d

— H(1, %, y,u(t, %)) =0,
0x

@ B L5 Aty

ay
Hence the differential of form (1.3) has the form
do =dy A dx—H./(t,x,y, u)dx A dt—H/t x,y, u)dy A dt.

The matrix of this 2-form in the variables y, x, ¢ is equal to

0 -E H,
A= E 0 H,
e Hv = I_\- 0

where E is the unit matrix of degree n. The rank of 4 is 2n, so the form dw is
non - singular. It is easy to check that the vector ( — H,, H , 1) is the eigenvector
of the matrix 4 with the eigenvalue zero for any fixed triplet ( , x, » ). That vector
defines the direction of the rotation of w. Therefore the characteristics of @ have
to satisfy equations ( 1.4) and (1.5), so the proof is now completed. =

Let us note that from the above proof'it follows that each pair (x (1), y(t))
satisfying (1.4), (1.5) is a characteristic of form (1.3).

In what follows we shall only consider functions x (), y(¢) which satisfy
canonical differential equations (1.4), (1.5), but with essentially weaker
assumptions imposed on the function H.

2. Canonical flow

From now on, we shall only suppose the function H to satisfy (/,). All
further assumptions will concern some special family of functions. We want to
stress that upon the feedback function u (¢, x, y ) no requirements are imposed.

Each functionx(1),te(t,,1,),(1,.t,) = [a,b], thatsatisfies ( 1.4 ) will be
termed a trajectory (comp. [ 7], p. 263 ) and each pair of functions x (), y (1),
t € (ty, t,), satisfying (1.4), (1.5) a canonical pair (comp. [7], p. 265).
A trajectory and a canonical pair will usually be associated with the correspon-
ding control function u(t) = u (¢, x(t), y(t)) and, for brevity, we shall speak
of the trajectory

(x(1), u(r)) {213
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and the canonical pair

x(1), y(1), u(2). (2.2)

Consider extended real - valued functions 1~ (a), t' (o) where
—w <t (6)<t (6)< +o0,0eGand G is an open Euclidean set.
The pointsg at which7~ (¢) # + wort* (o) # + ooare to form an open set
and the two functions are to be C' - functions, except for the case of t~ () or
t* (o) at any point where the values — oo or + oo are taken.

We further suppose that a set R of points p is also open in a Euclidean space
andweputG = G x R. By Zweshall denote theset of (7, ¢ ) for which 6 € G and
t is subject to the condition

—w <t (6)<t<tt(0) <+, (2.3)

and let Z" stand for the set of (¢, o, p)for which (o, p)e G and ¢ satisfies (2.3).
Having introduced the above sets, we consider a family F of canonical
pairs given by

x(t,0,p) y(t,6,p), u(t,a, p) (Lo, p)eZ. (2.4)

Here o, p are “labels™ which distinguish a member of the family, i.e. ¢, p remain
constant on a member of F and this member then corresponds to the interval
t (o) <t<t"(c). Weuse Dtodenote theset of triples (7, x, y ) where x = x (1,
o,p), y=y(t,0,p), (1,o,p)eZ".

We say that the map @:Z* — D is descriptive if, for each point (¢, 6, p)
€ Z*, the following condition is satisfied: for each rectifiable curve C < D (i.e.
with a finite length ) with the initial point ¢ (1, g, p), there exists a rectifiable
curve I' = Z* with the initial point (7, o, p ) such that each sufficiently small arc
C < C with the same initial point as C is the image under the map ¢ of
a sufficiently small arc T = T starting from (¢, o, p) (comp. [7], p.266)

Let us set
f(t,x,y) = H(t x,p u(tx1y)), (2.5)
L(t,x,y)=yf(t, x,y)—H(t, x,y, u(t, x, y)). (2.6)

Finally, when (¢, o, p) € Z*, we shall write

Lto.p). J(top).f " L(x 0, p)dz

instead of the expressions
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L(t, x(t,0,p),y(t,0,p)), f(tx(t 0, p)y(t 0, p)),

I;+(5)L b, p)dr+L(t+(U) o, p)t," (o).

We now suppose the following hypotheses satisfied:

(h,) the function L(l o, p) is continuous in Zn
there exist continuous derivatives L (¢, a, p) L (t,0,p), f (2,05 p;

.f(r O' p)! l‘crp(r U p)lnz
for each fixed (¢, x, y) € D there exist derivatives

4
g H(t, x,y,u(t,o,p)), Sl H(t, x, y,u(t, o, p)), satisfying the
P

do
relations
oL = 0
T=yﬁ,—H_vxp—-—H(!,x,y.u(t,o-,p)),
ap ap
@=y.h_era_iH('!lx!y!u(t:asp))s
oo do

forany (¢,x,y)wherex = x(t,0,p),y = y(t,0,p)and(t,0,p)eZ*;
(hy) the function y(t, 6, p) is continuous in the set Z*

(hy) for(t,o,p)in Z*, the derivatives x,(t, 0, p), x, (1.0, p), x,(t 0,p)are
continuous;

(hs)  the map Z* — D defined by (¢, 0, p) = (1, x(1, 6, p), y(t, 6, p)) is
descriptive.

The above hypotheses are of fundamental importance in our further
considerations. If all of them are satisfied, the family Fis called a canonical flow.
In the classical mechanics the R?"* ' -space of (¢, x, y ) is called a phase space and
the family F a phase flow (see [1], § 16).

3. Preliminary lemmas

Suppose we are given a canonical flow as described in Section 2.
LEMMA 3.1. Let C be a rectifiable curve situated, together with its end points, in D.
Then, the function H(t, x, y) defined by (1.1) is bounded and Borel measurable

along C.
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Proof. By (4;), toeach point of C, including its end points, there corresponds
a neighbourhood (in the topology of C induced from R?"* ') that is the image of
acurve I, = Z*. From Borel’s covering theorem it follows that we can suppose
Cso small that the corresponding (¢, g, p ) -curveis just the I". By (2.6 ) and ( 4, ),
() the function H(t,0,p) = H(t,x(t,0,p),y(t, 0,p))iscontinuous in Z*
and thus, bounded on I'. To each point (¢, x, y) € C we can now attach the first
point (¢, 0, p)of I"at which x(t,a,p) = x,y(1,0,p) = y. Putting these values
into (¢, @, p), we obtain a Borel measurable function H (¢, x, y ) defined on C.
This function is also bounded. But, of course, H(t,x,y) = H(t,x,y)on C; this
completes the proof.

Fort (c)<t<t'(g) and (og,p)e @, we set
t (o)

S(t, x(t,0,p),¥(t,0,p)) = L(t,x(1,0,p),y(1,0,p))dr

We shall prove the following

LEMMA 3.2 Let B < Z* be any simply connected closed domain and let T denote
any rectifiable curve in Bwith (t,,a,, p,) as the initial point and (t,, 0, p ) as the
terminal one. Then

1+ (o) t (o)

[Ldt—([ L,de)do—(| L,dr)dp =
r ¢ t

S (29, X (g, 095 po)s Yty Ops Pos)) — S(t, X(1, 0y, p,), ¥( 1), Gy, P ))-

P ro o f. Let us note that, by (%,), the expression

ttia) tt(e)

Ldi—([ 1IL,dt)do—(| L,dv)dp

is an exact differential in the variables (¢, o, p) of some function Q (¢, o, p),
(¢, 0, p) € B. Assuming Q (t,, 05, p,) = 0, we see that the function Q (¢, g, p)
has the form

t Hia) t+(a)

Q(t,a,p) = ([ L(z, 0y, p)de—([ L(z, o,p)dr.

o

From the above formula we get

tt(a) 1 T{a)

[Lar— ([ L,dtydo— (| L,dc)dp =

= 0Q(1}, 05 p;) — Q (1, 0p, py) =

= S(tg x(2y 045 Po)s Y(1p Gps py)) — S(11, x (8, 04, 0,), (8, 01 01)),

as asserted. [}
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The next lemma appears to be a restatement, under our weakened
assumptions, of the well - known theorem of Malus from geometrical optics ( see

[7], § 26).

LEMMA 3.3. On each canonical pair of the canonical flow F the expressions

t+(s) t+(p)_

yx,+ | L,dz, +j L,dt, (3.1)
!

are constant.
In this statement x and y stand for the functions x (t,0,p ),y (1,0, p) and the
property is to hold for (t, ¢, p)e Z".

Pro of. We shall show that expressions ( 3.1 ) depend only on (g, p), i.e. do not
depend on 1.

Let (7, @, p) be any point of the set Z and X(1), y(r) u(l) the
correspondlng values of the functions x(1, o, p), y(t, o, p), u(t, o, p);
1<t <t*(c). Let further a, f stand for any coordinates of ¢ € G, p € R,
respectively, and a(t), b(t) for the values of

aiH(t x(1),y(1),u(t, o, p)), %H(r x(1),y(1),u(t, a, p))

at (1, 6, p), 1 <t < t* (o), accordingly. By integrating with respect to ¢, then
differentiating with respect to « and again differentiating with respect to ¢, from
(1.4), taking into account ( 2.5 ), we obtain the following relations calculated at
the point (1, 0. p), I <t < t*(a),

i

xdx(r) O-1 p)_xj(?'i o-: p) = J_f";(TQ 0.1 p)d‘r;

xg(t. 0, p) = x4(1, 0, p) = [ (1, 0, p)dr,

‘ 4

g_r“"*“’ o, p) = f (1.0, p), %xﬂ(r. o, p) =fy(t.a p). (32)

From equation (1.5) we see that at the same point (¢, , p ) the equalities
g = - ~ &
x.(1, 0, p) 7 y(1) = —x,(t, 0, p)H (1, x(1), y(1), u(1)),
(3.3)

x4(t, 0, p) f—; y(1) = —x4(1, 0, p)H (1, x(1), y(1), u(t))
hold.
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Multiplying relations (3.2) by y( ) and adding the results to (3.3 ), respectively,
we obtain - with the use of (2.5), (2.6) - at this very point

= x}=Lo=a 2 Gl -1, =b(), i<i<t(G). G4
Since G and R are open sets, the maximum relation ( 1.1) implies

a(t) =0, b(t)=0, T<t<i*(a).
Integration of (3.4) over the interval [7, t* ()] yields

= '+(3)~ = B = L S
yxo+f Lt =51 (3)x,+ L(t*(3), 3 )1, (o),
r
(3.5)
- ‘*(3)__ . =
yxp+f L,dt = 3(17(8))x,

!

where the left - hand sides are calculated at (7, g, p) and the right - hand ones at
(t* (@), g, p). Now, we see that the right - hand sides of (3.5) depend only on
(@, p) and do not depend on 7. Hence, in view of the free choice of the point (7, 7,
p) € Z"* and the coordinates «, § we infer that expressions (3.1 ) take constant
values on each fixed member of the canonical flow F. The proof of Lemma 3.3 is
now completed. [ |

4. Theorem on Poincaré - Cartan’s integral invariant

For each point (¢,, x,, y,) € D, we consider the integral
f+

S(ty, xg,¥0) = [ L(7, x(1), p(1))dr (4.1)

“along™ a canonical pairx (), y(¢),te[t ,t* ), 1~ < t,< t*,of theflow Fsuch
that x(7)) = x4, y(#,) = y, , where 1=, ¢* are the points from the loci
t=1 (o), t=1"(0g), 0 € G, respectively. Of course, through each point
(s Xo, ¥y) € D there may pass more than one member of F. Therefore, an
additional principle is formulated to be satisfied by the canonical flow F:

(he) If, through any point (7,, x,, y,) € D, there pass two members of F, then
the values of integral (4.1) along each of them are the same.

Thus the function S (7, x, y) of (4.1) is uniquely defined in D. This function
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in mechanics is called the activity function, while in optimal control theory - the
value function.
Let C be any rectifiable curve lying in D with the description

t=T1(s), %x=%(3) p=y(s), 0£s<]

where s is the arc length parameter. On the curve C we define the curvilinear
integral

5 d> - - - dt
[ydx—H(1, x, y)dt = [[y(S)—t — H(1(s), x(s), y(s))— lds (4.2)
C 0 ds ds
That this integral is well defined follows from Lemma 3.1.

We say that two curves C,, C,in D cut the same subfamily F(C, , C,) of the
canonical flow Fif, for each point of C,, there existpoints of C, and, a member
of F(C,, C,) which passes through these points and, conversely; for each point
of C,, there is a point of C, and a member of F( C,, C,) which passes through
these points.

We now come to our main result on some integral invariant.

THEOREM 4.1. Let two closed rectifiable curves C,, C, lying in D and cutting the
same subfamily be given. Let further ', , I, denote rectifiable curves of (t,a,p)-
space such that C,, C, are their images under the map (t, e, p)—(t, x(t,0,p),
y(t,0,p)). Wealso assume that I', , ', are included in some simply connected sets
contained in Z* and that the sets of values of T', and T, in coordinates o , p coincide.

Then the curvilinear integrals of the formw = ydx —Hdtalong C,and C,
are equal, i.e.

[ ydx—Hdt = [ ydx— Hd. (4.3)

& 2

Proof Inview of (1.4), (2.5) and (2.6), we have

[ ydx — Hdt = [ yx,do+yx,dp + Ldt =
€ T
:"'ta}_ r+(c)__

=i_!'{yxg+( j' L, dt)}de +{yx,+( j Lp)}dp+

1 i t

- t (o) _ t¥(a) _
+(Ldt— (| L,dt)do— (| L,dt)dp.

r t 1

1

Since C, is closed, Lemma 3.2 now implies
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tH(a) tH(a)

fo={{yx,+( [ Lyd)}do+{yx,+([ L,dr)}dp (44)

&y

Analogously, we get

tt(e)_ tt(e)
[ zrf{yxm“( [ L,dv)}do+{yx,+(f L,dt)}dp (4.5)

2

By the assumptions of the theorem, the sets of values of I', and T, in
coordinates ¢, p coincide; hence, from Lemma 3.3 we conclude that the
right - hand sides of (4.4) and (4.5) have the same value. The proof is now
completed. =

REMARK 4.1. The above theorem generalizes the well - known theorems of this
type (cf. [ 1], § 44) not only because here weaker assumptions on H are imposed
but mainly, because the members of F may intersect. The form w = ydx — Hdt
is called Poincare - Cartan’s integral invariant.

Consider the particular case when the curves C,, C, lie in the hyperplanes
t = const. Along such curves [@w = [ydx. Let

Ve It 9 Dst= Lk

I

= (X y)eD it =t}

and consider the map g: ': D'o— D" defined by the canonical flow F when
t varies from ¢, to ¢, t‘(oa) <1, <1, <17 (o), 0 eG. We note that this map
may be multivalued.

We now assume, in addition, that the map (¢, 0,p) = (£, x(t,06,p),y(2,0,p))
is such that any closed curve C = D, , 1s the image under this map of some
rectifiable closed curve I" of (#,, 6, p ) - space included in some simply connected
set. We also suppose y (¢, 0, p) to be a C'-function for (o, p) € G.

Let C be any closed rectifiable curve in D'o. As its image under the
mapping g,'! we understand the rectifiable curve C obtained in the following
way. We take I'j) whose image is C To the curve I', there corresponds
arectifiable curve I'; such that (¢,, o, p ) el if (ty,0,p)el,. Now, C, isdefined
as the image of T, underthemap(tl, g, p) = (tuX(tya.p)» (0, p)) In the
sequel, theimage of C, under the map g, 1 will always be understood in the above
described way. C

Theorem 4.1 implies the following, self -evident but essential



104 J. BARANOWICZ, A. NOWAKOWSKI

COROLLARY 4.1. Let g,’[:, ; C,u, C,] be as described above.
Then

_[ ydx = _[ya'x.
¢ ¢

ty 1

REMARK 4.2. The form ydx is termed Poincare’s conditional invariant. This
form has a simple geometric interpretation. Assume that there exists
a two - dimensional oriented chain y, with C, as its boundary contained in D,
and, analogously, a chain y, with C, as its boundary, C, < D, . The curve C, is
obtained from C, by using the map g, '. Now, we have

[dy ndx = [dy ndx. (4.6)

'}’I,n '.1",1
Indeed, Stokes’ theorem implies

[ ydx = [dy ndx, | ydx = { dy ndx;

c T c
Ly rIn I lfI

hence Corollary 4.1 gives (4.6).

We say that a mapping g : R*" — R*" is canonical if

[ydx = ydx
C 2C
where C, C = R*", denotes any rectifiable curve and g C stands for a rectifiable
curve being the image of C under the mapping g.
From Corollary 4.1 we immediately have the following

REMARK 4.3. Themap g/ : D, - D,,t (g)<t, <t<t (0),0€G,1,-fixed,
defines in D the canonical map (g, , D, , D,are understood as in Corollary 4.1).

In this way one can further study consequences of Theorem 4.1; we shall
not do this here. We come back to form (1.3 ) and to functions (1.1 ) and (2.6).

5. Properties of the activity function, Hamilton - Jacobi - Bellman equation

In this section we give more exact relations between the functions L, H and
the form @ defined in Sections 1 and 2. These relations have miscellaneous
applications, e.g. in mechanics, in optimal control theory.

We put
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Z** = {(t,0,p):t =t*(a), 0€G, peR}
(for G and R see Section 2) and, next,

D* = {(t.x.y):x = x(1.6,p),y = y(1,0,p),(2,0,p)eZ**}. (51)

From now on, in place of hypothesis ( 4;), we shall only suppose that the
map Z* \ Z** - D\ D™, defined by (¢, 0, p) = (8, x(1, 6, p), ¥(t, 6, p)), is
descriptive. | .

A subset D of D is called an exact set if, for each rectifiable curve C, C < D,
with end points (¢, x,, y,), (£, Xx,, »,), the equality

j..]"dx_'Hd‘= S(typx,p) —S(15X5,) (5.2)

&
holds.

(h,) In what follows we suppose D™ to be an exact set. We shall, at the same
time, assume the integrand on the right of (4.2 ) to be Lebesgue integrable.

If (11;) is satisfied, then, of course, the right - hand side of ( 5.2) is equal to
zero for Cc D*.

LEMMA 5.1. The quantities

yx, + L A yx,
are identically zero in the set Z*~.
Proof. Let (1,0, p,) be any point of the set Z*" and I - any sufficiently small
rectifiable curve in Z** which corresponds, by setting t = t*(¢), to a small
segment parallel to one of the o -axes, with the initial point (g, p,). Let C,

C = D*,stand for theimage of ' under the map (¢, a,p) = (1, x(t,0,p),y(t,0,p)).
Since D" is exact, we have

0= {ydx— Hdr = Iyxada+zdz = f(yx,+£rd+)a'0‘.
& {17 I

Hence, taking into account that " was chosen arbitrarily, and that y x, + E,t,,"’ is
a continuous function in Z*", we infer that yx, + Lt,* is equal to zero at
(t*(a,), 0o, Py ), i.e. at any point of Z*~.

The proof concerning y x, is analogous. 5

COROLLARY 5.1. The expressions
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1%(a)_ t+(a)_
yx,+[ L,dt, yx,+{ L,dt
t t

¥ . *
vanish in Z~.

Proof. These expressions are continuous functionsin Z* by ( h »)=(h,). Lemma
3.3 now implies that the expressions are constant on each member of F, therefore
the assertion follows from the above lemma.

Let C be any rectifiable curve contained in D\ D% with parametric
description

t =1(s), x=x(s), y=y(s), 0<s<{

where s is the arc length parameter. Then function (4.1 ) restricted to the curve
C has the form S(7(s), x(s), y(s)), i.e. is the function of the variable s for
s € [0, {]. |

The next theorem will show that form (1.3), introduced in the artificial
way in Section 1, appears in the natural way in mechanics or optimal control
theory. Namely, we prove the following important,
contrl21-Control and Cybernetics-skl-G.P. korekta DM

THEOREM 5.1 The function s — (S(1(s), x(s), y(s)), s € [0, (], is absolutely
continuous and, for almost all s in [0, (], the relation

L S@(s)7(1F()) = —[7()ZE— BGE$).5()TNH]  (53)
ds ds ds

holds.

Proof. First, we prove the absolute continuity of S(7(s), x(s), y(s)) as
a function of s. The function (d—r , ax ), defined for almost all 5 € [0, (], is
integrable over [0, {]. ds

So, let 5, € [0, {] be any point such that (j—:, ;% ) is approximately continu-

ous at it (almost all points in [0, {] are such ). We introduce the notations

;=}'(Sﬁ), ';=‘;(s())a }‘= dr(SO)!
ds
;‘::d';‘:‘gﬂ)’ .‘j’;=.]—’)(sl])1 EIZH(E’},})

Let (7,0, p) be any point of Z*\ Z*™ for which x(7,0,p) = X, y(1,0,p) = ».
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Denote by T a rectifiable curve in Z*\ Z*" such that small arcs of the
curve C, issuing from (7,Xx,y), are, in accordance with ( /), the images under
themap (t,0,p) — (1, x(1,0,p),y(t,0,p)) of small arcs y of " issuing from the
point (7,0, p). Let us now find a parametric description of the curve

t=1(1), e=3a(i), p=p(i), 0<i<gy,

such that the point (7,0, p) € T corresponds to zero, while 4 is the arc length
parameter. We can then define a continuous increasing function s = s(4),
A€[0,n], such that s(0) = s,, which gives rise to the corresponding arc length
along C, i.e. which satisfies in any subinterval [0,%,] = [ 0,5] the relations

T(s(A)) =7(R), X(s(4)) = x(1(1),6(1),p(2)),
y(s(1)) = p(E(4),0(1),p(1)).

Let now y be a sufficiently small arc of I" issuing from the point (7,7, p),
described above, defined in the interval K = [0,#,]. Denote by As and AS the
corresponding differences in s and in S(¢z,x,y) at the ends of a small arc of
C issuing from the point (7,X,y), being the image of y. Let further

t+(a) t¥(a)

3‘:] t—([ L,dt)ydo— (| L,dr)dp

(comp. Lemma 3.2). Wehave AS = —AS. On the other hand, by Corollary 5.1,
along y we obtain

!+(0)__ +(a)

yx,+ | L,dt=0, yx+j L,dr =0.
!

Hence, using (2.5) and (2.6)

AS = _[(yx—H)dr-i—yx do + yx ,dp = _[(y——H--—)ds(A) (5.4)

where — H = L — yﬁ By the assumptions imposed upon the functions E.,_?, yin
Z*, we get the boundedness of A in K and next, from (5.4), the uniform

AS
boundedness of e as As— 0. This means that § is a locally Lipschitz

function of the variable s and, hence, absolutely continuous in s.
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: o dt d:
To prove (5.3 ), we note that the approximate continuity of ( T d—; )ats,

implies that, given ¢ > 0, there exists a closed set B of values of s such that, for

each sufficiently small interval B, = {s: 5, < 5 <5, + J}, the inequalities

(1) |(%,§)—(1§c)i<s s€Bn B,
(ii) meas (B; \ B) < &

hold (|- | stands here for the Euclidean norm).
Denote by A the set of those values of A for which s (1) € B. In view of the

; ; g dx ~ dt :
above considerations, we can regard the expression y s H e as a function
§ A

ofmnKThusfweSetg—»g(A)—(yg— j—;)—(;;—ﬁ?),thenwe
have

AS e

— = — Hi) = — A)ds(A

% ) ASig( )ds(4) =

(5.5)
=.§ | g(A)ds(2)+ — jg(;)ds(ﬂ)

§ EnA

For a sufficiently small segment K, g is bounded in K\ A and this set has
s(A)-measure less than £d, by (ii) above with § = As. The s (4)-measure of the
set K~ A is at most 8. From (i) and the continuity of Hand yit now follows that
the absolute value | g | of the integrand in (.5.5) does not exceed in the set KN A
a fixed multiplier of &. This means that the last two terms in ( 5.5 ) cannot exceed
certain fixed multipliers of an arbitrarily small positive ¢. The proof of the
theorem is now completed. ]

From Theorem 5.1 we derive the following (also important) corollary.

COROLLARY 35.2. The set D is exact, i.e. equality ( 5.2) holds for each rectrifiable
curve C of D.

Proof. Since DT is an exact set, we can confine ourselves to show that the set
D\ D™ isexact. By integrating ( 5.3 ), in view of Theorem 5.1, we obtain (5.2 ). H

COROLLARY 5.3. Let C be any rectifiable curve in D with the arc length parametric
description
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b=ty X=% y=30E) 02l
Then, for all s, 0 < s < (, we have
S(Imxus)_)(s)) = S(IO:xos;(O))-

P r o o f. First, we note that if the curve C lies in D*, we have the assertion at
once ; hence we assume C to be included in D\ D*. By (5.3), we conclude that

A S(t5,%5,7(s)) =0 ae.in[0,].
ds i

From Theorem 5.1 follows the absolute continuity of S(#,,x,,y(s))in[0,{].
Thus S(#,,x,,y(s)) is a constant function equal to S(t,,x,,7(0)), W as
required.

Corollaries 5.2 and 5.3 immediately imply
COROLLARY 5.4. Let (t,,x,,¥,), (15, X5, ¥,) be any points of D. Suppose the sets
Pi={(txp):t=%4, x=%, peR'InD,
Pp={({txy)it=¢ x=2x, peR'}InD.

are connected. If C is any rectifiable curve in D with its end points in P, and P,,
respectively, then

{ydx‘—Ha't = 8Tt Xu ) —S(luxsr)

REMARK 5.1. The word “connected™ in this paper is understood as follows:

A set B is connected if, for any two points of B, there exists a rectifiable
curve in B which joints them”.

In the special case when the points (,,x,,y,), (£, X5, ¥,) are joined by
a curve y which belongs to the canonical flow F, Corollary 5.4 is known in
mechanics as the principle of the least activity. The curve y is then called the
extremal curve of the integral | ydx — Hdt.

Denote by D, a set of (7, x)-space covered by graphs of trajectories x(¢)
such that x (1), y(t), u(t) is a canonical pair and member of the flow F at the
same time. Assume also that, for each (7,,x,) € D,, the set

Pu={(f,x-y’)‘-'f=fo, x=x|]-, yGR"}ﬁD

is connected. Then, by Corollary 5.3, the function



110 J. BARANOWICZ, A. NOWAKOWSKI

S(tosxo) == S(tus xgay) (56)

is uniquely determined in D, where S(t,, X,, ¥), (t,, Xy, ¥) € P,.,is defined by
(4.1). Suppose further that D_ is an open set and that there are continuous
derivatives S,, S.. Then from Theorem 5.1 we infer directly that the function
S(t, x) satisfies in D_ the Hamilton - Jacobi - Bellman differential equation

-S4+ H(t,x, —8,)=0.

Indeed, in classical mechanics the function S (¢, x) is called the activity
function, thus our function S(¢,x,y), (f,x,y) € D is its generalization.

REMARK 5.2. Considering the particular case when the function H(1t,x,y,u)
does not depend on the function u, i.e. H(t,x,y) = H(t,x,y,u), we see that all
we have done so far forms the generalization of the classical theory of the
canonical formalism (see [1], Ch.9).

6. Adaptation to optimal control theory

Let, asin Section 1, U denote a Borel subset of R” and letu(7):[a,b] —» U
be a measurable function which will now be called a control or an admissible
control.

Consider a vector function f, f = f(t, x,u), where
fi[a,b] x R" x R™— R" and a scalar function L defined in [a,b] x R" x R".
We assume these functions and derivatives f, (¢, x,u), L. (t,x,u) continuous.

An admissible trajectory x(t) corresponding to a control u(t) is an
absolutely continuous function x : [a,b] — R” satisfying

x(t) = f(t,x(t)u(t)) (6.1)
for almost all z1in [a,b].

We shall consider the following problem :

”Find a minimum of the functional
b
I(x.u) = j' L(t,x(t),u(t))dt (6.2)

over all admissible trajectories x () and corresponding controls «( 7) such that
x(a) = ¢, x(b) = d, where ¢, d are fixed points of R"”.
To solve this problem, we put

H(t,x,y,u) = yf(t, x.u)— L(t,x,u);
(6.3)
(t,x,y,u)e[a b] x R" x R" x U.
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An admissible pair of functions ( x, «) will be said o satisfy the maximum
principle (comp. [2], Cor.2) if there exists an absolutely continuous conjugate
function y : [a,b] = R" such that

(D) y(1) = = H(t.x(2),y(1),u(1)) (64)

(ii) H(t,x(t),p(t),u(t)) = sup{ H(t,x(t),y(1),u:ue U}.

Asin Section 2, we shall call each pair (x (1), u(1)),t€[a, b], satisfying the
maximum principle a trajectory. We term a canonical pair a trio of functions
(x(2).y(t),u(t)). t € [a,b], such that (x(7),u(¢)) defines a trajectory and
y (1) is the corresponding conjugate function which satisfies ( 6.4 ). Thus, we can
further consider a canonical flow F, if it exists, i.e. a family of canonical pairs
which satisfies (4,)-(h,). Of course, all these assumptions do not exclude the
case when, at some point of D, the canonical pairs intersect, Having this in mind,
with each point (7, x, y) of D we associate the set

U(t,x,y) (6.5)

of values of such controls « at the point 7 for which the corresponding members of
the flow Ftake, at the point ¢, the values x, y, i.e. the set of values of the function
u(t,0,p)atthose points (t,a, p)of Z* where x(¢,0,p), ¥ (1,0, p) take the given
values x, y, respectively. Naturally, (6.5) may be a multivalued function. We
shall call it the generalized feedback control. By an admissible feedback control we
shall mean a single - valued function u (¢, x, ), u(t,x,y)e U(t,x,y)for (t,x,y)
€ D, such that at each point (7,x,y) the point (,x,y,u(z x,y))lies on
a canonical pair of our flow F. It is clear that at any point (¢, x, y) of D we have

H(t,x,y) = H(t,x,p,u(t,x,y)) =sup{H(t,x,p,u):ue U} (6.6)

for all admissible feedback controls u (¢, x, y).

It is evident that if we take for H (¢, x, y, u) from Section 1 function (6.3)
with u = u(t,x,y), then our functions f'and L from (6.1) and (6.2), also with
u = u(1,x,y),are the same as the functions fand L computed from (2.5) and
(2.6).

Now, we have the following lemma which is quite similar to Lemma 3.1.

LEMMA 6.1. Let C be any rectifiable curve situated, together with its end points, in
D\ D*. Then, there exists along C an admissible feedback controlu, (1, x,y) such
that the function

H(t,x,y) = H(t,x,y,u,(t,x,7)),

given by (6.6), is bounded and Borel measurable.
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Having done all that, we are now in a position to apply the results of
Section 3. Indeed, we have defined the functions L, f, H and the sets D, Z*, D™,
Z**, D aswell as the function S( ¢, x, y ) in D. Therefore, we are able to prove the
following

THEOREM 6.1. ( Sufficiency Theorem ). Assume that a canonical flow F exists and
that the set

P ={{xy):t=ax=¢yeRnD
is connected. If an admissible trajectory x(t),x(a) = ¢,x(b) = d,under control
u(t), telabl, is a trajectory of the flow F, then, for this pair ( X , u), functional
(6.2) attains its minimum relative to all admissible pairs ( x, u) such that:
(1 xla)=e xth) =d;

(ii) graphs of the trajectories x(t) lie in the set D _;

(ii1) there exists a rectifiable function y(t), t € [a,b], such that the triplets
(t,x(t),y(t))e D fortelab].

P r o o f. Making use of Corollary 5.3 and of (5.6), we have
- b J— —
S(a,c) = S(a,c,p,) = [ L(t,x(1),u(1))dt (6.7)

for all y, e P,. From Corollary 5.2 we conclude that the set D is exact, which
implies the equality

[ydx — Hdt = S(a,c,y,) (6.8)
{24
for each rectifiable curve C, C = D, with ends (a,¢,y,) € P, (b,d,y,) € D*. In
particular, (6.8) holds for all curves (x(¢),y(t)) that satisfy conditions

(i)-(iii) of the theorem. Comparing (6.7) and (6.8) and taking into account
that x(¢) satisfies (6.1), we obtain

I(x,u) = ij(z.}(t),E(r))dr =

o I,[y(f)f(i,X(I),u(!))h H(t,x(1),p(t),u(t,x(t),y(t)))]de
for some admissible feedback control (¢, x,y). Since

I(x,u) = ij(:,x(x),u(z))dz,
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we have

I(x,u)—I(x,u) =
(6.9)

b
= [ {H[t,x(1),y(),u(t.x(1),y(1))] — H(t,x(t),y(1).u(1,)) }dt.
By virtue of relation (6.6), the inequality

I(x,u)=I(x,u)=0

holds, as asserted. This completes the proof of our sufficiency theorem. W

REMARK 6.1. Let us note that formula (6.9 ) generalizes Theorem 3.1 of [5]. In
particular, the integrand in (6.9) is a generalization of the Weierstrass excess
function.

REMARK 6.2. Theorem 6.1 generalizes the classical sufficiency theorem of
Weierstrass from the calculus of variations. Indeed, let U = R" and
S(t,x,u) = u, i.e. x = u. Suppose the classical assumptions fulfilled: the
function L(7,x,u) is a C*-function; the family of extremal trajectories
x(t,0,p) (trajectories of our canonical flow ) is independent of the parameter p,
i.e. has the form x(t,6),(f,0)e Zand x(t,0)isa C*-functionin Z, x, # 0Oin
Z\Z*(Z* = {(t,6):t = t"(a),0eG});theset Z\ Z* is simply connected
and through each point of D \ D . * (D,* = {(17(0),x(1"(6),6)):6€G})
there passes one and only one trajectory x of the family x (7, ¢ ). We notice that in
this case the map (t,6) = (t,x(t,0)) : Z\Z* - D\ D" has the inverse
C'-map (1,x)—(t,6(t,x)), which implies that it is descriptive. We set
y(t,6) = L,(1,x(t,06),x,(2,6)). Of course, y(7,6)isa C'-function in Z and
the map (t,0) = (t,x(t,0)), y(t,0)) is descriptive in Z\ Z*. The set G is
connected, so the set P, from Theorem 6.1 is connected. If the E - Weierstrass
function is non-negative, then condition (6.4) (ii) is fulfilled. The family
(x(t,0),y(t,6)), ¢ € G, forms a canonical flow. As the function
y(t,0) = y(t,0(t,x))isa C'-function in D _\ D", we have assumption (iii)
of Theorem 6.1 satisfied, too. Hence we can finally conclude that if the classical
assumptions of Weierstrass’ theorem are satisfied, then all the assumptions of
Theorem 6.1 are also satisfied.

Now, we give a simple example from the classical calculus of variations to
show the value of the above theory and, in particular, of Theorem 6.1.

EXAMPLE. Consider the optimal problem

minimize%oj.x (— x2(1) + y*(1))dt (6.10)
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in the space of absolutely continuous functions with x(0) = 0, x(m) = 0. Itis
known that this problem cannot be solved by any classical method (the field
theory of extremals or conjugate points) and by a generalization of the field
theory described in [ 6], either.

The function H (1, x,y) is now equal to
2

H(1,%p) = — x*4— ¥

L gl
2 2

The canonical triplets satisfy
x(1) = y(1), y(t) = —=x(¢).
We choose the family
x(t,o) = osint, y(t,c) = acost, te[0,n],0€e R

Hypotheses (h,)-(hs)aresatisfied (D = {(t,x,y):x = x(t,6),y = y(1,0),
te[0,n],c€ R}). The set P, = {(0,0,y): y € R} is connected.

Therefore, by Theorem 6.1, x(¢) = 0, ¢€[0,n]. affords (6.10) the global
minimum.

We notice that in [6] it is required that the map (z7,6) — (2, x(1,0)),
te[0,%], o € R, be descriptive, which is not true in our example, while in the
theory described here we require that (¢,6) = (¢, x(t,a), y(t,0)) have to be
descriptive and this holds in the above example.
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Uogélniony formalizm kanoniczny z zastosowaniami

Celem pracy jest uogolnienie klasycznego formalizmu Hamiltona - Jacobiego na przypadek,
w ktorym funkcja Hamiltona H zalezy od sterowania ( parametru) u,

H(tx,y) = max H(t,x,p,u)

Podana teoria jest zlustrowana dwoma przykladami zastosowan: w mechanice i teorii
sterowania optymalnego. Uogdlniono twierdzenie dotyczace calkowego niezmiennika Poinca-
re-Cartana oraz podano warunki wystarczajace dla istnienia minimum w pewnym zadaniu
sterowania.

Ob6o0mensiii kanonnvecknii GopMaan3M ¢ npeMeHeHHAMH

Lensio pabotet seaserca obobmenue kraccuueckoro gopmaausma Namubsrona-Ako6u s
caywas, korja Gynuxnus FamunsTona H 3aBHCHT OT YIPABJICHNS NAPAMETPA U,

H(t,x, y) = maxu H (1, x, y, )

[IpuBeacHnas Teopus HILTIOCTPHPYETCA ABYMSA IIPUMEPAMH NIPHMEHEHHIT: B MEXAHHKE H B TEOPHH
onTumainbHoro ynpanienus. OGobmesa Teopema, KAcalOUIAACA HHTErPAIbLHON MOCTOAHHON
IMyauxape-Kaprana, a Takke AaHBl AOCTATOYHBIC YCJIOBHS CYMICCTBOBAHMA MHHMMYMa IS
HOKOTOPOI 327841 yNpapicHHs.






