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1 Introduction 

We consider the following semilinear model of the Euler-Bernoulli plate 

Utt + A2u = ho(u, Ur, u11) in Q (a) 

u(t = 0) = u0 ; u,(t = 0) =Ut inn (b) 

u = fvu = 0 on Eo (c) (1.1) 

Au + (1- JJ)Bt u + kt /;uc = ht(u, Ur1 u11) on E1 (d) 

/;Au + (1- JJ)B2u- k2uc = h2(u, Ur1 u 11) on Et (e) 

where the operators B1 and B2 are given by 

Btu = 2nln2Urv- nru!/!1- n~Uu 

B2u = /;[(nr- nDur11 + n1n2(u11y- uu)] 
} (1.1)(1). 

Here n C R2 is an open, bounded domain with sufficiently smooth boundary, 

r = rourl with ronrl = 0, Q = nx(O,oo), and Lj = rj X (O,oo) for j = 0,1. 

Appearing as parameters in our system, we have the constants k 1 2:: 0 (equality 

holding only if ht :: 0), k2 > 0 and JJ (Poisson's ratio) which we will assume 

satisfies 0 $ JJ $ 1/2. We take 11 = [n1, n2] and r = [-n2, nt] to be the unit 

normal and tangent, respectively, to the boundary. 

The main goal of this paper is to establish the local and global existence of a 

unique solution, (u. u1), for (1.1) with initial data (uo, ut) in the space of finite 

energy, H 2 (11) x £ 2(11). 

In what follows. we shall make the following assumptions on the nonlinear 
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functions h;(u, ur, u11 ) 

(H-1) 
{ 

(i) 

(ii) 

h; : R3 -+ R1 are continuously differentiable 

where r, s > 0 are arbitrary and !I, h. are continuous functions of Yl· 

Our first result deals with local existence. 

Theorem 1.1 (Local Existence) Assume the hypothesis (H-1). Then for all 

initial data u0 E H 2(f2), u1 E L2 (f2) with uo satisfying (1.J){c}, there er:ists a 

unique solution (u(t), u1(t)) E C((O, T]; H2(f2) x L2 (f2)) for some T > 0. 

To state the global existence result, we need to impose more restrictive 

conditions on the h;. In addition to (H-1), we will assume 

(H-2) h;(O, 0, 0) = 0 and 

where ii = (Yl, Y2. Ya). 

Theorem 1.2 (Global Existence) Assume the hypotheses (H-1) and (H-2). 

Then there exists R > 0 such that for all initial data satisfying (J.l){c) and 

there exists a unique solution (u(t), u,(t)) to (1.1}. Furthermore, the solution 

pair (u(t), u,(t)) satisfies the estimate 

O<t<oo 

for some M > 0 and some a > 0. 
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Although the linear model of the Euler-Bernoulli plate is well-known (see 

(5,4,3,6]) very few existence results are known in the nonlinear case. Only a 

few special cases, such as monotone nonlinearities, have been considered. The 

main mathematical difficulty in studying the solvability of (1.1) with nonlin

earities appearing in the boundary conditions is the intrinsic low regularity of 

solutions to the "uncontrolled" dynamics (i.e. system (1.1) with k1 = k2 = 0 

and L2-nonhomogeneous boundary data). Indeed, L 2 boundary data do not 

produce finite energy solutions (i.e. the solutions (u(t), u,(t)) do not lie in 

H 2(f!) x L2 (f!)unless dim n = 1). Consequently, standard methods of nonlin

ear analysis which would lead to the well-posedness of the system do not apply. 

To cope with the problem, our idea is to introduce dynamic feedbacks k1 -/;u1 

and k2u1 on the boundary. These feedbacks, on one hand, cause the dissipation 

of energy for the linear model. On the other hand, they induce, as we shall see, 

regularity properties of the linearized solution which are "better" than those 

provided for by standard trace theory. We shall then exploit this regularizing 

effect of the boundary feedbacks in order to control the nonlinearities in the 

system. 

The outline of the paper is as follows. In section 2 we provide some back

ground material on the semigroup representation of the solutions to (1.1). In 

section 3, we shall prove certain "trace" regularity properties for the solutions 

to the linearized problem. These properties will be critically used in section 4, 

where the proofs of both theorems are provided. 
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2 Preliminary Material 

We find it convenient to represent the solution to (1.1) in the semi group form. 

To accomplish this we introduce a few appropriate function spaces and several 

operators. Let H~0 (0) = {x E H 2(0) : x = /;x = 0 on r 0}. Set 7-i = 

H~0(0) x L2(0) and define U = £2(f). We define A on H;
0
(0) by 

Au :: D.2u with domain 

D(.A) = {uEH4 nH~0 (0):D.u+{l-JJ)B1 u=O 

and -§;au + {1- JJ)B2u = 0 on rl} 

which is well-defined, positive and self-adjoint. We will also introduce the Green 

maps, G1 and G,, defined by 

Glh =V ~ D.2v = 0 in Q 

v = l;v = 0 on Eo 

} 
(2.1) 

D.v + (1- JJ)Bl v = h 
on E1 

:vav+ (1- JJ)B2v = 0 

and 

G2h =V ~ 0.2v = 0 inQ 

v = l;v = 0 on Eo 

} 
{2.2) 

O.v+{l-JJ)Blv=O 
on E1. 

/;D.v + (1- JJ)B2v = h 
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It can be shown that (2.1) and (2.2) are regular elliptic problems and hence (see 

[8]), 

G1 E .C(H'(r)-+ H'+t(O)) } 
fors ER. 

G2 E .C(H'(r)-+ H•+~(O)) 

We are now in a position to define the operator A : 1i -+ 1{. by 

[ 

0 I] D(A) = 
A= with 

A 0 = 

D(A) x H~0(0) 

D(A) X D(A112) . 

{2.3) 

{2.4) 

A direct computation shows that A generates a Co-semigroup of contractions 

on ?i. We also define, fori= 1, 2, B, : U-+ [D(A•)]' 

(2.5) 

and F, : 1i -+ U 

(2.6) 

where u = [ut. u:J We shall see that the F; defined by (2.6) coincide \\"itb the 

boundary feedbacks -k1 /;ur and k2u1• Indeed, 

for u E D(A) (2.7) 

and 

GiAu = fv-ulr. } 
for u E ?i . 

GiAu = -ulr. 
(2.8) 

Since B; E .C(U- [D(A•)J') and D(A) C 1i is dense with 1{. reflexive, we 

have that B,F, are well-defined in the topology of [D(A•)J' = [D(A)]'. For 
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functions hi satisfying (H-1) and (H-2), we define the operators H; : 1l- U 

i = 1,2 {2.9) 

where 'Yo is the trace operator. 

Next, we define 

u1 + k1G1GiAu2 + k2G2G;Au2 E D(A)}. 

(2.10) 

It was proved in [4) that A, is a generator of a Co-semigroup on 1l and 

t > 0 (2.11) 

where M, w > 0. 

Now we are in a position to formulate an abstract semigroup model for the 

original problem (1.1) (see [1]). With ii = (u, u,) 

:tu(t) 
2 

= Aii(t) + l)B;F;u(t) + BiH;(u(t))) + Ho(u(t)) 
i=l 

2 

- A,u + L,B;Hi(u) + Ho(ii) 
i=l 

u(O) = iio E 1l (2.12) 

where this system is considered in the topology of [D(A•)]'. 

Our main goal is to establish the existence of the solutions ii to (2.12). Since 

we are interested in mild (or weak) solutions, we shall represent the sought 
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after fi in integral form. To this end, let us (formally) define the operators 

£,: C([O,oo);U)--+ C([O,oo);?-l) fori= 1,2 by 

(2.13) 

Later, we shall prove that the above definition is meaningful. We also define 

the operator £o: .C(C([O,oo);?-l)) by 

(2.14) 

With the above definitions, the "mild" solution to (2.12) may be written as 

2 

u(t) = eA,.cuo + L £i (Hi(u(·)) (t) + Co (Ho(fi(·)) (t) (2.15) 
i:l 

The main idea behind the proofs of the theorems 1.1 and 1.2 is to seek a fixed 

point for the integral equation (2.15) under appropriate assumptions on the 

operators H,. Notice that, due to the unboundedness of the operators 8; , the 

expressions defining the operators £; are only formal. Consequently, we must 

prove that the .C; i=l,2 , are well-defined and, moreover, possess an additional 

regularity property which will allow us to apply an appropriate fixed point 

argument. This regularity requirement will be the subject of the next section. 

3 Regularity of the maps £ 1 and £2 

Notice first, that from the definitions of A,.., (2.10), and 8;, (2.5), it follows that 

{3.1) 



Indeed, 

and the conclusion (3.1) follows from (2.3). 

In order to give meaning to the formula defining Ci for i = 1,2, we shall 

prove 

Proposition 3.1 For any T > 0 and i = 1, 2, 

c,: C([O, T];U)- C([O, T]; 'H.) 

Proof: By (3.1} and (2.12) 

A;1£ 1 E C(C([O,T];U),C([O,T];'H.)). (3.2) 

Hence (see (2]) the £, are closed. 

In order to prove that the r., are densely defined, it is enough to show that 

£ 1 E £(C1([0, T];U), C([O, T]; 'H.)) fori= 1, 2. (3.3) 

On the other hand, using (2.12) and integrating by parts we obtain (for u E 

Cl ([0, T]; U)) 

The conclusion (3.3) now follows from (3.1) and (3.2).0 

In the sequel we shall need stronger regularity results for t.he operators £,. 

In fact, the main result of this section is 
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Lemma 3.1 Fori = 1,~: 

(i) £i E £(C((O,oo);U),C((O,oo);1l)) 

( ii) £i E £ ( £2([0, T]; U), C((O, T); 1£)) for any T > 0. 

We will prove Lemma 3.1 through a sequence of propositions. 

Proposition 3.2 Fori= 1,£ and any T > 0 

/or x E D(A~). (3.4) 

Proof: Notice first that by (3.1) we have B,.(A~)- 1 E £(1l.;U). Hence, (3.4) 

is well-defined for z E D(A~)- In order to prove (3.4), we shall invoke its p.d.e. 

interpretation. 

From (2.7) and (2.8), we see that (3.4) is equivalent to proving 

(3.5) 

for some 0 < T < oo and all z = [zt, x2] E D(A~). 

Remark: Notice that the regularity in (3.5) does not follow from the stan-

dard regularity of the underlying dynamics. It is an additional trace regularity 

result. Indeed, with z 1 E D(.A112 ) and x2 E £2(11) one has by standard results 

that eA~ 1z E C((O, T]; 'H). Hence, (eA~ 1 x)2 E C((O, T]; L2(f2)). The above 

regularity does not allow us to define the traces (eA~'xhlr and /;(eA~'zhlr· 

We now define a new variable v(t) = [v1(t), v2(t)] = eA~ 1 i.Then by virtue 

of semigroup properties of eA~ 1, we know that v satisfies the abstract o.d.e. 

v,(t) = A~ii(t) 
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v(O) = x. (3.6) 

We then observe that (3.5) is equivalent to 

1T { ll (/;v2)1rll,,<r>+JI(v2)1 rll,,<r>}dt $ CT·IIv(O)II o( .. tll')xL'<nl · (3.7) 

To prove (3.7), we note that 

= [ A(v,- k,G,Gi:::- k,G,G;Av,) l 
Hence (3.6) can be written as the second order o.d.e. 

v(O) = Zt (3.8) 

(where we have set v1 = v and consequently, v2 = -v,). The system (3.8) is 

equivalent to the p.d.e. 

vu+~2v=O in Q 

v = /;v = 0 on Eo 
(3.9) 

a.v + (1- JJ)Bt v = - kt ·/;vt on Et 

:"a.v+(l-JJ)B2v = k2·v, onE1. 

Using the "method of multipliers" with multiplier v1(t), we have via (3.9) 

0 = In Vu· t"t dfl +In a.2v · v1 dfl 
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= in~ :t {(v1)
2 + (~v)2} dfl 

+ 1r { {1 - J.l)[B1 vl;vc - B2v · v,] + k1 ( /;vc)2 + k2( v1)
2

} df 

= in~ ~t {(vc)2 + (~vf} dO 

+ (1- JJ) In {2v:~:11 V:~:yc- v1111vuc- vnvy11 c} dO 

+ k1 · 11 ( l;vc) I rll
2 
,,<r> + k2 · 11 ( vc)lrll~,<r> · 

(Here we have denoted the two spacial variables as z and y). The last inequality 

follows from a Lemma proven in (4]: 

Lemma 3.2 For sufficiently smooth u and V in n we have 

in (2u:~:11Vzy - uuv1111 - unvu)df2 = 

[ {{Btu)(i;v)- (B2u) · v}dl' 

where B1 and B2 are given by {1 .1){/}. 

By combining terms, we have 

0 = ~ 1 dd [(vr)2 + (1- JJ)(v;:~: + v~11 ) + JJ(Av)2 + 2(1- JJ)(vz11 )
2

] dO 
2 0 t 

+ k1 ·11 ( fv'vc) lrll:,(r) + k2 ·11 ( vc)lrll~,<r> . 

Integrating in time, we arrive at 

kt loT 11 l;vr lrll:,<r> dt + k2 loT 11 vclrll:,<r> dt 

$ C {llvc(O)IIL,(o) + !lv(O)IIH~0 (O)} 
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fori= ii(O) E D(A~). Since T < oo, we conclude that (3 .7), and consequently 

(3.5), hold.O 

Next, let us introduce the operator 

T 
.Ciz(t) :: 1 Bi•eA~(r-t)z(r)dr with a< ao, i = 1, 2. (3.10) 

Since 8/(A~)- 1 E £(1i,U), we have 

f.i E £ (£ 1((0, T]; D(A~)), C([O, T]; ?i)). (3 .11) 

We shall need stronger regularity than (3.11) to prove Lemma 3.1. 

Proposition 3.3 The .Ci : £1([0, T]; 1£)-+ £ 1([0, T);U) are continuous. 

Proof: Let x E £ 1((0, T); D(A~)) . Then we have 

11 
f. z 11 - 1T 1T B(eA~(r-t)z(r)dr dt 

i L 1 ((O. T J; 11) - 0 f u 

< 1T 1'" IIBteA~iz(r)lludt dr, 

by Fubini's theorem and a change of variables, 

$ 1T 1T IIBi·eA~Tx(r)ll udf dr 

= CT llzll L 1((o.T);1() 

by Proposition 3.2. Now since D(A~) C 1(. is dense, we have (by a standard 

density argument) 

.Ci : L 1([0,TJ;1i)-+ L1([0,T];U) i = 1, 2 

are bounded, as desired. 0 
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Taking the adjoint. of the operator £., we notice that 

Thus, from the result of Proposition 3.3 and from the usual density argument 

we obtain 

Proposition 3.4 C; E C ( C((O, T]; U); C((O, T]; 1£)) .o 

Our final step is to extend the regularity of the C; from {0, T) to (0, oo), and 

thus obtain the proof of Lemma 3.1. 

Proof of Lemma 3.1: From Proposition 3.4, 

(3.12) 

Now suppose u E C((0,2T];U). Then forT~ t ~ 2T (with 6 < w), we have 

111' eA,(a-r)B;u(r)drL 

< M e-6(a-T)CTIIull c((o, rJ;uJ + 111' eA,(c-r)B;u( T + T)drll,( 

~ Me-~<c-T)cT !lull C((O,TJ;IIJ +eT llu(· +T)II C([O, TJ;II) 

~ MCT {e-6<c-T) + 1} !lull c((o, 3TJ;u> 

since M 2: 1. Furthermore, we have the estimate 

In general, we have for nT ~ t ~ (n + l)T 
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< { M,-•<•-•T) ·M (~ ,-•JT) +I} Cr llullc([o,(n+l)T); u) 

~ M'Cr { ,-•<•-•TJ (~ ,-•JT) +I} ll•llc({O,(n+l)T); u)· 

We claim that the estimates (3.13) and (3.12) provide us with 

(3.13) 

The proof is by induction. Clearly, for n = 2, (3.14) holds. We then have 

sup 111' eA..,(I-r)Biu(r) drll 
O~l~nT 0 " 

< maz t.~;!,"-qrllf l· (n-1~:~.JIJ ·l} 

~ M
2
Cr maz! 

[ (~ ,<-•m) + l]ll•llc(lo.c•-•ITI.•>• ) . 

(n-l~~~l$nTII/ ... t 
But then 

which proves Lemma J.l(i). 
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As for part (ii) of Lemma 3.1, a proof similar to that of Proposition 3.3 gives 

us that 

An application of the lifting theorem proven in (7] yields the desired result.O 

4 Proofs of Theorems 1.1 and 1.2 

To prove theorems 1.1 and 1.2, we return to the integral equation, (2.15). In 

both proofs, we seek to employ the Contraction Mapping Theorem (CMT) to 

prove that a unique solution to (2.12), and consequently to system (1.1), exists. 

4.1 Proof of Theorem 1.1 

We define 
2 

(Fv) (t) = eAFtiio + L C, (H,(v)) (t). ( 4.1) 
i=O 

To establish the result of Theorem 1.1, it suffices to prove that F has the unique 

fixed point in the space Z defined by 

Z = {: E C((O, T); 1£) : llzllc((o. rJ, )() $ 2MIIuoll)( = Ro}. 

By using hypothesis (H-1) together with the Sobolev imbeddings (dim n=2) 

for any p 2: I } 
(4.2) 



one can easily show that fori= 1, 2, the operators H; :'H.-+ U and Ho: 1i -1i 

are bounded and locally Lipschitz continuous. In particular, 

where each L;(z, y) is a continuous function. Thus, by (2.11) and by Lemma 

3.1(ii) we have fort < T and v E Z 

II(T•)(t)ll. "' ~ + t.ll£;11 ••. [[ II(H,.)(t)ll~dt]
1

'' 
2 

$ ~ + Tt L II.C;II .... C(Ro) 
i=O 

where C( Ro) is a continuous function of Ro and 11·11 •• = 11·11 L,((o. T 1, u 1 _ cuo. T 1: ~~ 

with V = U for i = 1, 2 and 11·11 •• = 11 ·IIL,((o. Th M)_ cuo. Tit M) with V = ?i for 

i = 0. Thus, given Ro > 0 and lluoll'< $ Ro, we select T such that 

2 

T 112 I: II.C,II •• c(Ro) < ~o. 
i : O 

( 4.4) 

This gives us that :F(Z) C Z. 

Similarly, we prove that F is a contraction. Indeed, by ( 4.3) 

2 

$ Tt L II.C;II., · sup IL; (llvl(t)ll'<• 1lv2(t)ll")lllv1- v2II?C· 
i:O O$t$T 

Selecting T sufficiently small so that both ( 4.4) and 

2 

T 1
'

2 l:II.C;II •• · sup IL;(IIvl(t)ll'<,llv:~(t)ll'<)l < 1 (4.5) 
i=O O~f~T 

are satisfied, we may apply the (CMT) to give us the desired result.O 
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4.2 Proof of Theorem 1.2 

To prove Theorem 1.2, we set v(t) = e~1u(t) for a < w and observe that 

2 

v(t) = e(A,.+~)(t) iio + L (.C; (e~· H;(e-~·v(-)))(t)). (4.6) 
i:O 

Defining 

2 

(Fv)(t) = e(A,.+~)(t) iio + L (.C; (e~·H;(e-~·v(·)))(t)) 
i:O 

we see that proving Theorem 1.2 is equivalent to proving 

Lemma 4.1 .1" has a unique fixed point in the space Z defined by 

Z = {z E C((O,oo);?i): llzll c(lo,oo);MJ =5 Ro} 

for some Ro > 0. 

Proof: We will show that .rz C Z for Jliioll " =5 2Ro/3M. We have 

IIFvll C((o, oo); >il 

2 

< ll e(A,.+~H•>uoll cuo.ooJ;M) + l:II.C;(e~ · n;(e-~·v(·)))ll cuo . ooJ;>-~l 
i:O 

2 

< sup Me- 61 11 iio 11 >-~ + L II.C;JI · II e~·H;(e-~·v(-)) 11 c((o,oo); "> 
O~t<oo i:O 

where V= U and II.C;II = Jj.C;Jj cuo,oo); uJ- cuo.oo);>-c) < oo fori= 1, 2 by Lemma 

3.l(i) and V= 1£ and ll.C;II = II.C;llc(c([o,ooJ;>-cll < oo fori= 0 by (2.14). 
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Notice that the assumptions (H-1) and (H-2) along with the Sobolev imbed-

clings (4.2) imply (see [1]) 

and (4.7) 
2 

2,: I!DH;(v)llq",u1 + IIDHo(v)ll.c<"l- 0 as llvll"- 0 
i=l 

where DH represents the Frechet derivative of H. 

Using ( 4. 7) and a "mean value theorem" for Banach spaces (see (9]), we have 

fori= 0,1,2 

Here, V= 1i fori= 0 and V= U fori= 1,2. Then taking Ro sufficiently small, 

we have, again by (4.7), 

for V e z (= Z(Ra)). Consequently, 

IIFvllcuo. oo); >() ~ M lli.ioll >( + 11; 11 < M lli.ioll )( + ~0 

Chosing lli.ioll ~ 2Ro/3M, we have FZ C Z. 

Similarly, we can show that :F is a contraction on Z (for details see [1]). 

Thus, by (CMT), we obtain the proof of Theorem 1.2.0 



46 M. BRADLEY 6Gd I. LASIECKA 

References 

[1] BRADLEY M.E. Uniform stabilization of a nonlinearly perturbed Kirchhoff 

plate. To appear. 

[2] KATO T. Perturbation Theory of Linear Operators, Springer-Verlag, New 

York, 1966. 

[3] LAGNESE J .E. Boundary Stabilization of Thin Plates, Society for Industrial 
and Applied Mathematics, Philadelphia, 1989. 

[4] LAGNESE J .E. Uniform boundary stabilization of homogeneous isotropic 

plates, Lectures Notes in Control and Information Sciences, 1989. 

(5] LAGNESE J .E. AND LIONS J .L. Modelling Analysis and Control of Thin 
Plates, Masson, Paris, 1988. 

[6] LASIECKA I. Asymptotic behaviour of solutions to plate equations with 

nonlinear disspation occuring through shear forces and bending moments, 

Applied Mathematics and Optimization, 21, (1990), 167-189. 

(7) LASIECKA I. AND TRIGGIANI R. A lifting theorem for the time regularity 

of solutions to abstract equations with unbounded operators and applica
tions to hyperbolic equations. Proceedings of the American Mathematical 

Society, 104, (1988), 745- 755. 

(8) LIONS J .L. AND MAGENES E. Non-Homogeneous Boundary Value Prob

lems and Applications, Volume 1, Springer- Verlag, New York, 1972. 

(9] MARTIN R. Nonlinear Operators and Differential Equations in Banach 

Spaces, John Wiley & Sons, New York, 1976. 


