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and constraints are smooth compositions of max-type functions. At each iteration several search
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1. Introduction

We are concerned with methods for solving a nondifferentiable and
nonconvex problem of the form

minimize f( x), subject to g(x) <0, (1.1)

where N
f(x) = f(x, h(x)), (1.2a)
g(x) = g(x, h(x)), (1.2b)

h(x) = (h(x),...h(x)),

h(x) = max{h, (x):jeJ;} for iel,
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the functions /' : R x R - R, g: R¥ x R™ - Rand h,,: R¥ —» R are
continuously differentiable, I: = {1,....M } and J,, i€, are nonempty finite sets
of indices. We shall also consider problems with objectives and constraints given
by pointwise maxima of functions of the form (1.2). Such problems arise in
many applications ( e.g. minimax problems, /, and /, approximation problems,
exact penalty methods ) and have been treated in several papers; see,e.g.[1],[2],
[3], [4], [5], [6], [8], [11].

Several algorithms for problem ( 1.1 ) are known. The methods of [ 3],[11],
which treat the original problem indirectly by solving an infinite sequence of
unconstrained differentiable problems, converge under additional assumptions
which may be difficult to check a priori. The algorithm of [ 1], as well as general
purpose non smooth optimization methods (e.g. [7]. [10]), can be used when
the functions f(x, ¥,,....,) and g (X, ¥,,...,y,,) are nondecreasing with respect
to each y,, i € I (see also [8]). If this assumption fails, e.g.

g(x) = —max {h(x):jeJ;} = min{=h(x):jel},

only the method of [4] may solve (approximately ) problem (1.1).

This paper presents a method of feasible directions that is tailored to the
structure of (1.1). The algorithm generalizes one given in [9] for the
unconstrained case. At each iteration several search directions are found by
solving several quadratic programming subproblems. Then an Armijo-type
search is performed simultaneously along all the search directions to produce the
next improved estimate of a solution. The algorithm is “globally” convergent in
the sense that each of its accumulation points is inf-stationary for problem (1.1)
(see Section 2 for the definition).

Our algorithm differs from its predecessor of [4] in two aspects. First, its
line search procedure needs only a finite number of function evaluations,
whereas [4] requires exact directional minimizations. Secondly, we have
modified the direction finding subproblems of [4 ] which ensure convergence to
only approximately inf-stationary points. In effect, our algorithm seems to be the
first readily implementable and globally convergent method for the problem in
question.

The method is derived and stated in Section 2. Its global cnvergence is
established in Section 3. Extensions to more general problems are discussed in
Section 4. Finally, we have a conclusion section.

RY denotes the N-dimensional Euclidean space with the usual inner
product < -, - > and the associated norm |- |. Superscripts are used to denote
different vectors, eg. x' and x?. All vectors are row vectors.
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2. Derivation of the method

We start by reviewing well-known properties of problem (1.1) (see [1],
[2],[4]fordetails ). Let S = {xe R":g(x) < 0} denote the feasible set. Forany
fixed x € R", let

H(y, x) = max{f(y)—f(x), g(y)} forallyeR"

denote the improvement function. To justify this name, suppose one can find
y such that H(y, x)< H(x, x). Then y is better than x, since if
H(x, x) = g(x)>0 then g(y) <g(x), whereas if H(x, x) = g(x), =0
thenf(y) < f(x)and ye S,whereg(x), = max{g(x),0}.Itfollows thatany
local solution x € S of (1.1) is a local unconstrained minimum point of H (-, x).
In particular, we have

H(x,x;d)=0 forall de R", (2.1)
where
H'(x, x;d) = lim [H(x+1td, x) — H(x, X)]/t
o

denotes the derivative of H(-,x) at x in the direction d.

Note that
_ f*(x;d) if g(x) <0,
H'(x, x:d) = {max{f'(x;d),g'{x;d)} if  g(x)=0, (2.2)
g'(x;d) if g(x)>0,

Points x satisfying (2.1) are called inf-stationary for problem (1.1).
We shall need the following notation. Forz = (x,y)e RY x R™ we denote

by Vf(x y) the N—vector(“f - ,—L(z)) while—L(x y) denotes
—L( z), iel ForxeR”andzeI let .

'nH-N'

al(x) = % (. Blx))

b (x) = VF(x, h(x)).
Then

f(x:;d) = (¥ (x),d)+Z a/(x)h'(x;d) =
iel

= (b (x),d)+Z a/(x)max {Vh,(x),d),
iel jEJ’J.[.t}
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s0 that

fi(xid) = (b(x),d)+Z, max (a/(x)Vh;(x),d)+

:'ea‘+[.t] je.t’.(.\‘]

+2_  min {a/(x)Vh,(x),d),
ie J’_f(x;l Jjel.(x)

where
J(x) = {jed, © hy(x)=h(x)}, iel,
1l(x)={iel : a/(x)>0},
I'(x) = {iel : a/(x)<0}

and the summation over an empty index set yields zero. Observe that f'(-;d)
may be discontinuous if so are J/(-). Therefore a better model of
f(x+d)— f(x) is given by the family of functions

fld;x,w’,8) = <b/(x),dY+2 | a/(x) max [h,(x)—h(x)+

i€ .f+(.r] je.“'l,t.t.r‘)
+ <thi(x)9d)] 1 <wf, d)
parametrized by w’ in

B(x,0) ={weR":w/ =X " a/(x)Vh,(x)

iel”(x)

for some jeJi(x,d)}, (2:3)

where the use of

with a fixed “anticipation™ tolerance ¢ > 0 may take into account possible
changes in J,(-) around x, as will be explained later. Note that

f'(x:d) = min{f(d;x,w/,0) : w/eB/(x,0)}.

Replacing /™" by g™ in the preceding paragraph, we may approximate
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g (x + d) — g(x) by functions g(d;x,w*,d) with w# in B*(x,d). Hence for
w=(w/,wf)e B/(x,0) x B%(x,d) =:B(x,d) functions

H(d;x,w,0) = max{f(d;x,wf,é),g(x} +§(d;x,w3,5)} —g(x),

may serve as models of H(x+d,x)— H(x,x). Since we want x + d to
improve on x, we may choose d(w) to

minimize ff(d;x,w,é)+i |d|? overall deRY (2.4)
2

where the term | d |*/ 2 ensures that d( w) stays in the region where f!( SEXMG0)
is a close approximation to H(x+ ,x) — H(x,x). In view of the strong
convexity of the objective function of (2.4 ), the unique solution d(w) of (2.4)
exists and satisfies (see [6],[8])

d(w) = p/(w)d (w)+ pu*(w)d*(w) (2.52)
for some

p/(w)=0, pf(w)=0, p/(w)+ps(w)=1, (2.5b)
where

d'(w) = —[b/(x)+Z , a/(x)Z AJ(w)Vh,(x)+w], (25¢)
if.=1+(x} jsJ{.(.\‘.é)
for some

M(w)=0 for jelJ(x, ),

T A(w)y=1, for iell(x) (2.5d)

js.."‘,{x.ti)

and d*(w) satisfies a similar relation. Moreover, since
H(d(w)ixe,6)+ 3 1dOe)F < F(0ix,0,8) + 2 |0F = 0,
we have
Q(d(W);x.w,é)é—izld(w)ll (26)
and, since the preceding definitions imply

H'(x,x;d)< H(d;x,w,0) if weB/(x,0)x B*(x,0), (2.7)
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we see that d(w) is a descent direction for H(-,x) at x if d(w) # 0 and
we B(x,0).
We may now state the method in detail.

ALGORITHM 2.1.

Step 0 ( Initialization ). Select a starting point x' € R", a final accuracy tolerance
& = 0, an anticipation tolerance J > 0 and a line search parameter m > 0. Set
k=1,

Step 1 ( Direction finding ). For each w e B/(x,8) x B*(x, ), find d(w) from
the solution (d(w),u(w);ul(w), ie I (x);uf(w),iel*(w))to the quadratic
programming subproblem

min %1d|2+u,

a'.u.u‘-i o

st. bR dY+E a*ul + <. d) < u,

x's."fk
+
gh (b dy+2  atul +{whd) <u,
iel
-+

k

B —h'+<Vh},d><u for jel, ter]l’,

b=k VR Ay <uf for jel|, tell
where x = x*, b = b(x*), I[* = 1/(x%), I} = I(x*,8) etc.

Step 2 ( Stopping criterion ). If [d(w)| < ¢, forall we B'(x,0) x B*(x,0),
terminate. Otherwise, set

ub* = —max{|d(w)|> : we B(x",3)} (2.8)
and continue.
Step 3 ( Stepsize selection ).
(i) Set =1,
(ii) Find win B(x*,6) such that
H(x*+td(w),x*) = min { H(x* + td(w), x*) : we B(x*,d)}.

(i) If
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H(x*+4 td(w),x*) < H(x*,x*) + m(t)u*,

set 1* = 1, d* = d(w), x**' = x* 4 t*d* and go to Step 4; otherwise replace
t by t/2 and go to Step 3 (ii).

Step 4 Increase k by 1 and go to Step 1.

Observe that the algorithm cannot cylcle infinitely at Step 3, since Step 3 is
always entered with d(w) # 0 for some w € B(x*,0), so that 1|0 and

H'(x*, x*; d(w)) > liminf [ min H(x* + td(w), x*) —

0 weBxk§)

— H(x*,x*)]/t = lim mu* = 0
110
would contradict (2.6) and (2.7). Moreover, H(x**', x*) < H(x*, x*). This
means that if g(x')> 0 then the algorithm decreases constraint violation
( without unduly increasing objective values) until a feasible x* is found; then the
successive points stay feasible and f( x*) decreases monotonously.

In order to see why the algorithm has to use a positve anticipation
tolerance J, suppose that f(x) = x and g(x) = —|x| = min{x, — x} for
xeR',x' = 1,6, = 0Oandm = 0.1.Ford = 0we would get x* = 1/2*~' forall
k, whereas for 6 = 1 wehavex® = 0.5, B%(x%4 1) = {1, —1},d(0,1) = — 1,
d(0,— 1) = — 0.25 and the algorithm “jumps” over the nonstationary point
x = 0tox’ = —0.5, continuing with x* - — oo and f(x*)| — 0.

3. Convergence

In this section we shall establish global convergence of the method. In the
absence of convexity, we will content ourselves with finding an inf-stationary
point of problem ( 1.1). Naturally, we assume that the final accuracy tolerance ¢,
is set to zero.

We start by analyzing properties of search directions generated around
nonstationary points.

LEMMA 3.1. Suppose that x € R, w € B(X, 0) and d € RY are such that
H(d:x, w,0) < 0. Then there exist ¢ > 0 and neighborhoods S(x) and S(w) of
X and w, respectively, such that

H' (X % d(x, w))< —¢ forall (x, w)e S(X)x S(w), (3.1)

|d(x,w)|=¢ forall (x,w)e S(x)x S(w), (3.2)
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where d(x, w) denotes the solution of (2.4).
P r o o f. By assumption, for some ¢ > 0 we have

—g(X), +{¥(x),dy+Z r_)af(}) max (Vh,(x),d) +

is!+{.\- ,r'sJ‘_{.t)
+{whd) < —¢ (3.3a)
g(xX)—g(X), +<b%(x),d>+ 2 af(x)max (Vh,(x), dy+
a‘e!+(§) jeJr_{E)
+{wkd) < —¢ (3.3b)

and d # 0 with w = (w’/, w#). Hence, using the continuity of the functions
involved in (3.3a), we may choose S(x) x S(w) such that

I/(x)cI/(x) and 1/(x)\I1[(%)<{iel:a](X) =0},

(B (x)+w,d)+2Z - a! (%) max (Vh(x),d)< —e/2+g(x),

iel [ (%) jeJr.(.?}

(3.4)

for all x € S(x), w = (w/, w®) € S(w). Next, since 4, and &, are continuous,
while 6 > 0 is fixed, we have J,(x) = Ji(x, 6) and h;(x) —h,(x) < —E for
some fixed £ > 0if x is close to xand je J,(x, 5) \ J,(x), so we may shrink S(x)
and choose small 7 € (0, 1) such that

max (th,.(x),?c_f) = max —?leJ.i(x)i |d| > —2/2>

jed (%) jed (%)
> hj:’(x) —h(x)+ (th;(x), ?3>

foranyje J,(x,8)\ J.(x), xe S(x). Hence we may multiply (3.4) by?, use the
preceding inequality and subtract g(x), to obtain

—g(x)++<bf(x),3)+2f al(x)max [h,(x)—h(x)+

iei+(.t} jeJJ_(x.é]
+(Vhy(x), d) 1+ W, d> < =5 —(1-1)g(x),

ford = td, e = t¢/2>0and all xe S(X), we S(w). But (1 — 1) g(x), =0,
so we obtain
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-~

f(d;x. w,0)—g(x), < —¢

and, since the preceding arguments apply also to (3.3b) (with g (x) , replaced by
g(x), —g(x)=0), we deduce that

g(x) +g(d:x, we,86) —g(x). < —

Thus H(d;x,w, 6)< —¢ and, since H(:;xw,8) is convex and
H(O x,w,0) = 0 H(td x,w,0)< —teforall te[0, 1], so, since d(x,w)
solves (2.4) and & may be decreased,

H(d(x,w);x,w,6) <min { H(td;x,w, a)+-—|:d|2} < —&/2|d

tefo, 1]

and therefore
fd(x,w);x,w,8)< —2/2|dP+g(x), ,
gld(x,w);x, w8, 8) < —&/2|d P +g(x), —g(x) (3.5)

forall xe S(x),we S(w). By (2.5),d(-,-) is locally bounded, so we may use
(3.5) and the continuity relations between f, /', g and g’ established in the proof
of Lemma 2 in [9] together with the continuity of g and g(-), for shrinking
S(x) x S(w) to obtain

f(x;d(x,w))< —e+g(Xx), ,
g (x;d(x,w))< —e+2(x), —g(x) (3.6)

forz = ¢/4|d[Pand all xe S(X), we S(w). (3.6) and (2.2) yield (3.1). Since
H’(x,x;+) is continuous and H '(x,x;0) = 0, (3.1) implies (3.2) for small
e>0,

Our stopping criterion is justified below.

LEMMA 3.2. If Algorithm 2.1 terminates at the k- th iteration, then x = x* is
inf - stationary for problem (1.1).

P r o o f. For contradiction purposes, suppose that x is nonstationary, but
d(x w)=20 foraIIwEB(x 0). Then there are we B(x,0)and de R such that
H(d;x,w,0) = H'(X,X; d) <0, so Lemma 3.1 yields d(x,w) # @, a cont-
radiction.

Our main result is

THEOREM 3.3. Every accumulation point of an infinite sequence { x 5'-} generated
by Algorithm 2.1 is inf- stationary for problem (1.1).
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P r o o f. Suppose, for contradiction purposes, that there exist a nonstationary
point x and an infinite set K = {1,2,...} such that x* % X. By (2.2) and Lem-
ma 3.1, there are we B(x,0) and ¢ > 0 such that (3.1)and (3.2) hold for some
S(x) x S(w). Since x*% x and § > 0 is fixed, it is easy to see from (2.3) that
B(x*,0)nS(w)# @& for large k € K, so there exist w* € B(x* ) and
d* = d(x* w*) such that, by (3.1),

H'(x,x;d")< —¢ forlarge kek, (3.7)
|d*| =€ forlarge kek. (3.8)
Since x* & X, (2.5) and (2.8 ) imply the existence of u < 0 such that u < u* <0

for all k; in particular, {d* }, . ; is bounded. Hence one may use Taylor’s
expansion to show that

H(x+td", )< H(X,X)+ tH (3, %:d*) + o(t,k),

where o(t,k)/t—0as ¢t| 0 uniformly with respect to k € K. Combining this
with (3.7), we get

max {f(x+td*) —f(x),g(x+td")} <g(x), —et+o(t,k)
for large k € K. Therefore, using the continuity of / and g, the boundedness of
{d*}, . and the fact that x* & X for any ¢ > 0 and ¢ € (0, &) we may choose
t(2) such that
max {f(x* + td*) — f(¥*),g(x* +td")} —g(x"), <
<max {f(x+td*) —f(x),g(x+1d")} —g(x), +&<

< —8t+o(t,k)+e< —et+et+s

to obtain fore = e —&>0
H(x* + td®, x*) < H(x* &) +e—5t (3.9)

for all £ € [0,2(2)] and large k € K. Let us choose & such that the interval
[£(e),t(e)] of solutions to the inequality

e—et<m(t)u (3.10)
contains 1/2 < (g) for some i»0. This is possible, since [ (&),

7(e)]—[0, —&/mulase| 0. Thent = 1/2 satisfies, by (3.9) — (3.10) and the
fact that mu < mu” for k € K,
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H(x*+td", x*) < H(X*,xX*) +m(t u* forlarge keKk.
Therefore, by construction, t* > ¢ and
max { f(x**') — f(x¥),g(x** ")} <g(x*), + m(1)u* (3.11)

for large k € K. First, suppose that g (x*) < 0 for some k. Then g (x*), = 0and

f(x**') < f( x*) for large k by construction, so that f(x**') —f(x*)—>0
because x* & x and fis continuous. Hence (3.11) and the negativity of u* yield
u* % 0. On the other hand, if g(x*), = g(x*) > 0 forall k, then g(x*) | g(Xx)
and (3.11) again implies u* % 0. But —u* > |d* | = &° for large k € K from
(2.8) and (3.8). This contradiction completes the proof.

REMARK 3.4, The algorithm’s accumulation points need not be feasible, e.g.
when problem ( 1.1) has no feasible points. This will not occur if the following
constraint qualification is satisfied: for each x such that 0 < g(x) < g(x') one
has g'(x;d) < 0 for some d. (It holds trivially if g(x') <0.)

4. Extensions
It is easy to extend the preceding results to the case when
f(x) = max {f, (x, h(x)): le L},
g(x) = max{g (x, h(x)):le L}.

with continuously Elif’ferentiable;’,, g, and finite 1
To thisend, define f, (d;x, w”', 8) foreach f, (x, h(x))as we did in Section 2 for
f(x, h(x)), and use

F(dix, w/,8) = max [, (x, h(x)) = f(x) +;(dsx, ', 6)]

le/(x,8)

with w/ = ﬂf w/! and Lf(x, d) ={le Lf:}:(x, h(x))=f(x)—4} as
le {x 8)

a model of f(x + d) — f(x); the model g(d;x, w®, d) of g(x + d) — g(x) is
defined analogously.

The resulting algorithm is essentially the same, although it uses more
complicated quadratic programming subproblems ( see also [8].) Straightfor-
ward extensions of all the preceding convergence results are left to the interested
reader.
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5. Conclusions

We have extended the method of [ 9] to the case of inequality constrained
minimization problems with certain quasi differentiable functions. The al-
gorithm compares favorably with its predecessor of [ 4 ], since it does not require
exact minimizations at line searches and converges to inf-stationary points.
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Metoda kierunkéw dopuszczalnych dla pewnych zadan optymalizacji quasiréznicz-
kowalnej z ograniczeniami nierownoSciowymi

W pracy przedstawiono algorytm dla zadan minimalizacji z ograniczeniami nieréwnosciowymi,
w ktorych funkceje celu i ograniczen sa gladkimi superpozycjami funkcji typu maksimum. W kazdej
iteracji metoda znajduje kilka kierunkow poszukiwan, bedgcych rozwigzaniami pomocniczych
zadan programowania kwadratowego. Jednoczesne przeszukanie tych kierunkéw zgodnie z reguta
Armijo daje kolejne przyblizenie rozwiazania. Algorytm ten jest latwo implementowalny i globalnie
zbieiny do punktéw inf-stacjonarnych.

Metoa a0NMyCTHMBIX HANpaBJeHHi I8 HEKOTOPLIX 3a1a4  KBasu-andde-
PeHIMpPYeMOii ONTHMHA3AINMNA C OrpaHHYEHAAIMA B BH/Ie HEPABEHCTB

B paﬁcrre NPEacTABJICH ANNOPHTM I8 3444 MHHHMM3AUMH C OrpaHUYCHIAMHE B BHIOES
HEPABCHCTH, B KOTOPLIX (DYHKIMH LEJHM H OTPAHMHYEHHI] SBISIOTCA TIANKHMH CYNNEepHo3HIHaMu
(yuxumii THIA MakcHMyma. B Kax 101t ATepaiin MeTo/ HaXOHT HECKOILKO HATIPABICHHIT noucka,
ABRJHROLIHXCH PCLICHAAMM  BCIOMOTATENbLHLIX 3484 KBEﬂpaTHOI‘O NnporpaMMHpOBaHis.
OJIHOBpEMeHHHﬁ NOMCK B 3THX HANPAaBJICHHAX COIJIACHO npaBsuny APMHC Jacrt O‘ICpEﬂ.‘HOB
npubmikeHue peiueHns. DTOT ANTOPHTM JIETKO NPHMEHAEM W rI00aJbHO CXOMHMM K MH-
CTAIMOHAPHBIM TOYKAM.







