
Control 
and Cybernetics 

Vol. 19 (1990) o. 1-2 

Testable heuristics for the 0-1 knapsack problem 

by 

BRUNO APOLLONI 
Dipartimcnto di Scienzc dcll'lnformazione 
Univcrsita di Milano. Italy 

Two kind of heuristics, fixed time and cut time. are proposed in order to use the running time 
available in solving 0- 1 Knapsack problems efficiently. The basic idea is to build approximate 
algorithms capable of generating. within fixed time limits. significantly different feasible solutions by 
cxplicilly taking into account those indeterminate aspects of the problem which the usual heuristics 
tend to avoid by using suboptimal rules for loading the knapsack. In the case of those algorithms it is 
possible to prove that they arc efficient with respect to some parameters which arc independent of the 
pattern of the exact solution, when tbis efficiency can be tested, vi<~ distribution-free methods. by 
small sized samples of the knapsack problem coming from the operational situations one is dealing 
with. 

l. Introduction 

We refer to the knapsack 0-l problem with unitary specific profit coefficients: 
11 

max LX; 11' , 
j -:3 ) 

" LX; w, < c 
;:a I 

X;= 0 or l ( i = I, ... , n) 

11 

C and w; positive, w; ~ C for each i, L: w; > C 
i= I 

where C is the capacity of the knapsack, w; is the weight of, and at the same time 
the profit connected with, the i-th object among then, and x ;equals 1 if the object 
is loaded into the knapsack, 0 otherwise. 
The problem falls into the class of the NP-hard problems, therefore at the 
moment each exact solving algorithm requires an extremely long running time 
for a large amount of inputs. 
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In order to focus better the computational problem, let us consider, as an 
archetype of such a class, the following exact algorithm, EEK, which solves our 
problem. The algorithm is made up of the following three nested segments. 

Generation of all the subsets of the input objects 
This corresponds to generating all the binary strings s, of length n, in any order. 

Cutting out of the unfeasible solutions 
This step allows the cutting out of the unfeasible solutions. Let sj be the j-th 
element of s, the rule is the following: 

k 

As soon as in a strings L wj sj exceeds C for some k, go to the next string. 
J~ l 

Selection of the exact solution 
Every strings which is generated by the first step and not eliminated in the second 
represents a feasible solution. The one which results in the highest value of , 
L ~is; at the completion of segment 1 is the exact solution. 
j = l 

Together with this let us consider the usual HGK greedy heuristic algorithm. 

BEGIN 
SUM: = 0; 1: = 0; X(I): = 0 for ·each I; 
WHILE SUM:::; CAPACITY DO 
BEGIN 

I: = I+ 1; 
SUM: =SUM+ W(I); 
IF SUM :::; CAPACITY 
THEN X (I): = 1; 

END; 
END. 

Many papers have been written on the epistemological aspects of the com
putational complexity. The argument of this paper stems from the idea which 
attributes the high computational complexity of exact algorithms like the 
previous one, to a choice operator which, in the absence of any theoretical 
support, essentially shifts between the two edges of a fork of a binary tree 
[Apolloni and Di Gregorio, 1984]. The formal defmition and properties of this 
operator can be found in [Apolloni and Di Gregorio 1983]; here we trivially 
focus on the following remarks: 

a) in the algorithms for our knapsack problem, and more generally for NP 
problems when the running time is more than linear in the length of the input, 
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there are some steps after which the computation may continue by executing 
more than one set of instructions (computational paths). As there is no 
optimality theorem which prefers one path to another, the next step is selected by 
means of the above choice operator. This is why, for example, in branch and 
bound tecniques only practical rules, and not theorems, are available to select 
some next branch. And for the same motive there is no reason to prefer the direct 
or opposite lexicographical order, or indeed any other order, in the EEK 
algorithm, if we disregard worst-case or probabilistical suggestions, which we 
will deal with later in the paper. 
From another point of view, such arbitrarities correspond to the order in which 
the input data are processed, and they are due to the fact that there are many 
permutations of the input data, which do not change the problem, but give rise to 
the same solution. 
rn reality, given the lexkographical ordering of the enumeration of the strings sin 
EEK, the order in which the feasible solutions are listed depends upon the 
particular permutation according to which the items appear in the input. Moreover 
the list themselves of the feasible solutions can be obtained by applying the 
algorithm HGK successively to the various permutations of the input. 
Thus the points of choice can be moved from the instruction sequences to the 
permutations of the input which these sequences have to process. 

b) the running time needed to reach the optimal solution is generally strongly 
dependent on the particular sequencing of the computational paths. In fact, each 
step which involves a choice is associated with various computational paths, all 
of which must be carried out should no one of them lead to the exact solution. 
Consequently, if we put aJl the compositions of computational paths arising from 
the cartesian product of the sets of choices into one stack, the execution of the 
algorithm can be seen as a progressive screening of the elements of the stack 
which continues until the solution is recognized. Indeed the running time is short 
or long according to the depth of the path which stop the algorithm in the stack, 
but generally we cannot know a priori how to place the compositions in order to 
render the depth a slight one. 
Actually EEK is broadly independent on this sequencing, but as soon as a less 
trivial algorithm is sought, such dependency does appaear. 
It is clear that the running time is a non-decreasing function of the number of the 
above points of choice. The ability of heuristic algorithms [Muller-Merbach 
1981] to shorten it, lies in the elimination of most of these points by using some 
arbitrary criteria which are the bases of univocal selections between the paths. So 
in our problem special sets of paths have been suggested in the literature [Gens 
and Levner, 1980; lbarra and Kim, 1975; Lawler, 1979; Martello and Toth, 
1984]. Similarly, if we view EEK as a series of applications of HGK, instead of 
screening all the possible permutations of the objects, some heuristics suggest 
considering only one, which is derived from a special ordering of the objects. 
Actually, once again the statement of the above criteria may be a matter of 
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choice, when no useful tool is available to appraise the efficiency of the heuristic 
a priori. Indeed, deterministic parameters, such as the worst case difference 
between exact and heuristic solutions, are generally meaningless because of the 
large range of these differences. For instance the worst-case performance ratio 
r ofMartello and Toth is > (s + 3) I (s + 4) when computational time = 0 (ns) is 
spent to reach the heuristic solution. As n increases one must reasonably sets at 
a low value, with the result that r is relatively large and the value of the waste 
could also be very large. 
Although in the past years the probabilistic aproach, both in the direction of 
[Rabin, 1974] and in the direction of [Karp, 1977] gave many illuminating 
insights on the complexity of algorithms, this approach may appear to be of little 
use from a strictly statistical and operational point of view, when no a-priori 
knowledge is avaliable on the input distribution. Broadly speaking one can state 
that given an algorithm of time complexity g(n), where n is the length of the 
input, each non trivial probabilistic sentence about its results is based on 
statistical hypotheses regarding the relevant parameters of the problem, the 
testing of which needs a computational time at least equal to 0 (g (n)) [Apolloni 
and Pitlelli, 1984.]. For example, with reference to the probabilistic performance 
of the GOLOSO algorithm [D' Atri and Peutch, 1982,], in order to test the basis 
hypothesis that the weights of the n objects to be loaded in the sack are 
statistically independent variables, no matter what their distribution, we must 
extract from the real situation referred to by the problem, a sample whose 
cardinalily is 0 (2" ). 
Faced by this situation in which it is difficult to define efficient heuristics 
precisely because one does not have the means of evaluating their efficiency, we 
intend, in the next few pages to propose particular heuristics which independently 
of the values of the exact solutions, show interesting parameters of efficiency that 
are testable via distribution-free methods using small size samples. In practice, 
we start from very simple and obvious heuristic rules of sack loading which, 
however, are administrated with particular care, in the light of the previous 
considerations made on choice steps, and within ftxed limits on the running 
time. The time available is the main parameter which conditions such heuristics 
and in function of its handling we will distinguish between fixed time and cut time 
heuristics. 

2. Fixed time heuristics 

Fixed time heuristics are one shot algorithms which follow only one of the 
computational paths arising from the choice points, so that essentially they 
consider only one feasible solution by loading the objects in the sack once. Their 
running time is essentially ftxed by the algorithm itself and is generally a very 
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shortvalued function of the size of the input with respect to the lower bound 
coming from the complexity of the problem. 
Given such an algorithm, when more than its running time is available, 
complicating the loading rule gives no guarantee about an actual improvement 
on the solution of the special instance of the problem in hand. So we suggest on 
the contrary solving the same problem more times by using trivially easy rules 
which however differ noticeably from each other. In this way we generally expect 
to obtain significantly different approximate solutions among which the one 
which comes closest to filling the sack is selected. This strategy gives a more 
rational theoretical framework to those algorithms which Kornefield [Kor
nefield, 1982] call combinatorially implosive. In the latter case the various paths 
coming from the different solution rules cooperate by running in parallel and by 
exchanging by-product information. Here the simplicity of the problem avoids 
those exchanges which may prove inefficient. 
More particularly, starting from the above greedy algorithm HGK, we construct 
HGKl: 

FUNCTION TND (J : integer); external; 
BEGIN 

SUM:= 0; I:= 0; X (I):= 0 for each I; 
WHILE SUM ~ CAPACITY DO 
BEGIN 

1:=1+1; 
SUM:= SUM+ W (IND (I)); 
IF SUM~ CAPACITY 
THEN X (IND (I)):= 1; 

END; 
END. 

This differs from the above by the presence of the function IND(l), and we 
change the selections in the choice points by simply changing the function IND, 
i.e. the ordering of the objects. 
We examine the characteristics of the algorithms so generated by using the 
Monte Carlo approach and by varying the input population with regard the 
number of items, the law of distribution of their sizes, and the sack capacity. 
Actually, according with the remark of the previous section, when one is dealing 
with combinatorial problems, a lot of experiments should in general be needed in 
order to infer some non trivial sentence about their solutions, since the inherent 
non determinism of those problems induces great spread in the main features, i.e. 
running time or waste, of the solving algorithms. In this framework a fifty item 
sized sample and then a thousand item sized sample are equally small. 
Therefore our strategy will focus on two kind of experiments: i) those aimed at 
negating some sentence, so that even a single item should disprove the sentence, 
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ii) those tailored to simulate special sample statistics whose distribution laws are 
known to be little spread. 
Namely, our sample size will range between 30 and 80, while the number n of 
objects of the single knapsak problem will be always 50. 
Three kinds of distribution law of the weight will be employed: 
- uniform within 0 and 100, namely W = U x 100, where U is uniform in (0,1) 
- quadratic, where W = U 2 x I 00 
- quare root, where W = .JU x 100 
As it was previously pointed out, a usual statistical assumption is that the weights 
are independent random variables. Such a hypothesis, tough extremely simp
lifying, is very often totally unrealistic, and hardly testable. Therefore simulated 
random samples where the correlation between two consecutive items is 
a random number between - 1 and 1 are rare. 
Last, we distiguish the instances on the basis of three capacities of the sacks so 
computed: 

11 11 , 
'f.wJn .5 L,w; .8 L,w; 
i= I i= I i= I 

As concerns the algorithms, in HGK we distinguish two main classes of sets of 
object orderings which we call global and local ordering sets. Whether or not an 
ordering belongs to one of these types of sets depends on the tie it has with the 
other elements of the set. To be precise, in global orderings the rank of almost 
every object in the input changes substantially when passing from one order to 
another, whereas in local orderings we make only slight variations in the rank of 
the objects. 
The boundary line between the two classes is fuzzy. Following in some sense 
Kolmogorov [Kolmogorov 1964], we could employ the sum of the lengths of the 
shortest programs which compute the orders as a measure of globality: the 
smaller the sum, the more global the set of orderings. In these numerical 
experiments, we consider the following to be within global orderings set: i) the 
decreasing order, ii) the increasing, iii) the random, iv) the alternating, (i.e. first 
the highest weight, then the lowest, then the highest among the remaining, then 
the lowest among the remaining and so on). 
Within the local orderings set, starting from any order we state the other 
orderings obtained by rules like these: i) change the median item with next item, 
ii) change the two median items with their neighbouring items and so on. In what 
follows the local orderings are variants of the decreasing one. 
The most relevant conclusions are the following: 

a) Behaviour of the single algorithm 
As shown in Fig. 1, the distribution law of the wastes is strongly dependent on the 
distribution law of and the correlation between, the objects to be loaded, 
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l.a Sampling size (ss) = 30, sack capacity (se) = 0.5* :Ewj, weights distribution law 
(wdl) = U" 100 (U = 0-1 uniform random var.) correlation (corr) = always 0 

l.b ss = 60, se = 0.5 :Ewj, wdl = .JU* 100, corr. = always 0 
l.c ss = 90, se = 0.8 :Ewj, wdl = U" 100, corr. = always 0 
l.d ss = 60, se = 0.5 :Ewj, wdl = U* 100, corr. = always 0 
l.e ss = 90, se = 0.5 :Ewj/ n, wdl = U* 100, corr. = always 0 
l.f ss = 30, se = 0.5 :Ewj, wdl = U* 100, corr. = random among the pairs 

whatever the the ordering should be. So any probabilistical statement is not 
quickly testable, even if the general opinion is that decreasing order is the best. 

b) Connection between the algorithms 
When we are investigating the joint behaviour of the algorithms rather than the 
individual patterns of the solutions, we are focusing on the structure of the 
algorithm itself. Thus we disregard the single computational paths connected to 
the choice, and the law of distribution of the input, so that the relevant properties 
can be tested by short samples. 
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The statistic which has been dealt with is the KENDALL Rank Correlation 
Statistic p. Starting from a set of objects, its construction is based on a two-way 
table of experiments. 
P 1 way: capacity of the sack 
2nd way: ordering (that is IND) with which the objects are loaded by HGKl 
Following the same illustrative strategy as Kendall [Kendall 1975] we imagine 
that the first way is at n levels and that at each of these levels we can replace the 
capacity of the sack by an item participating in a qualifying competition. Just like 
the members of a jury, the orderings of the second way, in number of m, award 
different scores, ranking from 1 ton, in function of the waste in the solutions they 
themselves generate. To be exact, the scores are the decreasing ranks of the 
wastes examined by the same jury. 

ITEMS n = 3 

~ 2 
I, I2 13 

o, 2 I 3 Waste13 < Waste11 < Waste12 

JURY 02 I 2 3 

03 1 3 2 

m=4 04 2 3 I 

t, t2 t3 

The main question is whether the juries are substantially concordant, and 
therefore if the orderings give rise more or less to the same pattern of the wastes in 
relation to the sack capacities, so that the capacity which leads to the minimal 
waste within one particular ordering turns out to give virtually minimal waste 
within the other orderings too, and so on. 
Starting from the above m x n table the Kendall statistic p is computed as: 

n 

where S = L (t;- t0 'f, t ; is the sum of the scores of the i-th sack in correspon-
i=l 

dance with the various orderings and t0 is the arithmetic mean of the t;'s. 
By definition, when these scores are concordant the sumS tends to take on high 
values, and vice versa. 
In the hypothesis that the scores disagree so completely that every possible score 
table has the same probability, the distribution Jaw of pis totally free [Wilks 
1962] of the distribution law of the scores, and therefore of the distribution law of 
the wastes, and consequentely of the distribution law of the variables in input to 
the problem. In Kendall's book the cumulative distribution function of pin such 
a hypothesis is available as a function of m and n. 
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We simulated the law of pin the case of global orderings and in the case of local 
orderings, varying the capacities of the sacks according to the afore mentioned 
formulas. 
On the basis of lots of 60 problems randomly sampled we found that the 
cumulative histogram of p coincides almost completely with the above theoreti
cal distribution Jaw, when dealing with global orders. Vice versa, Fig., 2 the 
histogram goes to the highest values when the algorithms differ by local orders 
(see Fig. 2). 
Thus the global orderings are not in agreement and consequently by using them 
we can expect to find approximate solutions which differ in the way previously 
described. Therefore in those cases where an ordering turns out to be of low 
efficiency, giving a low score, there will be other orderings of the same set which 
give a higher one, and which could correspond to lower wastes. 
This relation between kind of ordering and uncorrelation should be independent 
of the joint distribution of the objects, with the result that not only the test 
statistic but also the property itself appears to be distribution free, and 
consequently we could assume that global orderings give rise to totally 
discordant results. Anyway the property can be tested over the special 
distribution law the set of inputs is coming from. 
We now carry out the variance analysis on the same experiments, taking as 
variate the global orderings and as covariate the capacity of the sacks and using 
the usual Fisher's statistic: 

(N-r) X' A (A'A )- 1 C' { C(A'A) - 1 C'} C( A A't1 

F = (r - l)X' [l-A (A' A) - 1 A'] X 

where the symbols have the usual meaning of the ANOVA [Morrison 1967]. 
As shown in Fig. 3 the shape of the histogram of this statistic is distorted towards 
the highest values, thus denouncing a significant difference between the various 
orderings. Therefore, since the hypothesis that the wastes are distributed in 
a gaussian curve is one of maximum entropy [Hamming 1980] we may suppose 
that a significant difference exists between the mean wastes pertaining to various 
orderings, such that one particular ordering may turn out to be on the average 
better than the others. With respect to these results, the preceding numerical 
experiments underline two points: 

a) Given the shape of the histograms of Fig.l, and the structure of the greedy 
algorithms, the characteristics of the algorithm with the least mean waste depend 
directly on the joint distribution law of the objects and above all on their mutual 
correlations. As we have already said, such correlations are lengthy to test, so 
that, for a given class of real problems, e.g. from the world of the industry, it is 
difficult to ascertain how much a given ordering is better in mean value. 

b) Given a set of global orderings, Kendall 's statistic suggests that it is very 
useful to process the input using all these orderings. Indeed, provided that the 



140 B.APOLLONI 

1.0 F- 1.0 r--r-

r 
I r- r-

0.8 0.8 

r- ,..-
0.6 I 

0.6 I 
I I 
I 

0.4 0.4 
:- r 
I 

0.2~ 0.2 

0 10 20 0 10 20 30 

1.0 r- - --, 1.0 r- ..r-
I_ I I I 

- I ,- ~ : r-
0.8 I 0.8 I I 

I I I 
I r--J : I 

0.6 I 0.6 
1 I 1 

I I I 1 
I I I I 
I I I I 
I 

0.4 
I I I 

0.4 I ,J : : r I 

~~ 
I I 

0.2 
I 

0.2 I 
I 
I I 
I I 

0 10 20 30 0 10 20 30 

Fig. 2 Theoretical and sampled cumulative distribution function of the Kendall statistic. 
Number of objects = 50. 
-- sampled distribution function 
------ tb.eoretical distribution function 
Experiment Plan: 
Objects: I) '1:wi / n, 2) 0.5 * '1:w1, 3) 0.8 • '1:wi. 
Observers 
global orders: 1-decreasing order, 2-increasing order 

3-random order, 4-alternating order 
local order: !-decreasing order 

2-lhe same as l but the median item changes place with the next item 
3-the same as l but the two items leftside closest to the median change with 
the right side items 
4-the same a~ I but the three ... 

2.a ss= 60, wdl = U*lOO, ord. =global, corr. =always 0 
2.b ss = 60, wdl = U2*100, ord. = global, corr. = always 0 
2.c ss = 60, wdl = U*IOO, ord. = global, corr. = random among the pairs 
2.d ss = 60, wdl = U*IOO, ord. = local, corr. = always 0 

mean wastes relative to these are not enormously different, we could expect that, 
no matter what the best ordering may be, in those cases when this gives a very 
high waste some other ordering of the same set can give better results. 
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Fig. 3 Theoretical and sampled cumulative distribution function of the ANOV A statistic 
Number of objects = 50. 
Experiment Plan: 
factor levels: !-random ordering 

2-decreasing ordering 
3-incteasing ordering 

Covariate values: L.wi f n, 0.5*L.wi, 0.8*L.wi 
3.a ss = 60, wdl = U* 100, corr. = always 0 

3.b ss = 60, wdl = y'U*IOO, corr. = always 0 
3.c ss = 60, wdl = lP*lOO, c<>rr. = always 0 
3.d ss = 60, wdl = U* 100, corr. = random among the pairs 

2.1. Proposed procedure 

141 

On the basis of the previous theoretical considerations and of the numerical 
experiments shown, the following fixed time heuristic procedure is proposed: 
When one has to solve a set of 0-1 knapsack problem with unitary profit 
coefficients and a fixed short time is available for each, 
a) select a number of highly uncorrelated fixed time algorithms so that the total 
running time equals the available time. 
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a.l) in order to select highly uncorrelated algorithms start from a fixed time 
heuristic algorithm, like HGKl, and change the ordering of the objects within 
a global set of orderings. 
a.2) in order to be sure that these orderings, and therefore these algorithms are 
uncorrelated test them by using the p Kendall statistic on a sample of those 
problems. 
b) if a.2 succeds then 
b. I) execute the selected algorithms 
b.2) select the solution which fills the sack most. 
Of course this propo~ed procedure represents an example of a general procedure 
meant for obtaing approximate solutions of highly complex problems. 
Note that when we test the un-correlations between orderings, we are assuming 
that the instances of the problem come all from the same random population we 
pick the sample from. 

3. Cut time heuristics 

When a limited amount of time is available to obtain a solution to the knapsack 
problem, then each algorithm really behaves as an approximate algorithm, if this 
time, as a function of the input length , is less than the lower bound coming from 
the complexity of the problem. Indeed, we can only be sure that we have got an 
optimal solution in trivial cases, and, we are almost never sure in advance that 
this optimal solution will be achieved, so that in most cases we must deal only 
with feasible solutions again. Consequently, another class according to which we 
may group our solving algorithms is that of cut-time. In these algorithms we must 
take into account the fact that their running time my be cut before completion 
and that, consequently, the algorithms must handle a current solution, to be used 
as an approximate solution at the cutting moment. 
Within this framework, a meaningful parameter by which to appraise the 
efficiency of the algorithms, no matter if exact or approximate, is the rate at 
wh ich the best feasible solution comes close to the capacity of the sack. Here once 
again we take the capacity of the sack and not the optimal solution as our 
touchstone in order to avoid the lower bounds on the complexity stated in sect. 1. 
We propose a heuristic algorithm which seems to show a more favourable rate of 
improvement of the feasible solution than the usual enumerative algorithms. 
1 n this case we are unable to supply statistics by which some theorem proves to be 
distribution free; however, the histograms of the above-mentioned rate display 
some characteristics which, experimentally, appear to be independent of the law 
of distribution of the input. 
The heuristic algorithm CTHK that we propose starts from the following idea: 
among all the feasible solutions we focus only on those which, starting from 
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a greedy solution, are produced by the substitution of one or two objects by 
another, or of one object by two. Obviously, at the moment of each of these 
substitutions, the best current solution is the best feasible solution available. 
Of course these are not all the feasible solutions, but they come close to the 
capacity of the sack, and thanks to the substitutions of one item by two or vice 
versa, constitute a wide spectrum of candidate solutions. 
In order to make this algorithm exact, we ought to extend the heuristics rules to 
take into considerarion not only those substitutions of order ~ 2 already 
mentioned but all possible substitutions. This kind of extension, however, would 
require considerable running time, while the number of substitutions that cannot 
be broken down into substitutions of order ~ 2 by our algorithm is generally 
small. 
More precisely the algorithm is made up of three main steps: 
Upward trials 
Starting from the feasible solution, one object inside the sack is substituted by 
one or two object outside in order to reach the capacity of the sack. If the sack 
cannot be entirely filled in this way the best solution update the current solution, 
but the trials continue performing the first tested exchange, in order to prevent 
any sub-optimal strategy and obtain a wide spectrum of feasible solutions.· 
Downward trials 
In this case we start from unfeasible solutions that exceed the capacity of the sack 
and try to reach the exact capacity by a strategy symmetrical to the previous one. 
This step does not update the current solution unless the sack is completely filled 
up. 
Initialization 
This occurs at the beginning of the algorithm and when one of the previous steps 
cannot continue. At the beginning it consists of a special greedy algorithm. At the 
end of the first step a particular substitution is performed in order to jump 
outside the sack capacity, and a similar inverse jumping is performed at the end 
of the second step. When these jumps cannot be made we start again from the 
beginning, making sure we avoid passing by the same initial solution. 
The Pascal code of the a lgorithm is reported in the quoted book [Apolloni et al. 
1984], here we show its outline. 
Variables 
Scalars: 

n = number of objects 
CAPACITY = capacity of the sack 
r = current waste/surplus 
CSUM = initial sum of loaded weights 
STFLAG = flag of the step 
Vectors: 
IND = current solution 
BTSOL = best current solution 
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ETSOL = exact solution 
W = weight of the objects 

II.APOLLONI 

Wi n = weight of the loaded objects, namely W;u (I) = W (I)* IND (I) 
Wout = weight of the outsack objects, namely Wout (I) = W (I)* (1-IND (I)) 
USIND = objects not useful in the initialization step 

Algorithm 

Step 1: INITIALIZATION 
if it is the first pass 
then 
order the objects in a growing order on 
1. the minimum factor =I= 1 of their weights 
1.1. the value of the weights having thesame minimum 
factor; 
USIND (I): = 0 'V I; 
IND (I) : = 0 'V I; 
I:= 0; CSUM := 0; 
repeat 
I:= I + 1; 
if USIND (I) = 0 
thenCSUM := CSUM + W(I),IND(I) : = 1; 
until CSUM 2: CAPACITY; 
if CSUM < CAPACITY {because of USIND} 
then PRINT BTSOL, STOP; 
ifCSUM = CAPACITY 
then PRINT ETSOL, STOP; 
else 
USIND (I - 1) : = 1; 
I: = 0; 
repeat 
I:= I + 1; 
CSUM = CSUM -(1- IND (I))* W (I), IND (I) = 0; 
until CSUM ,:::; CAPACITY 
if CSUM = CAPACITY then PRINT ETSOL, STOP; 
r: = CAPACITY-CSUM; 
STFLAG := 1; 
STEP 2: UPWARD/DOWNWARD TRIALS 
a) if3I: Wout (I) = r then Ind (I) := STOP, PRINT ETSOL; 
if 3 I, J : Wout (I) = r + Win (J), I =I= J 
then IND (I) : = 1, IND (J) : = 0, PRINT ETSOL, STOP; 
if 3 Il, I2, J: wout (Il) + wou! (12) = r +win (J), Il=!=I2#J 
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then INO (I I) : = l, INO (12) : = 1, IND (J) : = 0, PRINT ETSOL, STOP; 
if 3 11, 12, J: w out (Il) + WOUI (12) < r + win (J) 11 =Fl2=FJ 
then 
if STFLAG = l then 
find max wout (Il) + WOUl (12) V IL 12, J s.t. 
WOUI (Tl) + w out (12) < r +win (J) 11 =Fl2=FJ; 
update BTSOL; 
take the lowest IL 12, J s.t. 
W0 u1 (11) + Wou1 (12) < r + Win(J)Il=FI2=FJ; 
IND (II) := 1, IND (12) := 1, IND (J) := 0; 
if IND so obtained equals IND corresponding to BTSOL; 
then PRINT BTSOL, STOP; 
else go back to the start of this step; 
else go to step 3; 
STEP 3: CHANGE OF DIRECTION OF THE TRIALS 
find max wout (I)+ WOUI (k) and min win (J) =F 0, V 11, 12, J, 11 =FI2=FJ; 
if 3 1 or K {all the objects are inside} 
then go to STEP 1 
else IND ( I ):= 1, IND (K) := 1, IND (J) := 0; 
r := ABS (CAPACITY-CSUM) ); 
JND ( I ) : = l-INO ( I) V I; 
STFLAG : = 1-STFLAG; 
go to STEP 2; 

In order to assess the validity of this heuristic with respect not, we repeat, to the 
approximation but to the improvement rate, we compared that rate with that of 
the algorithm EEK 1, obained from EEK via a modofication of the first two 
steps. 
Generation of aU the subsets of the input objects 
This corresponds to generation of all the binary strings s of length n, in the 
opposite lexicographical order. 
Cutting of the unfeasible solutions 
This step allows the cutting out of entire sets of unfeasible solutions. Provided 
that the items are ranked according to the increasing order of their weights, the 
rule is the following: k 

As soon as in a strings 3 k s.t. I 1vi si exceeds C. 
j =l 

put s* = 0 and continue from the corresponding string the generation of the 
strings. 
Moreover the task of step 1 is obtained by the following very easy algorithm 
[Johnson 1963] 
1. Start with a string of all 1 
2. If items sj = 1 do not exist then stop 
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3. Starting from the rigth, find the first item = 1 
4. Set this item to 0 and all the items at its right side to l 
5. Go to 2 
Thanks to the simplicity of its structure, among t~e exact algorithms for 0-1 
Knapsack problems, EEK 1 appears to be very efficient. 
For simplicity of illustration the above mentioned rate has been evaluated in an 
indirect way by sampling problems, in which the exact solution completely filled 
the sack and by tracing the cumulative distribution function of the time at which 
the full capacity of the sack is attained both from CTHK and from EEK 1 (see 
Fig. 4). 
The better behaviour of the first algorithm, which is evident in each of the various 
cases simulated, leads us to conjecture that the fact that the first algorithm has 
a better rate, could be true almost independently of the law of distribution of the 
input, just as the experiments of Fig. I allow us conjecture that the decreasing 
ordering is generally the best one. Moreover, thanks to the cutting strategy of the 
exact algorithm, the benefit which comes from using the heuristic algorithm is 
greater when the distribution law of the weights is distorted toward the lowest 
values with respect to the uniform distribution. 
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Fig. 4 Sampled cumulative distribution function of the running time of the full capacity solutions 
Number of objects '"' 50. ------ Cut time heuristic algorithm - Enumerative exact 
algorithm sack capacity= mixed among Ew;fn, 0.5 t:wJ, 0.8 t:wJ 4.a ss = 40, wd.l = U*lOO, 
corr. '"' always 0 4.b ss = 40, wdl = U2*100, corr. = always 0 4.c ss = 40, wdl = J U*lOO, 
corr. = random among the pairs 4.d ss= 80, wdl = U*lOO, corr. = always 0 
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4. Conclusions 

Together with the demand for optimality, the need to perform choices emerges in 
the decision problems when the problem is computationally complex and the size 
of the input is large. In these situations, when the probability theory is useless, 
there is room for such theories as fuzzy set theory [Baas and Kwakernaak 1977] 
a lternative sets [Vopenka 1979] or choice theory [Apolloni and Di Gregorio 
1983] in the context of classical or multimodal logics [Lukasiewicz 1953.] 
The problem is to preserve this demand for optimality in the presence of an 
operator, such as the choice operator, which, by definition, breaks all the 
causality chains, and thus the optimality chains. 
In this paper, in line with a developing theory of choice and from a strictly 
pragmatic point of view, we have proposed two approaches to using the available 
running time more profitably in solving a Subset-Sum Problem in an ap
proximate way. 
The interest of such algorithms does not reside so much in the sack loading rules 
as in the management of these rules which takes into account the presence of the 
choice operator, with the aim of obtaining, within the constraints of fixed time, 
a significant spectrum of approximate solu tions. The quality of these algorithms 
lies in the fact that, in order to appreciate their efficiency, we may refer to some 
statistics that we prove, or at least we strongly conjecture in some cases, to be 
distribution free. Thus the efficiency of these algorithms is effectively testable by 
means of small sized samples coming from the actual operational problem we are 
dealing with. 
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Testowalne beurystyki dla binarnego zadania zaladunku 

Dla efektywnego rozwi<!zywania binarnego zadania zaJadunku przy ograniczonym czasie obliczen 
zaproponowano dwie heurystyczne meLOdy konstruowania rozwi(!zan zwane ,fixed time' ' i ,cut 
time". 

PodstawoW<! ide& jest tu konstrukcja takicb algorytm6w aproksymuj&cych kt6re generuj<l, 
w ograniczonym przedziale czasu, istotnie roznictce si~ mi~dzy sob(! rozwictzania dopuszczalne 
w oparciu o tecechy problemu. kt6re S<l zwykle pomijane w znanych heurystykach llZywajctcych regul 
suboptymalnych przy zaladunku ,plecaka". W przypadku zaproponowanych a!gorytm6w mozna 
udowodnic, :i:e S<! one efektywne wzgl~em pewnych parametr6w niezale:i:nych od struktury 
rozwi<1zania dokladnego, oraz ie wsp61czynnik efektywnosci moie bye oszacowany za pomoq 
mctod bezdystrybucyjnych, na podstawie malych pr6bek gen.erowanych przez rozpatrywane 
zagadnienie zaladunku. 

TecTnpyeMLie 3BpHCTH'IeCKHe MeTOALI ,UJIH 6uuapnoii Ja,na'IH JarppKn 

Arur :xil$eKTI!BHOTO pemeHHj! 6HHapHOH JaJJ.a'l.H JarpyJKH, npH orpaHH'ICHHH BpeMeHll Ha 
Bbi'lliCJieHRJI, npeAJiaralOTCll .l(Ba 3BpHCTH'l.ecKHX MCTO}la TIOCTpOCHHS pemeHHK, Ha3LIBaeMbiC 
,fixed time" H ,sut time". 

0CHOBHaS HJJ.Cll COCTOHT B UOCTpOCHHH TaKHX annpOKCHMHpyJOIQHX aJIJ'OpHTMOB, KOTOpblC 
reHepepHpYJOT, Ha orpaHH'l.CHHOM OTpCJKe BpeMeHH, cymecTBCHHO OTJIH'IalOmHCCJI MClK,!J,Y C060H 
JlOITyCTHMbie pelllCHHll Ha OCHOBC TCX $aKTOpOB, KOTOpblC 06bi'lHO He 6epyTCll BO BHHMa.Hlle 
B IDBeCTHhiX 3BpHCTH'JecKl!X TIOJlXO,llaX, HCTIOJib3)'10mHX cy60UTHMaJTbHbiC npaBHJJa npH JarpyJKe 
,plOK3aiCa". Arur CJTY'iaS npeAJiaraeMbJX aJirOpHTMOB MOlKHO ,QOKaJaTb, '!TO OHH 3$<j>eKTIIBHbi no 
OTHOllleHHlO K HeKOTOpbiM napaMeTpaM, HeJaBHCHMbiM OT crpyKTypbl TO'lBOrO pelllC.HlUI, a TaiOICe 
'!TO KO:xil$HQHeHT 34>$eKTHBHOCTH MOlKCT 6biTh OQeHeH C TIOMOmblO Hepacnpe)J.eMaTeJJbHblX 
MCTOJJ.OB, Ha OCHOBe MaJIOH BbJ60pKH reHepHpyeMOH paCCMarpHBaeMOH 3a,Qa'leH 3arpy3KH. 


