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1. Introduction 

We are concerned with methods for solving a nondifferentiable and 
nonconvex problem of the form 

where 
minimize/( x ), subject to g ( x) ~ 0, 

f(x) = f(x, h(x)), 

g(x) = g(x, h(x)), 

·h(x) = (h1(x), ... ,hM(x)), 

h;(x)= max {hi ;(x):jel;} fo r iel, 

( 1.1) 

( 1. 2a) 

( l. 2b) 
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the functions /: RN x RM -+ R, g : RN x RM -+ R and h 
11 

: RN -+ R are 
continuously differentiable, I: = { I, ... ,M } and J1, i e I, are nonempty finite sets 
of indices. We shall also consider problems with objectives and constraints given 
by point wise maxima of functions of the form ( I. 2 ). Such problems arise in 
many applications (e.g. minimax problems, /1 and /

00 
approximation problems, 

exact penalty methods) and have been treated in several papers; see, e.g. [ 1 ], [ 2 ], 
[ 3], [ 41, [ 5 ], [ 6 ], [ 8 ], [ 11 ]. 

Several algorithms for problem ( 1.1) are known. The methods of[ 3 ], [ 11 ], 
which treat the original problem indirectly by solving an infinite sequence of 
unconstrained differentiable problems, converge under additional assumptions 
which may be difficult to check a priori. The algorithm of[ I ], as well as general 
purpose non smooth optimization methods (e.g. [ 7 ], [ 10] ), can be used when 
the functions]'(x, y,, ... ,yM) and g(x, y 1, ... ,JA.1 ) arc nondccreasing with respect 
to each y1 , i e I (see also [ 8] ). If this assumption fai ls, e.g. 

only the method of [ 4] may solve (approximately) problem ( 1. 1 ). 
This paper presents a method of feasible directions that is tailored to the 

structure of ( 1.1 ). The algorithm generalizes one given in [ 9] for the 
unconstrained case. At each iteration several search directions are found by 
solving several quadratic programming subproblems. Then an Armijo-type 
search is performed simultaneously along all the search directions to produce the 
next improved estimate of a solution. The algorithm is "globally" convergent in 
the sense that each of its accumulation points is inf-stationary for problem ( 1.1 ) 
(see Section 2 for the definition). 

Our algorithm differs from its predecessor of [ 4] in two aspects. First, its 
line search procedure needs only a finite number of function evaluations, 
whereas [ 4] requires exact directional minimizations. Secondly, we have 
modified the direction fmding subproblems of[ 4] which ensure convergence to 
only approximately inf-stationary points. ln effect, our algorithm seems to be the 
first readily implementable. and globally convergent method for the problem in 
question. 

The method is derived and stated in Section 2. rts global cnvergence is 
established in Section 3. Extensions to more general problems are discussed in 
Section 4. Finally, we have a conclusion section. 

RN denotes the N-dimensional Euclidean space with the usual inner 
product < ·, · > and the associated norm 1·1. Superscripts are used to denote 
different vectors, eg. x 1 and x 2

• All vectors are row vectors. 
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2. Derivation of the method 

We start by reviewing well-known properties of problem ( 1.1 ) (see [ I], 
[ 2 ], [ 4] for details ). LetS = { xe RN: g( x) ~ 0 } denote the feasible set. For any 
fixed x e RN, let 

H (y,x) = max {f(y )-f(x),g(y)} forall ye RN 

denote the improvement function. To justify this name, suppose one can find 
y such that H(y, x) < H(x, x). Then y is better than x, since if 
H(x, x) = g(x)>O then g(y) < g(x), whereas if H(x, x) = g(x)+ = 0 
thenf(y) <f(x) and yeS, whereg(x)+ = max {g(x ), 0 }.It follows that any 
local solution x e S of ( 1.1) is a local unconstrained minimum point of H ( ·, x ). 
In particular, we have 

H ' ( x,x ;d)-;?;0 forall deRN, 

where 

H'(x, x; d) = lim [H(x+td, x)- H(x , x )] f t 
t!O 

denotes the derivative of H ( · , x) at x in the direction d. 
Note that 

{ 
r· (x; d ) 

H '(x, x; d) = max {f'(x;d),g'(x;d)} 
g '( x; d) 

if g(x) < 0 , 
if g(x) = 0, 
if g(x) > 0. 

Points x satisfying ( 2.1 ) are called inf-stationary for problem ( 1.1 ). 

( 2.1) 

(2.2) 

Weshallneedthefollowingnotation.Forz = (x,y)eRN x RMwedenote 

by Vj( x, y) the N-vector (.El_ ( z ), ... ,lL ( z) ) , while .1f_ ( x, y) denotes 
::. 7 a z , a z"' o y, 

!t.J__ ( z ), i e J. For x e RN and i e /, let 
()z I+"' 

Then 

a{(x) = aJ (x. h(x)), 
8y, 

bf (x) = V/(x, h(x)). 

f'(x;d) = (bi(x), d)+ I: af( x)h;'(x ;d) = 
tel 

= (bi(x), d)+ I: af (x) max ( Vh11 (x), d), 
ie/ jeJ

1
(x) 
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so that 

f'(x;d) = (lY(x),d)+ "£
1 

max ( a/ (x)Vh11 (x),d)+ 
i e / +(x) j eJ

1
(>:) 

+ "£
1 

min (a( (x)Vh11(x),d ) , 
ie I_ (-<) je J

1
( .'<) 

where 

J1(x) = {jeJ; 

l : (x)={iel 

/ 
l _ ( x ) = {ief 

h11 ( x) = h1(x)} , 

a ( (x) > 0} , 

a/(x) < 0} 

iel, 

K.K!W!EL 

and the summation over an empty index set yields zero. Observe that f' (·;d) 
may be discontinuous if so are J;( · ). Therefore a better model of 
f( x +d) - f( x) is given by the family of functions 

j(d;x, wf, £5) = (b f (x),d) + "£ 
1 

a( (x) max [h
11
(x)- h1(x) + 

iE / +( .T) jc J
1
(T,O) 

+ ( V h1 1 ( x) , d ) ] + ( wl , d ) 

parametrized by wl in 

Bl (x,b ) = {wfe R N: w' = "£ 
1 

a/ (x)Vh11(x) 
i E I _ ( .< ) 

for some j e J1(x,b)}, (2.3) 

where the use of 

with a fixed "anticipation" tolerance b > 0 may take into account possible 
changes in J 1( ·) around x, as will be explained la ter. Note that 

f'(x; d) = min {j(d;x , wl, 0) : w l e Bf (x , 0) }. 

Replacing ''f" by "g" in the preceding paragraph, we may approximate 
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g (x + d)- g(x) by functions g(d;x , wg,b) with w' in B ' (x , b). Hence for 
w = (wf, wB) e Bf (x , b) x B B(x,b) =:B(x ,b)functions 

H(d; x , w , b) = max {j(d;x , wf, b) ,g(x) + g(d ; x, w' . b) } - g(x)+ 

may serve as models of H(x + d ,x)- H(x , x). Since we want x + d to 
improve on x, we may choose d( w) to 

minimize H(d;x, w,b) +_!_Id 12 

2 
over all d e RN (2.4) 

where the term Id 12 I 2 ensures that d ( w) stays in the region where H ( ·; x, w, b) 
is a close approximation to H ( x + ·, x) - H ( x, x ). In view of the strong 
convexity of the objective function of ( 2.4 ), the unique solution d ( w) of ( 2.4) 
exists and satisfies (see [ 6], [ 8]) 

d(w) = JJ/(w)df(w) + J-LK(w)d 8 (w) (2.5a) 

for some 

J-L f (w) ~ 0 , J-L ' (w) ~ 0 , J-L f (w) + Jl ' (w) = 1, ( 2.5b) 

where 

df (w) = - [b f (x) +I: 
1 

a / (x)I: J..ft_w)VhJI (x) + wf], (2.5c) 
l<; / +(x) j<;J1(x,6) 

for some 

).~(w)~O for jeJ1(x,b), 

I: l~ (w) = l, for i e I:(x) 
}G J1 (x,~) 

and d8 ( w) satisfies a similar relation. Moreover, since 

H(d(w);x,w,b) +_!_ ld(w)I2 ~H(O;x,w, o)+_!_ l0 12 = 0, 
2 2 

we have 

H ( d ( w) ; X ' w' 0 ) ~ - __!_ I d ( w) 12 

2 

and , since the preceding definitions imply 

(2.5d) 

(2.6) 

H '(x, x ; d) ~ H(d ; x , w, b) if we Bf (x, O) x B' (x, O), (2.7) 
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we see that d ( w) is a descent direction for H (', x) at x if d ( w) =f. 0 and 
we B( x,O). 

We may now state the method in detail. 

ALGORITHM 2.1. 
Step 0 ( Initialization ). Select a starting point x 1 e RN, a final accuracy tolerance 
e1 ~ 0, an anticipation tolerance b > 0 and a line search parameter m > 0. Set 
k = I. 

Step 1 (Direction finding). For each w e Bf ( x, b) x BK ( x, b), find d ( w) from 
the solution (d( w), u ( w); u{ ( w), iel: (x); ul ( w), ie I ; c w)) to the quadratic 
programming subproblem 

min _!_ I d 1
2 + u, 

d,ll ,u{,ul 2 

for 

for 

. Jk J E I , 

k 
je J ,, 

. I Jk 
I E + , 

. gk 
lE I + , 

Step 2 (Stopping criterion). If ld(w)l ~ e1 for all we Bf (x , 0) x Bg(x, O), 
terminate. Otherwise, set 

(2.8) 

and continue. 

Step 3 ( Stepsize selection ). 

( i) Set t = 1. 

(ii) Find win B (xk,tJ) such that 

( iii) If 
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set t 4 = t, dk = d ( w ), xk + 1 = xk + tk d" and go to Step 4; otherwise replace 
t by t/ 2 and go to Step 3 (ii). 

Step 4 Increase k by I and go to Step I. 

Observe that the algorithm cannot cycle infinitely at Step 3, since Step 3 is 
always entered with d(w) =1= 0 for some wE B(xk,O), so that t !0 and 

H'(xk, xk; d(w)) ~ liminf [ min H(xk + cd(w), xk)-
t!O wEB(xk.li) 

- H(xk ,xk) ]/ t ~ lim mtuk = 0 
I !0 

would contradict (2.6) and (2.7). Moreover, H(X< +1, X<)< H(X<, X<). This 
means that if g ( x 1

) > 0 then the algorithm decreases constraint violation 
(without unduly increasing objective values) until a feasible X< is found; then the 
successive points stay feasible and f( X<) decreases monotonously. 

In order to see why the algorithm has to use a positve anticipation 
tolerance fJ, suppose thatf(x) = x and g(x) = -lxl = min{x, -x} for 
xE R1,x1 = l ,e1 = Oandm = O.l.ForfJ = Owewouldget:xk = l/2k-lforall 
k,whereasforfJ = lwehavex2 = 0.5,B1(r,l) = { 1,-l},d( O, l) = -1 , 
d ( 0,- 1 ) = - 0.25 and the algorithm "jumps" over the nonstationary point 
x = 0 to x! = -0.5, continuing with xk ~-ex:> and/(xk)l-oo. 

3. Convergence 

In this section we shall establish global convergence of the method. In the 
absence of convexity, we will content ourselves with finding an inf-stationary 
point of problem ( 1.1 ). Naturally, we assume that the final accuracy tolerance e1 
is set to zero. 

We start by analyzing properties of search directions generated around 
nonstationary points. 

LEMMA 3.L. Suppose that i ERN, wE B(x, 0) and dE RN are such that 
H (d; X, w, 0) < 0. Then there exist e > 0 and neighborhoods s (X) and s ( w) of 
x and w, respectively, such that 

H'(x, x; d(x, w)) ~ -e for all (x, w) E S(x) x S(w), (3.1) 

ld(x, w)l ~ e for all (x, w) E S(x) X S(w), (3.2) 
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where d ( x, w) denotes the solution of ( 2.4 ). 

P r o o f. By assumption, for some e > 0 we have 

-g( x)+ + (bf(x), d)+!: r _ a{(x) ma~ (Vh11(x), d)+ 
I e I+ {x) j e J1{x) 

+ ( Y.J,d) < - e ( 3.3a) 

( 3.3b) 

and d # 0 with w = ( wl~ wg). Hence, using the continuity of the functions 
involved in ( 3.3a ), we may choose S ( x) x S ( w) such that 

I [ ( x) c I [ ( x) and I [ ( x) \I [ ( x) c { i E I : a { ( x) = 0 } , 

(bf(x) + wf,d.) +!: 
1 

_ a{(x) max_ (Vh11 (x), d).:::;; -e/2 + g(x)+ 
le/+(-<) }eJ

1
(x) 

(3.4) 

for all x E S ( x ), w = ( wf, wg) E S ( w ). Next, since h1 and hJi are continuous, 
while b > 0 is fixed, we have J1(x) c J1(x, b) and h11 (x) -h1(x) < -8 for 
some fixed e > 0 if xis close to x and} E J 1( x, b)\ J1( x ), so we may shrinkS ( x) 
and choose small 7 E ( 0, 1 ) such that 

max_ < Vh 11(x), td) ;;::: ma~ -tl V'h11(x) 11 d I > -s/2 > 
j E J ;<x) j E !;(.<) 

> h11(x)- h1(x) + (Vhi1(x), td) 

for any j E J1(x, b)\ J1(x), x E S(x). Hence we may multiply (3.4) by t, use the 
preceding inequality and subtract g ( x) + to obtain 

f ~ f 
- g (X) + + ( b (X) , d ) + L f a1 (X) max ( h J 1 (X) - h; (X) + 

le/+(x) je J;<x,o) 

+ (Vh11 (x), d)]+ ( wf, d).:::;; -e- ( 1-t)g(x)+ 

ford = td, e = t e I 2 > 0 and all X E s (X), wE s ( w ). But (I - t) g (X)+ ;;::: 0, 
so we obtain 
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f(d;x, wf, c5)- g(x) + :::; - e 
and, since the preceding arguments apply also to ( 3.3b) (with g ( x) + replaced by 
g(x) + - g(x) ~ 0), we deduce that 

g(x) + g(d;x, wg,c5)- g(x)+:::; -e. 
Thus H(d;x,w,c5)::;; -e and, since H(·;x,w,c5) is convex and 
H(O;x, w,c5) = 0, H(td;x, w,b):::;- te for all t E [0, 1 ], so, since d(x, w) 
solves ( 2.4) and s may be decreased, 

~ ~ .~ I ~ ~ ~ 
H ( d ( x, w); x, w, c5) :::; rnin { H ( t d; x, w, c5) + -It d 12 } :::; - e I 2 1 d 12 

te[O. I] 2 

and lherefore 

f(d(x.w);x,wf,b)::;; -ef2 1d l2 +g(x)+, 

g(d(x,w);x,wg,b)::;; - ef2ldl2 +g(x)+ -g(x) (3.5) 

for all x E S(x ), wE S( w ). By (2.5 ), d( ·,·)is locally bounded, so we may use 
( 3.5) and the continuity relations betweenf,f', g and g' established in the proof 
of Lemma 2 in [ 9] together with the continuity of g and g ( ·) + for shrinking 
S(i) x S(w) to obtain 

f'(x;d(x,w))::;; -e+g(x) +, 

g'( x;d(x, w)):::;- e + g(x)+ - g(x) ( 3.6) 

fore = e I 41 d 12 and all X E s (X), wE s ( w ). ( 3.6) and ( 2.2) yield ( 3.1 ). Since 
H'(x, x;·) is continuous and H'(x,x;O) = 0, (3.1) implies (3.2) for small 
e> o. 

Our stopping criterion is justified below. 

LEMMA 3.2. If Algorithm 2. 1 terminates at the k- th iteration, then x = xk is 
inf- stationary for problem ( 1.1 ). 

P r o o f. For contradiction purposes, suppose that x is nonstationary, but 
d(x, w) = 0 for all wE B(x , 0 ). Then there are wE B(x, 0) and dE RN such that 
H(d;:X,w,O) = H '(x,x; d)<O,soLemma3.1 yieldsd(i,w) :1: 0,acont­
radiction. 

Our main result is 

THEOREM 3.3. Every accumulation point of an infinite sequence { x ~}generated 
by Algorithm 2.1 is inf- stationary for problem ( 1.1 ). 
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P r o o f. Suppose, for contradiction purposes, that there exist a nonstationary 
point x and an infinite set K c { I ,2, ... } such that xk ~ x. By ( 2.2) and Lem­
ma 3.1, there are wE B(x, 0) and e > 0 such that ( 3.1) and ( 3.2) hold for some 
S ( x) x S ( w ). Since xk ~ x and () > 0 is fixed, it is easy to see from ( 2.3) that 
B ( xk , 8) n S ( j:i, ) =I= 0 for large k E K, so there exist wk E B ( xk, o) and 
dk = d(xk, wk) such that, by (3.1 ), 

H '( x,x;dk ) ~ -e for large kEK, 

I dk I ~ s for large k E K. 

(3.7) 

(3 .8) 

Since x k ~ x, ( 2.5) and ( 2.8) imply the existence of u < 0 such that u ~ uk ~ 0 
for all k; in particular, { dk he K is bounded. Hence one may use Taylor's 
expansion to show that 

- k - - - -- k 
H (X + t d ' X) ~ H (X' X) + t H' (X' X; d ) + 0 ( t 'k)' 

where o ( t , k) I t-+ 0 as t L 0 uniformly with respect to k E K. Combining this 
with ( 3.7 ), we get 

for large k E K. Therefore, using the continuity off and g, the boundedness of 
{ dk }k E K and the fact that x k ~X ' for any e > 0 and e E ( 0, e) we may choose 
t (e) such that 

max {f(xk + tdk)- f(xk),g(xk + tdk) }- g(xk)+ ~ 

~ max {f(x + tdk)- f(x),g(x + tdk)} - g(x)+ + 8 ~ 

~ - et + o(t,k) + 8~ -et+et+8 

to obtain for e = e - e > 0 

( 3.9) 

for all t E [ 0, t (e)] and large k E K. Let us choose e such that the interval 
U ( 8) ,t ( 8) ] of solutions to the inequality 

(3.10) 

contains 1 I 2; ~ L (i) for some i) 0. This is possible, since [.!. (e) , 
t (e)] -+ [0, - e I mu] as d 0. Then t = 1 12; satisfies, by ( 3.9)- (3.10) and the 
fact that mu ~ muk for k E K, 
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k E K. 

Therefore, by construction, t k ~ t and 

( 3.11) 

for large k E K. First, suppose that g ( x k) ~ 0 for some k. Then g ( x k) + = 0 and 
/( x k + 1 

) < /( x k) for large k by construction, so that/( xk + 1 ) - f( x k) -+ 0 
because x k !. x and f is continuous. Hence ( 3.11 ) and the negativity of uk yield 
uk K. 0. On the other hand, if g(xk)+ = g(xk) > 0 for all k, then g (xk) !g (.X) 
and ( 3.11 ) again implies uk!. 0. But - uk ~ I dk 12 ~ 82 for large k E K from 
( 2.8) and ( 3.8 ). This contradiction completes the proof. 

REMARK 3.4. The algorithm's accumulation points need not be feasible, e.g. 
when problem ( 1.1) has no feasible points. This will not occur if the following 
constraint qualification is satisfied: for each x such that 0 < g ( x) ~ g ( x 1) one 
has g ' ( x; d) < 0 for some d. (It holds trivially if g ( x 1) ~ 0.) 

4. Extensions 

It is easy to extend the preceding results to the case when 

f( x ) = max {f 1 {x, h(x)): /e If}, 

- g} g( x ) = max { g1 (x, h(x)):/eL . 

with continuously differentiable J;, g1 and finite If, Lg. 
To this end, define], ( d; x, wf1

, ())for eachft ( x, h ( x)) as we did in Section 2 for 
f(x, h(x)), and use 

](d;x, wf~ ()) = max [ft (x, h(x)) - f(x) + ],(d;x, wf ', b)] 
If: U(x.f>) 

With wf = n wfl and If (X, ()) = {f E If : i (X, h (X) ) ~/(X) - () } as 
l e lf< x.~) 

a model ofj(x +d)- f(x); the model g(d ;x , w8, ())of g( x +d)- g(x) is 
defined analogously. 

The resulting algorithm is essentially the same, although it uses more 
complicated quadratic programming subproblems ( see also [ 8].) Straightfor­
ward extensions of all the preceding convergence results are left to the interested 
reader. 
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5. Conclusions 

We have extended the method of [9] to the case of inequality constrained 
minimization problems with certain quasi differentiable functions. The al­
gorithm compares favorably with its predecessor of [ 4 ], since it does not require 
exact minimizations at line searches and converges to inf- stationary points. 
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Metoda kierunkow dopuszczalnycb dla pewnych zadan optymalizacji quasiroznicz­
kowalnej z ograniczeniami nier6wno5ciowymi 

W pracy przedstawiono algorytm dla zadan minimali7.acji z ograniczeniami nier6wnoSciowymi. 

w kt6rych funkcje celu i ograniczcri S<l gladkimi superpozycjami funkcji typu maksimum. W kazdej 
itcracji mctoda znajduje kilka kierunk6w poszukiwari, ~dljcych rozwiljzaniami pomocniczycb 
zadari programowania kwadratowego. Jednoczesne przcszukanie tych kicrunk6w zgodnie z reguli! 

Armijo daje kolejne przyblizenie rozwiljzania. Algorytm ten jest la two implementowalny i globalnie 
zbieiny do punkt6w inf-stacjonarnych. 

MeTo.a .aonycTHMLIX uanpaBJieHHii .am1 netcoTopwx Ja,aa'l KBaJn-.ancj)«f>e­
penQHpyeMoii ODTIIMH38U.UH C orpaHif'leHHHMH 8 Btt,ae uepaBeHCTB 

B pa6oTe npeJlcTaaneH anropHTM .nm• 3a.na•1 MHHHMHJarvn1 c orpaHH•ICHH~MH a su.ne 
HCp8BCIICTB, 8 KOTOpblX <j>yHKUHR UC.Jlll Jil orpaHH'ICHRR IIBJHIIOTCll rnaJlKHMH cynnepn031lltli.IIMH 

<j>yHKUHii TI-U18 M8KCHMYM8. B J<8lKJlOH HTepaURII MCTO.ll H8XOlP'IT HCCK0.11,KO H8np88JlCHHH IIOHCK8, 
liBJlliK>WHXCll peWCHHJIMH BCOOMOf8TC.llbHhlX 38Jl8'1 K88Jlp8TIIOrO nporpaMMHpOB8HHJI. 
O.z:tHOBpeMeHHbtH TIOMCK a 3Tux HanpaaneHHSIX cornacHo npaauny ApMHC f\8CT O'lepe.~U~oe 

npR6JllilKCtlliC pCWCHHSI. 3TOT anropHTM JJCfKO !TpHMCHliCM li rn068JibHO CXOJUIM K lfH­
CT8Uii0H8pHb1M TO'IK8M. 




