
Control
and Cybernetics

Vol. 19 (1990) o. 1-2

Testable heuristics for the 0-1 knapsack problem

by

BRUNO APOLLONI
Dipartimcnto di Scienzc dcll'lnformazione
Univcrsita di Milano. Italy

Two kind of heuristics, fixed time and cut time. are proposed in order to use the running time
available in solving 0- 1 Knapsack problems efficiently. The basic idea is to build approximate
algorithms capable of generating. within fixed time limits. significantly different feasible solutions by
cxplicilly taking into account those indeterminate aspects of the problem which the usual heuristics
tend to avoid by using suboptimal rules for loading the knapsack. In the case of those algorithms it is
possible to prove that they arc efficient with respect to some parameters which arc independent of the
pattern of the exact solution, when tbis efficiency can be tested, vi<~ distribution-free methods. by
small sized samples of the knapsack problem coming from the operational situations one is dealing
with.

l. Introduction

We refer to the knapsack 0-l problem with unitary specific profit coefficients:
11

max LX; 11' ,
j -:3)

" LX; w, < c
;:a I

X;= 0 or l (i = I, ... , n)

11

C and w; positive, w; ~ C for each i, L: w; > C
i= I

where C is the capacity of the knapsack, w; is the weight of, and at the same time
the profit connected with, the i-th object among then, and x ;equals 1 if the object
is loaded into the knapsack, 0 otherwise.
The problem falls into the class of the NP-hard problems, therefore at the
moment each exact solving algorithm requires an extremely long running time
for a large amount of inputs.

132 B. APOLLONI

In order to focus better the computational problem, let us consider, as an
archetype of such a class, the following exact algorithm, EEK, which solves our
problem. The algorithm is made up of the following three nested segments.

Generation of all the subsets of the input objects
This corresponds to generating all the binary strings s, of length n, in any order.

Cutting out of the unfeasible solutions
This step allows the cutting out of the unfeasible solutions. Let sj be the j-th
element of s, the rule is the following:

k

As soon as in a strings L wj sj exceeds C for some k, go to the next string.
J~ l

Selection of the exact solution
Every strings which is generated by the first step and not eliminated in the second
represents a feasible solution. The one which results in the highest value of ,
L ~is; at the completion of segment 1 is the exact solution.
j = l

Together with this let us consider the usual HGK greedy heuristic algorithm.

BEGIN
SUM: = 0; 1: = 0; X(I): = 0 for ·each I;
WHILE SUM:::; CAPACITY DO
BEGIN

I: = I+ 1;
SUM: =SUM+ W(I);
IF SUM :::; CAPACITY
THEN X (I): = 1;

END;
END.

Many papers have been written on the epistemological aspects of the com
putational complexity. The argument of this paper stems from the idea which
attributes the high computational complexity of exact algorithms like the
previous one, to a choice operator which, in the absence of any theoretical
support, essentially shifts between the two edges of a fork of a binary tree
[Apolloni and Di Gregorio, 1984]. The formal defmition and properties of this
operator can be found in [Apolloni and Di Gregorio 1983]; here we trivially
focus on the following remarks:

a) in the algorithms for our knapsack problem, and more generally for NP
problems when the running time is more than linear in the length of the input,

Heuristics for the 0-1 knapsack 133

there are some steps after which the computation may continue by executing
more than one set of instructions (computational paths). As there is no
optimality theorem which prefers one path to another, the next step is selected by
means of the above choice operator. This is why, for example, in branch and
bound tecniques only practical rules, and not theorems, are available to select
some next branch. And for the same motive there is no reason to prefer the direct
or opposite lexicographical order, or indeed any other order, in the EEK
algorithm, if we disregard worst-case or probabilistical suggestions, which we
will deal with later in the paper.
From another point of view, such arbitrarities correspond to the order in which
the input data are processed, and they are due to the fact that there are many
permutations of the input data, which do not change the problem, but give rise to
the same solution.
rn reality, given the lexkographical ordering of the enumeration of the strings sin
EEK, the order in which the feasible solutions are listed depends upon the
particular permutation according to which the items appear in the input. Moreover
the list themselves of the feasible solutions can be obtained by applying the
algorithm HGK successively to the various permutations of the input.
Thus the points of choice can be moved from the instruction sequences to the
permutations of the input which these sequences have to process.

b) the running time needed to reach the optimal solution is generally strongly
dependent on the particular sequencing of the computational paths. In fact, each
step which involves a choice is associated with various computational paths, all
of which must be carried out should no one of them lead to the exact solution.
Consequently, if we put aJl the compositions of computational paths arising from
the cartesian product of the sets of choices into one stack, the execution of the
algorithm can be seen as a progressive screening of the elements of the stack
which continues until the solution is recognized. Indeed the running time is short
or long according to the depth of the path which stop the algorithm in the stack,
but generally we cannot know a priori how to place the compositions in order to
render the depth a slight one.
Actually EEK is broadly independent on this sequencing, but as soon as a less
trivial algorithm is sought, such dependency does appaear.
It is clear that the running time is a non-decreasing function of the number of the
above points of choice. The ability of heuristic algorithms [Muller-Merbach
1981] to shorten it, lies in the elimination of most of these points by using some
arbitrary criteria which are the bases of univocal selections between the paths. So
in our problem special sets of paths have been suggested in the literature [Gens
and Levner, 1980; lbarra and Kim, 1975; Lawler, 1979; Martello and Toth,
1984]. Similarly, if we view EEK as a series of applications of HGK, instead of
screening all the possible permutations of the objects, some heuristics suggest
considering only one, which is derived from a special ordering of the objects.
Actually, once again the statement of the above criteria may be a matter of

134 B. APOLLONJ

choice, when no useful tool is available to appraise the efficiency of the heuristic
a priori. Indeed, deterministic parameters, such as the worst case difference
between exact and heuristic solutions, are generally meaningless because of the
large range of these differences. For instance the worst-case performance ratio
r ofMartello and Toth is > (s + 3) I (s + 4) when computational time = 0 (ns) is
spent to reach the heuristic solution. As n increases one must reasonably sets at
a low value, with the result that r is relatively large and the value of the waste
could also be very large.
Although in the past years the probabilistic aproach, both in the direction of
[Rabin, 1974] and in the direction of [Karp, 1977] gave many illuminating
insights on the complexity of algorithms, this approach may appear to be of little
use from a strictly statistical and operational point of view, when no a-priori
knowledge is avaliable on the input distribution. Broadly speaking one can state
that given an algorithm of time complexity g(n), where n is the length of the
input, each non trivial probabilistic sentence about its results is based on
statistical hypotheses regarding the relevant parameters of the problem, the
testing of which needs a computational time at least equal to 0 (g (n)) [Apolloni
and Pitlelli, 1984.]. For example, with reference to the probabilistic performance
of the GOLOSO algorithm [D' Atri and Peutch, 1982,], in order to test the basis
hypothesis that the weights of the n objects to be loaded in the sack are
statistically independent variables, no matter what their distribution, we must
extract from the real situation referred to by the problem, a sample whose
cardinalily is 0 (2").
Faced by this situation in which it is difficult to define efficient heuristics
precisely because one does not have the means of evaluating their efficiency, we
intend, in the next few pages to propose particular heuristics which independently
of the values of the exact solutions, show interesting parameters of efficiency that
are testable via distribution-free methods using small size samples. In practice,
we start from very simple and obvious heuristic rules of sack loading which,
however, are administrated with particular care, in the light of the previous
considerations made on choice steps, and within ftxed limits on the running
time. The time available is the main parameter which conditions such heuristics
and in function of its handling we will distinguish between fixed time and cut time
heuristics.

2. Fixed time heuristics

Fixed time heuristics are one shot algorithms which follow only one of the
computational paths arising from the choice points, so that essentially they
consider only one feasible solution by loading the objects in the sack once. Their
running time is essentially ftxed by the algorithm itself and is generally a very

Heuristics for the 0-1 knapsack 135

shortvalued function of the size of the input with respect to the lower bound
coming from the complexity of the problem.
Given such an algorithm, when more than its running time is available,
complicating the loading rule gives no guarantee about an actual improvement
on the solution of the special instance of the problem in hand. So we suggest on
the contrary solving the same problem more times by using trivially easy rules
which however differ noticeably from each other. In this way we generally expect
to obtain significantly different approximate solutions among which the one
which comes closest to filling the sack is selected. This strategy gives a more
rational theoretical framework to those algorithms which Kornefield [Kor
nefield, 1982] call combinatorially implosive. In the latter case the various paths
coming from the different solution rules cooperate by running in parallel and by
exchanging by-product information. Here the simplicity of the problem avoids
those exchanges which may prove inefficient.
More particularly, starting from the above greedy algorithm HGK, we construct
HGKl:

FUNCTION TND (J : integer); external;
BEGIN

SUM:= 0; I:= 0; X (I):= 0 for each I;
WHILE SUM ~ CAPACITY DO
BEGIN

1:=1+1;
SUM:= SUM+ W (IND (I));
IF SUM~ CAPACITY
THEN X (IND (I)):= 1;

END;
END.

This differs from the above by the presence of the function IND(l), and we
change the selections in the choice points by simply changing the function IND,
i.e. the ordering of the objects.
We examine the characteristics of the algorithms so generated by using the
Monte Carlo approach and by varying the input population with regard the
number of items, the law of distribution of their sizes, and the sack capacity.
Actually, according with the remark of the previous section, when one is dealing
with combinatorial problems, a lot of experiments should in general be needed in
order to infer some non trivial sentence about their solutions, since the inherent
non determinism of those problems induces great spread in the main features, i.e.
running time or waste, of the solving algorithms. In this framework a fifty item
sized sample and then a thousand item sized sample are equally small.
Therefore our strategy will focus on two kind of experiments: i) those aimed at
negating some sentence, so that even a single item should disprove the sentence,

136 B. APOLLONI

ii) those tailored to simulate special sample statistics whose distribution laws are
known to be little spread.
Namely, our sample size will range between 30 and 80, while the number n of
objects of the single knapsak problem will be always 50.
Three kinds of distribution law of the weight will be employed:
- uniform within 0 and 100, namely W = U x 100, where U is uniform in (0,1)
- quadratic, where W = U 2 x I 00
- quare root, where W = .JU x 100
As it was previously pointed out, a usual statistical assumption is that the weights
are independent random variables. Such a hypothesis, tough extremely simp
lifying, is very often totally unrealistic, and hardly testable. Therefore simulated
random samples where the correlation between two consecutive items is
a random number between - 1 and 1 are rare.
Last, we distiguish the instances on the basis of three capacities of the sacks so
computed:

11 11 ,
'f.wJn .5 L,w; .8 L,w;
i= I i= I i= I

As concerns the algorithms, in HGK we distinguish two main classes of sets of
object orderings which we call global and local ordering sets. Whether or not an
ordering belongs to one of these types of sets depends on the tie it has with the
other elements of the set. To be precise, in global orderings the rank of almost
every object in the input changes substantially when passing from one order to
another, whereas in local orderings we make only slight variations in the rank of
the objects.
The boundary line between the two classes is fuzzy. Following in some sense
Kolmogorov [Kolmogorov 1964], we could employ the sum of the lengths of the
shortest programs which compute the orders as a measure of globality: the
smaller the sum, the more global the set of orderings. In these numerical
experiments, we consider the following to be within global orderings set: i) the
decreasing order, ii) the increasing, iii) the random, iv) the alternating, (i.e. first
the highest weight, then the lowest, then the highest among the remaining, then
the lowest among the remaining and so on).
Within the local orderings set, starting from any order we state the other
orderings obtained by rules like these: i) change the median item with next item,
ii) change the two median items with their neighbouring items and so on. In what
follows the local orderings are variants of the decreasing one.
The most relevant conclusions are the following:

a) Behaviour of the single algorithm
As shown in Fig. 1, the distribution law of the wastes is strongly dependent on the
distribution law of and the correlation between, the objects to be loaded,

Heuristics for the 0-1 knapsack

1.0 J' .a 1D
I J

r r rr . r

P.e I I r .. 0.8
r I
I I

0.6 r1 0.6
I I

0.4 0.4

0.2 0.2

0 3 6 9 12 15 0 3 6 9

1.0 --. 1.0 1.0 _,_
.. . d e • l I 1

I
rl I

0.8 0.8 0.8 ,J I I ..
11 I

I I I ..
I I 0.6 ·- 0.6 0.6 .. I I ..
I I

0.4 0.4
I

0.4 I

0.2 0.2 .. 0.2 ...

0 3 6 9 0 2 0 3

Fig. 1 Sample cumulative distribution function of wastes
Number of objects = 50.
__ increasing ordering
------ decreasing ordering
.. .. . random orderu1g

137

b 1.0 , I' c . .
I ...
I

08

0.6

0.4

02

0 3 6 9 12

...
f

..
..

.
·.

:
6 9 12 15 18

l.a Sampling size (ss) = 30, sack capacity (se) = 0.5* :Ewj, weights distribution law
(wdl) = U" 100 (U = 0-1 uniform random var.) correlation (corr) = always 0

l.b ss = 60, se = 0.5 :Ewj, wdl = .JU* 100, corr. = always 0
l.c ss = 90, se = 0.8 :Ewj, wdl = U" 100, corr. = always 0
l.d ss = 60, se = 0.5 :Ewj, wdl = U* 100, corr. = always 0
l.e ss = 90, se = 0.5 :Ewj/ n, wdl = U* 100, corr. = always 0
l.f ss = 30, se = 0.5 :Ewj, wdl = U* 100, corr. = random among the pairs

whatever the the ordering should be. So any probabilistical statement is not
quickly testable, even if the general opinion is that decreasing order is the best.

b) Connection between the algorithms
When we are investigating the joint behaviour of the algorithms rather than the
individual patterns of the solutions, we are focusing on the structure of the
algorithm itself. Thus we disregard the single computational paths connected to
the choice, and the law of distribution of the input, so that the relevant properties
can be tested by short samples.

138 B. APOLLONI

The statistic which has been dealt with is the KENDALL Rank Correlation
Statistic p. Starting from a set of objects, its construction is based on a two-way
table of experiments.
P 1 way: capacity of the sack
2nd way: ordering (that is IND) with which the objects are loaded by HGKl
Following the same illustrative strategy as Kendall [Kendall 1975] we imagine
that the first way is at n levels and that at each of these levels we can replace the
capacity of the sack by an item participating in a qualifying competition. Just like
the members of a jury, the orderings of the second way, in number of m, award
different scores, ranking from 1 ton, in function of the waste in the solutions they
themselves generate. To be exact, the scores are the decreasing ranks of the
wastes examined by the same jury.

ITEMS n = 3

~ 2
I, I2 13

o, 2 I 3 Waste13 < Waste11 < Waste12

JURY 02 I 2 3

03 1 3 2

m=4 04 2 3 I

t, t2 t3

The main question is whether the juries are substantially concordant, and
therefore if the orderings give rise more or less to the same pattern of the wastes in
relation to the sack capacities, so that the capacity which leads to the minimal
waste within one particular ordering turns out to give virtually minimal waste
within the other orderings too, and so on.
Starting from the above m x n table the Kendall statistic p is computed as:

n

where S = L (t;- t0 'f, t ; is the sum of the scores of the i-th sack in correspon-
i=l

dance with the various orderings and t0 is the arithmetic mean of the t;'s.
By definition, when these scores are concordant the sumS tends to take on high
values, and vice versa.
In the hypothesis that the scores disagree so completely that every possible score
table has the same probability, the distribution Jaw of pis totally free [Wilks
1962] of the distribution law of the scores, and therefore of the distribution law of
the wastes, and consequentely of the distribution law of the variables in input to
the problem. In Kendall's book the cumulative distribution function of pin such
a hypothesis is available as a function of m and n.

Heuristics for the 0-1 knapsack 139

We simulated the law of pin the case of global orderings and in the case of local
orderings, varying the capacities of the sacks according to the afore mentioned
formulas.
On the basis of lots of 60 problems randomly sampled we found that the
cumulative histogram of p coincides almost completely with the above theoreti
cal distribution Jaw, when dealing with global orders. Vice versa, Fig., 2 the
histogram goes to the highest values when the algorithms differ by local orders
(see Fig. 2).
Thus the global orderings are not in agreement and consequently by using them
we can expect to find approximate solutions which differ in the way previously
described. Therefore in those cases where an ordering turns out to be of low
efficiency, giving a low score, there will be other orderings of the same set which
give a higher one, and which could correspond to lower wastes.
This relation between kind of ordering and uncorrelation should be independent
of the joint distribution of the objects, with the result that not only the test
statistic but also the property itself appears to be distribution free, and
consequently we could assume that global orderings give rise to totally
discordant results. Anyway the property can be tested over the special
distribution law the set of inputs is coming from.
We now carry out the variance analysis on the same experiments, taking as
variate the global orderings and as covariate the capacity of the sacks and using
the usual Fisher's statistic:

(N-r) X' A (A'A)- 1 C' { C(A'A) - 1 C'} C(A A't1

F = (r - l)X' [l-A (A' A) - 1 A'] X

where the symbols have the usual meaning of the ANOVA [Morrison 1967].
As shown in Fig. 3 the shape of the histogram of this statistic is distorted towards
the highest values, thus denouncing a significant difference between the various
orderings. Therefore, since the hypothesis that the wastes are distributed in
a gaussian curve is one of maximum entropy [Hamming 1980] we may suppose
that a significant difference exists between the mean wastes pertaining to various
orderings, such that one particular ordering may turn out to be on the average
better than the others. With respect to these results, the preceding numerical
experiments underline two points:

a) Given the shape of the histograms of Fig.l, and the structure of the greedy
algorithms, the characteristics of the algorithm with the least mean waste depend
directly on the joint distribution law of the objects and above all on their mutual
correlations. As we have already said, such correlations are lengthy to test, so
that, for a given class of real problems, e.g. from the world of the industry, it is
difficult to ascertain how much a given ordering is better in mean value.

b) Given a set of global orderings, Kendall 's statistic suggests that it is very
useful to process the input using all these orderings. Indeed, provided that the

140 B.APOLLONI

1.0 F- 1.0 r--r-

r
I r- r-

0.8 0.8

r- ,..-
0.6 I

0.6 I
I I
I

0.4 0.4
:- r
I

0.2~ 0.2

0 10 20 0 10 20 30

1.0 r- - --, 1.0 r- ..r-
I_ I I I

- I ,- ~ : r-
0.8 I 0.8 I I

I I I
I r--J : I

0.6 I 0.6
1 I 1

I I I 1
I I I I
I I I I
I

0.4
I I I

0.4 I ,J : : r I

~~
I I

0.2
I

0.2 I
I
I I
I I

0 10 20 30 0 10 20 30

Fig. 2 Theoretical and sampled cumulative distribution function of the Kendall statistic.
Number of objects = 50.
-- sampled distribution function
------ tb.eoretical distribution function
Experiment Plan:
Objects: I) '1:wi / n, 2) 0.5 * '1:w1, 3) 0.8 • '1:wi.
Observers
global orders: 1-decreasing order, 2-increasing order

3-random order, 4-alternating order
local order: !-decreasing order

2-lhe same as l but the median item changes place with the next item
3-the same as l but the two items leftside closest to the median change with
the right side items
4-the same a~ I but the three ...

2.a ss= 60, wdl = U*lOO, ord. =global, corr. =always 0
2.b ss = 60, wdl = U2*100, ord. = global, corr. = always 0
2.c ss = 60, wdl = U*IOO, ord. = global, corr. = random among the pairs
2.d ss = 60, wdl = U*IOO, ord. = local, corr. = always 0

mean wastes relative to these are not enormously different, we could expect that,
no matter what the best ordering may be, in those cases when this gives a very
high waste some other ordering of the same set can give better results.

Heuristics for the 0-1 knapsack

0.8 a
0.8 b

06 0.6

0.4 0.4

0.2 0.2

0 10 20 0 10 20

0.8 c 0.8 d

0.6 0.6

0.4 0.4

02 02

0 10 20 0 10 20 30

Fig. 3 Theoretical and sampled cumulative distribution function of the ANOV A statistic
Number of objects = 50.
Experiment Plan:
factor levels: !-random ordering

2-decreasing ordering
3-incteasing ordering

Covariate values: L.wi f n, 0.5*L.wi, 0.8*L.wi
3.a ss = 60, wdl = U* 100, corr. = always 0

3.b ss = 60, wdl = y'U*IOO, corr. = always 0
3.c ss = 60, wdl = lP*lOO, c<>rr. = always 0
3.d ss = 60, wdl = U* 100, corr. = random among the pairs

2.1. Proposed procedure

141

On the basis of the previous theoretical considerations and of the numerical
experiments shown, the following fixed time heuristic procedure is proposed:
When one has to solve a set of 0-1 knapsack problem with unitary profit
coefficients and a fixed short time is available for each,
a) select a number of highly uncorrelated fixed time algorithms so that the total
running time equals the available time.

142 B. APOLLON!

a.l) in order to select highly uncorrelated algorithms start from a fixed time
heuristic algorithm, like HGKl, and change the ordering of the objects within
a global set of orderings.
a.2) in order to be sure that these orderings, and therefore these algorithms are
uncorrelated test them by using the p Kendall statistic on a sample of those
problems.
b) if a.2 succeds then
b. I) execute the selected algorithms
b.2) select the solution which fills the sack most.
Of course this propo~ed procedure represents an example of a general procedure
meant for obtaing approximate solutions of highly complex problems.
Note that when we test the un-correlations between orderings, we are assuming
that the instances of the problem come all from the same random population we
pick the sample from.

3. Cut time heuristics

When a limited amount of time is available to obtain a solution to the knapsack
problem, then each algorithm really behaves as an approximate algorithm, if this
time, as a function of the input length , is less than the lower bound coming from
the complexity of the problem. Indeed, we can only be sure that we have got an
optimal solution in trivial cases, and, we are almost never sure in advance that
this optimal solution will be achieved, so that in most cases we must deal only
with feasible solutions again. Consequently, another class according to which we
may group our solving algorithms is that of cut-time. In these algorithms we must
take into account the fact that their running time my be cut before completion
and that, consequently, the algorithms must handle a current solution, to be used
as an approximate solution at the cutting moment.
Within this framework, a meaningful parameter by which to appraise the
efficiency of the algorithms, no matter if exact or approximate, is the rate at
wh ich the best feasible solution comes close to the capacity of the sack. Here once
again we take the capacity of the sack and not the optimal solution as our
touchstone in order to avoid the lower bounds on the complexity stated in sect. 1.
We propose a heuristic algorithm which seems to show a more favourable rate of
improvement of the feasible solution than the usual enumerative algorithms.
1 n this case we are unable to supply statistics by which some theorem proves to be
distribution free; however, the histograms of the above-mentioned rate display
some characteristics which, experimentally, appear to be independent of the law
of distribution of the input.
The heuristic algorithm CTHK that we propose starts from the following idea:
among all the feasible solutions we focus only on those which, starting from

Heuristics for tbe 0-1 knapsack 143

a greedy solution, are produced by the substitution of one or two objects by
another, or of one object by two. Obviously, at the moment of each of these
substitutions, the best current solution is the best feasible solution available.
Of course these are not all the feasible solutions, but they come close to the
capacity of the sack, and thanks to the substitutions of one item by two or vice
versa, constitute a wide spectrum of candidate solutions.
In order to make this algorithm exact, we ought to extend the heuristics rules to
take into considerarion not only those substitutions of order ~ 2 already
mentioned but all possible substitutions. This kind of extension, however, would
require considerable running time, while the number of substitutions that cannot
be broken down into substitutions of order ~ 2 by our algorithm is generally
small.
More precisely the algorithm is made up of three main steps:
Upward trials
Starting from the feasible solution, one object inside the sack is substituted by
one or two object outside in order to reach the capacity of the sack. If the sack
cannot be entirely filled in this way the best solution update the current solution,
but the trials continue performing the first tested exchange, in order to prevent
any sub-optimal strategy and obtain a wide spectrum of feasible solutions.·
Downward trials
In this case we start from unfeasible solutions that exceed the capacity of the sack
and try to reach the exact capacity by a strategy symmetrical to the previous one.
This step does not update the current solution unless the sack is completely filled
up.
Initialization
This occurs at the beginning of the algorithm and when one of the previous steps
cannot continue. At the beginning it consists of a special greedy algorithm. At the
end of the first step a particular substitution is performed in order to jump
outside the sack capacity, and a similar inverse jumping is performed at the end
of the second step. When these jumps cannot be made we start again from the
beginning, making sure we avoid passing by the same initial solution.
The Pascal code of the a lgorithm is reported in the quoted book [Apolloni et al.
1984], here we show its outline.
Variables
Scalars:

n = number of objects
CAPACITY = capacity of the sack
r = current waste/surplus
CSUM = initial sum of loaded weights
STFLAG = flag of the step
Vectors:
IND = current solution
BTSOL = best current solution

144

ETSOL = exact solution
W = weight of the objects

II.APOLLONI

Wi n = weight of the loaded objects, namely W;u (I) = W (I)* IND (I)
Wout = weight of the outsack objects, namely Wout (I) = W (I)* (1-IND (I))
USIND = objects not useful in the initialization step

Algorithm

Step 1: INITIALIZATION
if it is the first pass
then
order the objects in a growing order on
1. the minimum factor =I= 1 of their weights
1.1. the value of the weights having thesame minimum
factor;
USIND (I): = 0 'V I;
IND (I) : = 0 'V I;
I:= 0; CSUM := 0;
repeat
I:= I + 1;
if USIND (I) = 0
thenCSUM := CSUM + W(I),IND(I) : = 1;
until CSUM 2: CAPACITY;
if CSUM < CAPACITY {because of USIND}
then PRINT BTSOL, STOP;
ifCSUM = CAPACITY
then PRINT ETSOL, STOP;
else
USIND (I - 1) : = 1;
I: = 0;
repeat
I:= I + 1;
CSUM = CSUM -(1- IND (I))* W (I), IND (I) = 0;
until CSUM ,:::; CAPACITY
if CSUM = CAPACITY then PRINT ETSOL, STOP;
r: = CAPACITY-CSUM;
STFLAG := 1;
STEP 2: UPWARD/DOWNWARD TRIALS
a) if3I: Wout (I) = r then Ind (I) := STOP, PRINT ETSOL;
if 3 I, J : Wout (I) = r + Win (J), I =I= J
then IND (I) : = 1, IND (J) : = 0, PRINT ETSOL, STOP;
if 3 Il, I2, J: wout (Il) + wou! (12) = r +win (J), Il=!=I2#J

Heuristics for the 0- I knapsack 145

then INO (I I) : = l, INO (12) : = 1, IND (J) : = 0, PRINT ETSOL, STOP;
if 3 11, 12, J: w out (Il) + WOUI (12) < r + win (J) 11 =Fl2=FJ
then
if STFLAG = l then
find max wout (Il) + WOUl (12) V IL 12, J s.t.
WOUI (Tl) + w out (12) < r +win (J) 11 =Fl2=FJ;
update BTSOL;
take the lowest IL 12, J s.t.
W0 u1 (11) + Wou1 (12) < r + Win(J)Il=FI2=FJ;
IND (II) := 1, IND (12) := 1, IND (J) := 0;
if IND so obtained equals IND corresponding to BTSOL;
then PRINT BTSOL, STOP;
else go back to the start of this step;
else go to step 3;
STEP 3: CHANGE OF DIRECTION OF THE TRIALS
find max wout (I)+ WOUI (k) and min win (J) =F 0, V 11, 12, J, 11 =FI2=FJ;
if 3 1 or K {all the objects are inside}
then go to STEP 1
else IND (I):= 1, IND (K) := 1, IND (J) := 0;
r := ABS (CAPACITY-CSUM));
JND (I) : = l-INO (I) V I;
STFLAG : = 1-STFLAG;
go to STEP 2;

In order to assess the validity of this heuristic with respect not, we repeat, to the
approximation but to the improvement rate, we compared that rate with that of
the algorithm EEK 1, obained from EEK via a modofication of the first two
steps.
Generation of aU the subsets of the input objects
This corresponds to generation of all the binary strings s of length n, in the
opposite lexicographical order.
Cutting of the unfeasible solutions
This step allows the cutting out of entire sets of unfeasible solutions. Provided
that the items are ranked according to the increasing order of their weights, the
rule is the following: k

As soon as in a strings 3 k s.t. I 1vi si exceeds C.
j =l

put s* = 0 and continue from the corresponding string the generation of the
strings.
Moreover the task of step 1 is obtained by the following very easy algorithm
[Johnson 1963]
1. Start with a string of all 1
2. If items sj = 1 do not exist then stop

146 B. APOLLONI

3. Starting from the rigth, find the first item = 1
4. Set this item to 0 and all the items at its right side to l
5. Go to 2
Thanks to the simplicity of its structure, among t~e exact algorithms for 0-1
Knapsack problems, EEK 1 appears to be very efficient.
For simplicity of illustration the above mentioned rate has been evaluated in an
indirect way by sampling problems, in which the exact solution completely filled
the sack and by tracing the cumulative distribution function of the time at which
the full capacity of the sack is attained both from CTHK and from EEK 1 (see
Fig. 4).
The better behaviour of the first algorithm, which is evident in each of the various
cases simulated, leads us to conjecture that the fact that the first algorithm has
a better rate, could be true almost independently of the law of distribution of the
input, just as the experiments of Fig. I allow us conjecture that the decreasing
ordering is generally the best one. Moreover, thanks to the cutting strategy of the
exact algorithm, the benefit which comes from using the heuristic algorithm is
greater when the distribution law of the weights is distorted toward the lowest
values with respect to the uniform distribution.

a b
10 1.0 ,, ,..
0.8 ,-· 0.8

I I

,.I
I

•' 0.6 I 0.6
I I

0.4 •' Q.4 JJ r'
I 0.2 0.2 •' I

..r I

0 0 ~ 0 0 g § ~ <D ~

c d
1.0 ,r 1.0 ,r"\-
0.8

lr 0.8 I
I

06 0.6 r J

0.4 0.4

~
J

r

0.2 .--' 0.2 J

:rr I
I

0 g 0 0 0 0 § S! <0 <D <0 ~ M

Fig. 4 Sampled cumulative distribution function of the running time of the full capacity solutions
Number of objects '"' 50. ------ Cut time heuristic algorithm - Enumerative exact
algorithm sack capacity= mixed among Ew;fn, 0.5 t:wJ, 0.8 t:wJ 4.a ss = 40, wd.l = U*lOO,
corr. '"' always 0 4.b ss = 40, wdl = U2*100, corr. = always 0 4.c ss = 40, wdl = J U*lOO,
corr. = random among the pairs 4.d ss= 80, wdl = U*lOO, corr. = always 0

Heuristics for the 0-1 knapsack 147

4. Conclusions

Together with the demand for optimality, the need to perform choices emerges in
the decision problems when the problem is computationally complex and the size
of the input is large. In these situations, when the probability theory is useless,
there is room for such theories as fuzzy set theory [Baas and Kwakernaak 1977]
a lternative sets [Vopenka 1979] or choice theory [Apolloni and Di Gregorio
1983] in the context of classical or multimodal logics [Lukasiewicz 1953.]
The problem is to preserve this demand for optimality in the presence of an
operator, such as the choice operator, which, by definition, breaks all the
causality chains, and thus the optimality chains.
In this paper, in line with a developing theory of choice and from a strictly
pragmatic point of view, we have proposed two approaches to using the available
running time more profitably in solving a Subset-Sum Problem in an ap
proximate way.
The interest of such algorithms does not reside so much in the sack loading rules
as in the management of these rules which takes into account the presence of the
choice operator, with the aim of obtaining, within the constraints of fixed time,
a significant spectrum of approximate solu tions. The quality of these algorithms
lies in the fact that, in order to appreciate their efficiency, we may refer to some
statistics that we prove, or at least we strongly conjecture in some cases, to be
distribution free. Thus the efficiency of these algorithms is effectively testable by
means of small sized samples coming from the actual operational problem we are
dealing with.

References

[I] APOLLONI B., D1 GREGORIO S. About a formal non probabilistic theory of choices. Proc. 7-th
lnl.Congr.of Logic, Methodology and Philosophy of Sciences. Salzburg 1983, 115- 11 9.

(2] APOLLONI B., DJ GREGORIO S. Combinatorial problems in Natural Science. Computational
complexity and inherent properties. Episremo/ogia. 7 (1984), 1-30.

[3] APOLLONI B., PITTELLI A. Complex statistical test on computational complex problems.
Quaderni di teoria degli algoritmi, (1984), 1-24.

[4) APOLLONI B., PEZZELLA F., CANALE D., PIZLU'fl C. 11 problema di knapsack: raccolta di
programmi di calcolo. Progetto Finalizzato transporti (Sottoprogctto 11), (1984), 1- 122.

[5) BAAS M .. KwAKENAAK II. Rating and ranking of mult i-aspects alternat ives using fuzzy sets.
A utomatica, 13 (1977), 47-58.

[6] D'ATRI G .. PuECB C. P robabilistic analysis of the subset-sum problem. Dis(·rete Applied
Mtuhematics, 4 (1982). 329- 334.

[71 GENS G. V .• LFVNER E. V. Fast approximation algorithms for knapsack type problems. Lecture
notes in Control a nd lnformatioo Sciences, 23 (1980). 185-194.

[8] HAM\11 NG R.W. Coding and information theory. New York, Prcntice Hall 1980.
[9] IBARRA O.H .. KtM C. E. Fast approximation algorithms for the knapsack and sum of subset

problems. J.ACM. 22 (1975), 463-468.
[I 0] JOHNSON S.M. Generation of permutation by adjacent transposition. Mllth.of Compllf. (1963).

282-285.

148 B. APOLLONI

[I I] KARP R.M. Probabilistic analysis of partitioning algorithms for the travelling salesman in the
plane. MaThematics of Operations Research, 2 (1977), 209-224.

[12) KEN DALL M.G. Rank correlation methods. London. Ch. Griffin. 1975.
[13] KoLMOGOROV A.N. Three approaches to the quantitative definition of information pro

blems.J.of b!{orm. Transm. 1(1965), 4-7.
[14] KORNFELD W.A. Combinatorially implosive algorithms. Communications of the ACM. 25

(1982) 10, 734- 738.
£15) LAWLER E.L. Fast approximation algorithms for combinatorial problems. Mathematics of

Operation Research, 4 (1979), 339- 356.
(16) LUKASJEW!CZ A system of modal logic. J.Comp.Syst., (1953), 111-149
[17] MARTELLO S., TOTH P. Worst-case analysis of greedy algorithms for the subset-sum problem.

Mathematical Programming, 28 (1984), 198-205.
[18] MORRlSON D.F. Mult ivariate statistical methods. New York. Me Graw-Hill, 1967.
[19] MULLER·MERBACH H. Heuristics and their design, a survey. Eur.J.Op.Res. , 8 (1981), 1- 23.
[20] RABIN M.O. Probabilistic Algorithms. In: Algorithms and complexity, new directions and

recent trends. J.F.Traub, ed. New York 1974.
[21] VOJ> EN KA P. Mathematics in the alternative set theory.Amsterdam, North-Holland 1979.
[22] WtLKS S.S. Mathematical statistics. New York, J.Wiley 1962.

Received, December 1988.

Testowalne beurystyki dla binarnego zadania zaladunku

Dla efektywnego rozwi<!zywania binarnego zadania zaJadunku przy ograniczonym czasie obliczen
zaproponowano dwie heurystyczne meLOdy konstruowania rozwi(!zan zwane ,fixed time' ' i ,cut
time".

PodstawoW<! ide& jest tu konstrukcja takicb algorytm6w aproksymuj&cych kt6re generuj<l,
w ograniczonym przedziale czasu, istotnie roznictce si~ mi~dzy sob(! rozwictzania dopuszczalne
w oparciu o tecechy problemu. kt6re S<l zwykle pomijane w znanych heurystykach llZywajctcych regul
suboptymalnych przy zaladunku ,plecaka". W przypadku zaproponowanych a!gorytm6w mozna
udowodnic, :i:e S<! one efektywne wzgl~em pewnych parametr6w niezale:i:nych od struktury
rozwi<1zania dokladnego, oraz ie wsp61czynnik efektywnosci moie bye oszacowany za pomoq
mctod bezdystrybucyjnych, na podstawie malych pr6bek gen.erowanych przez rozpatrywane
zagadnienie zaladunku.

TecTnpyeMLie 3BpHCTH'IeCKHe MeTOALI ,UJIH 6uuapnoii Ja,na'IH JarppKn

Arur :xil$eKTI!BHOTO pemeHHj! 6HHapHOH JaJJ.a'l.H JarpyJKH, npH orpaHH'ICHHH BpeMeHll Ha
Bbi'lliCJieHRJI, npeAJiaralOTCll .l(Ba 3BpHCTH'l.ecKHX MCTO}la TIOCTpOCHHS pemeHHK, Ha3LIBaeMbiC
,fixed time" H ,sut time".

0CHOBHaS HJJ.Cll COCTOHT B UOCTpOCHHH TaKHX annpOKCHMHpyJOIQHX aJIJ'OpHTMOB, KOTOpblC
reHepepHpYJOT, Ha orpaHH'l.CHHOM OTpCJKe BpeMeHH, cymecTBCHHO OTJIH'IalOmHCCJI MClK,!J,Y C060H
JlOITyCTHMbie pelllCHHll Ha OCHOBC TCX $aKTOpOB, KOTOpblC 06bi'lHO He 6epyTCll BO BHHMa.Hlle
B IDBeCTHhiX 3BpHCTH'JecKl!X TIOJlXO,llaX, HCTIOJib3)'10mHX cy60UTHMaJTbHbiC npaBHJJa npH JarpyJKe
,plOK3aiCa". Arur CJTY'iaS npeAJiaraeMbJX aJirOpHTMOB MOlKHO ,QOKaJaTb, '!TO OHH 3$<j>eKTIIBHbi no
OTHOllleHHlO K HeKOTOpbiM napaMeTpaM, HeJaBHCHMbiM OT crpyKTypbl TO'lBOrO pelllC.HlUI, a TaiOICe
'!TO KO:xil$HQHeHT 34>$eKTHBHOCTH MOlKCT 6biTh OQeHeH C TIOMOmblO Hepacnpe)J.eMaTeJJbHblX
MCTOJJ.OB, Ha OCHOBe MaJIOH BbJ60pKH reHepHpyeMOH paCCMarpHBaeMOH 3a,Qa'leH 3arpy3KH.

