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In structural optimization one often encounters the problem of
minimizing the weight of a plate or a beam under some geometric
constraints and considering some bounds on the deflection or stress.
Sometimes these problems have been studied as state constrained
optimal control problems governed by elliptic differential equations,
the control being a parameter that appears in the coefficients of the
corresponding differential operator. In this paper we consider three
aspects of these problems. Firstly we do the sensitivity analysis and
prove the existence of a solution. Next we derive the optimality sys-
tem from an abstract theorem of existence of a Lagrange multiplier.
And finally we perform the numerical discretization of the control
problem and prove the convergence of approximate solutions. In or-
der to derive the optimality conditions and to prove the convergence
of the numerical approximations we make a stability hypothesis of
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the Slater type, which avoids the necessity of enlarging the set of
admissible states in the discretization. This approach is interesting
since it is well known that this increasing of the admissible state set
diminishes the order of convergence.

1. Setting of the problems

We consider two cases of optimal design of structures.

1.1. Beam

Let us consider a clamped beam, subject to a vertical load f and let u(z)
be the variable cross-sectional area of this beam. The weight of the beam is to
be minimized. It is required that the deflection remains within certain limits:
|y(z)| < 6. So the problem can be formulated as follows:

min J(u)= /L u(z)dz
0

u € Uaq
subject to
2
Auy = % [Eaug(z)%(z)] = f(z) nQ=(0,L)

v(0)=y(L) =y (0) =y(L) =0

lu(z)] <6 nQ=[0,L]
where
Upg = {u € C¥(Q) : a < u(z) < b, |v/(2)| L ¢},

§,a,b and c are positive constants, L is the length of the beam, E > 0 is the
Young’s modulus of the material used and ¢ is a constant depending on the
shape of cross-section of the beam. Co'l(ﬁ) denotes the space of Lipschitz
functions in Q.

For every u € U,q4 and every f € H~?%(f) there exists a unique solution y, of
the above Dirichlet problem belonging to the space H2(Q2). Furthermore there
exists a constant Cy > 0 such that

|zl zz(0) < Collfll -2y Vv € Uad (1.1)
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It is important to note that while we are considering clamped-clamped beam
in this paper, we could carry out the study assuming other boundary conditions
such as

e Cantilevered: y(0) = ¥'(0) = ¥"(L) = %[Eauz(z)y"(z)]u:, =0.
¢ Simply supported: y(0) = y"(0) = y(L) = y"(L) = 0.

This problem has been studied by E. Casas [4], J. Haslinger and P. Neit-
taanmaki [9], EJ. Haug and J.S. Arora [10] and E.J. Haug and B. Rousselet
[11]. See also 1. Hlavagek, I. Bock and J. Lovisek [12].

1.2. Plate

Let Q be a convex and bounded subset of R? and let I be its boundary. Let
us consider now a clamped plate transversaly loaded, f being the distribution of
load. Suppose that § is the mean plane of the plate and u(z) is the thickness.
The structural optimization problem is:

min J(u)= [ u(z)dz
u € Usqg -/ﬂ

subject to

Auy = 02, [D(u)(82,y+v0Z,y)] + 82, [D(u)(82,y + vOZ,v)] +
21 -v)82 ., [D(w)d2 ..y = finQ
Yy=0,y=0 onT
ly(z)| <6 inQ
where

Uaa = {u € C*(Q) :a < u(z) < b, [|Vu(z)[| < c},

Eu?

D(u) — m,

E > 0 is the Young’s modulus and » € (0,1/2) is the Poisson’s coefficient.
For every u € Usq and every f € H™%(Q) there exists a unique solution
Yu € H3(Q) of previous boundary value problem. Moreover this solution satisfies
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the inequality 1.1 and it is a continuous function in Q because HZ(Q) C Co(92)
since n = 2 (Adams [1]), where Cy(2) denotes the space of the continuous
functions in Q vanishing on I'. Let us remark that I is a Lipschitz boundary
because  is bounded and convex, Grisvard [8]. The convexity assumption on
) 1s useful only for the numerical approximation, the study of the continuous
problem can be made simply supposing T' to be Lipschitz.

This problem has been considered by E. Casas [4], E.J. Haug and J.S. Arora
[10] and E.J. Haug and B. Rousselet [11]. See also I. Hlavagek, I. Bock and J.
Lovisek [13].

In the next section we will prove that the previous optimal design problems
have at least one solution, supposed the existence of a function u € U,g4 such that
lyu(2)| < 6 for all z € Q, and we derive the optimality conditions. The numerical
approximation and the proofs of convergence are considered in Section 3.

2. Sensivity analysis and existence of a solution

In the sequel (Ps) will denote the optimal design problem corresponding to
the beam or to the plate, § being the limit imposed to the displacements y(z).
In these problems the constraints a < u(z) < b are motivated by technological
reasons, but it is known that they are not enough to assure the existence of a so-
lution, see F. Murat [14] and W. Velte and P. Villaggio [15]. In order to overcome
this difficulty we have added the constraint on the gradient. This constraint is
justified because the previous state equations describe the physical situation
correctly only if the variation of the plate thickness or the cross-sectional area
of the beam is smooth. Before proving that (P5) has a solution we are going to
state some continuity and differentiability properties of the function u — y,,.

THEOREM 1 Let A(Q) be the open subset of C(Q) formed by the sirictly
positive functions in Q. Then the mapping F : A(Q) — H3(Q) defined by
F(u) = yu is infinitely differentiable. Moreover for every u € A(Q2) and every
v € C(Q), z = DF(u) - v is the unique solution of the following boundary
problem:

Auz +A“,uyu =0 nQ
z=0 onT

where Ay, 15 given by
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BEAM: Ay,y = i 2Eo'u(z)v(z)%(z)]

dz?

PLATE: Ayyy = 82, [D(u,v)(82,y+v02,y)] + 82, [D(u,v)(82,y + v62 y)]
+2(1-v)8Z ., [D(u,v)32 .. v]

: Eu?y-
with D(‘l.l,‘b') = m
Proof. In order to prove this theorem we are going to consider the mapping
G : A(R) x H3(Q) — H~%(Q) defined by G(u,y) = Ayy— f. It is obvious that
G is of class C*, 8,G(u,y) = Ay is an isomorphism of HZ(2) onto H~2%(f2)
and G(u,y,) = 0 for every u € A(Q), then from the implicit function theorem
we deduce that the mapping F' is of class C* DO.

THEOREM 2 Letl us assume thal there ezists an element u € Uyq such that
the associated state satisfies the constraint |y,(z)| < é Yz € Q. Then (P;) has
at least one solution.

Proof. First let us note that U,q is a closed and bounded subset of C%(Q)
and that the inclusion C%*(Q) C C(Q) is compact. Moreover U,q C A(Q), the
mapping F : A(Q) — HZ(Q) is continuous and the inclusion HZ(Q) C Co(R)
is continuous, hence the set

{u€Uas:|vu(z)|<6VzeE 5}

is compact and nonempty in C(£2). Thus the problem (P;) consists in minimiz-
ing a continuous function J on a nonempty and compact set, so it has at least
one solution. O

Let us remark that (P;) has admissible points if b or § are sufficiently large.

3. Optimality conditions

We are going to derive the optimality conditions for problem (Ps). This is
done by using the following result proved by J.F. Bonnans and E. Casas [2] and

(3.

THEOREM 3 Let U and Z be two Banach spaces, U being separable, and

K C U and C C Z two conver subsets, C having a nonemply inierior. Given
o

20 €C and § > 0, let C5 = (1 —8)z0 + 8C and U € K be a solution of problem
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Min J(u)
(PJ){ u € K and G(u) € Cj

where J : U — R and G : U — Z are of class C*. Then there ezist a real
number X > 0 and an element i € Z' such that

A+ [Ellz > 0

<@z—GE)><0 Yz2€C;

< AJ'(@) + [DCE) Bu—-T>>0 Yu€K.
Moreover X can be taken equal to one in the following cases:

1. If the following condition of Slater type is satisfied:
Jug € K such that G(¥) + DG(T) - (up — @) Eég

2. For almost every & belonging to the interval [6p,61], supposed that (Ps) has
a solution for each & of this interval.

In the sequel we will denote by B; the closed ball of Cp(f2) of center 0 and
radio 8, and by M(Q) the space of real and regular Borel measures on 2, that
is to say M () = Cy(R2)'. Now we prove the next result.

THEOREM 4 Let U be a solution of problem (Pj), then there exist a real
number X > 0 and elements §,p € HZ() and & € M(Q) satisfying

X+ [[Allaay > 0 (80
Azgi=f in O

{ Y=0,=0 onT .
AP =0 in Q

{ P=0,p=0 onT (3:3)

/ﬂ (+(z) - 7(=))dA(z) < 0 Vz € By (3.4)

and one of the following inequalities:

BEAM:
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fL(X —2E0uy"p")(u —u)dz > 0 Yu € Uaa (3.5)
0
PLATE:

] (X — D@, \ATAR + (1 — v)(082, 502, 5+ 02,702 5+
0

26£1$‘2 6211“3_)]) (u = ﬁ)dﬂ 2 0 Vu e Uﬂd (3.6)
- Eou? . _
where D(w,1) = m, Moreover A can be chosen equal to one in the fol-

lowing cases:

1. If the Slater condition is satisfied:

I(uo, 20) € Usd x HE(Q)such that

3.7
Agzo+ Aguo-z¥ =0 and ¥+ 2o € Bs. (0

2. For almost every § € [8g, 00) supposed that (Ps,) has a solution.

Proof. 1t is enough to apply the theorem 3 taking U = C(Q), Z = Co(R),
K = Uga, Cs = Bs, J(u) = [ u(z)dz and G(u) = yu. Now taking § = G(%)
and p as the solution of 3.3, we deduce that 3.1-3.4 is verified. In order to prove
the inequalities 3.5 and 3.6 we use the theorem 1 and so we can deduce for every
u € U,q that z = DG(%) - (u — @) belongs to HF(2) and verifies the equation
Agz + Agu—g¥ = 0. Now from theorem 3, integrating by parts and using 3.3,
we get

0 << AJ'(T) + [DG(@)"F, u — T >= AJ'(B) - (u —T)+ < F, 2 >=

L L
/ Ay —@)dz+ < Agp,z >= / Mu —8)dz— < Ag y-a¥,p >=
0 0

f (R — 2Eowy'5") (6 — W)

Inequality 3.6 is got in the same way. The rest of the proof follows easily from
theorem 3. O

REMARKS 1 1. Following F.H. Clarke [7] we will say the problem (P;)
is normal if there exist T € M(Q) and §,5 € HE(Q) such that the opti-
mality system 3.1-8.6 is verified with X = 1. The previous theorem slates
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that almost every problem (Ps) is normal. Also it affirms that the Slater
constraint qualification implies (P;) is normal. In the next Section we will
show that under hypothesis 3.7 il is possible 1o prove the convergence of
the numerical discretization.

2. The Slater condition is satisfied if the constraints ||Vu(z)|| < ¢ and u(z) <
b are not aciive. Indeed il is enough 1o take ug = (1 + €)u, with e > 0
small enough, so ug € Uyq and

Agzp = —Ag yo-ul = —neAgy = —nef, n=2 or 3,

thus zg = —ney and then T+ 20 = (1 — ne)y € Bs.

In optimal design it is frequent 1o have f < 0 in such a way that the
deflection is negative Y(z) < 0. In this case the Slater condition is satisfied
if we can find an element ug € Uzq such that zp is positive and smaller
than &. I suspect that up = U + € could be a correct element in many
realistic cases.

3. From 3.4 it is easy to deduce that the Lagrange multiplier i associated to
the state consiraint is concentraied on the set of points where the constraint
is active. In particular if this set s finite, let us say {x3}]-,, then

e _ A >0 if Glzx)=6 and
= ) Aibpz,), with .
’ Z: $id {Agso if Hzx) = =4,

where b(z,) is the Dirac measure concentrated at the point zi. See Casas
[5] for this question.

4. Numerical approximation

In order to carry out the numerical approximation we must distinguish the
one dimensional and two dimensional cases. So we are going to consider both
cases separately, studying the discretization properties, and then we will prove
some convergence results.

4.1. Beam

Let 7 : 0 = 2o < 21 < --- < Za(a) = L be a partition of [0, L] such that
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h= max (z; —=z;_1).
xsjsn(h)( 5= 2-1)

Let us consider the following function spaces
= {un € C(10,]) : unlie;_ ;) € P1, 1< j < n(h))
Va = {yn € CY([0, L)) : Uz, .2, € P3y 1 <5 < n(h)}

where P and P3 are the spaces of the polynomials of degree less than or equal
to 1 and 3 respectively. It is well known that V C H?(0, L), Ciarlet [6]. Now
we take Vop = Va N HZ(0, L) and Uzan = Up NUsq. If we denote by {e; ;‘EE) the
functions of Uy such that e;(z;) = &;;, then this set of functions constitutes a
basis of Uy and each element uy € Uj can be written in the following way

n(h)
un = Y uje;, with u; = up(z;), 0< j < n(h).
j=0
So we have

Uadn = {un €Un :a < u; <b (0 < j < n(h))
and maxi<j<n(h) t;':_—_:jﬁl = C}.

For each up € Usgr we define the bilinear form

un VaxVp— R

at.ll(yhvzh) =< Aunyhnzh >=< yﬁ.-Au.zh >=

L
Bo [ (@i (@) (e)de

where < .- > denotes the duality product in H?(0,L). Now we denote by
yn(up) the unique element belonging to Vg that satisfies

Gy, (y’l(uh)! zh) =< f! Zp > Vzh & Vl}h.

Finally the discretized optimal design problem is stated as follows:

Ml*—'

min Jh(tlh J(‘UJ,) =

n{h)
E j = uj—1)(25 — 2j-1)
(Pn) )

up € Usan and |yn(us)(z;)| <6, 1< j < n(h) -1
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The following result states that {U,qn}» constitutes an internal approxima-
tion of Uggq.

LEMMA 1 1. For every u € U,q there ezists a sequence {uy}, with up €
Ugdn, such that

lim ||u — ual|e o,z = 0-
h—0
2. If {un} is a sequence that converges towards u and if up € Ugap for every
h >0, then u € Uygq.

Proof. In order to prove the first part is enough to take u; as the element of Uy

which interpolates u at the nodes {z; };-'E[',), that is to say

n(h)

un =) ulzj)ej.

j=0

So we approximate u by a polygonal line and then up — u uniformly in [0, L].
Furthermore we have

a< Uy = uﬁ(zj) = ‘LI.(R!J’) & b: j= 0,---,ﬂ(h)

/ " J(t)dt
Tj-1

hence uy € Uzgn. The second part follows from the inclusion Uggp C Ugg. O.

luj —wj—a| _ 1

<ec

Tj —Tj-1 Tj—Tj-1

4.2. Plate

Let 7}, be a triangulation of Q satisfying

1. by = diam(T) = xn;g‘ lz—yl| and k= pax ht.
2. TCQVT € Th.

3 0
3. T, T' € T;,,T # T’ then we have TN T"= 0 and either TNT' =P or T

and 7" have in common one whole edge or only one vertex.

4. Let us take Q) = Urer, T, Q4 its interior and I', its boundary. Then
we assume that 4 is convex and that the vertices of 7, placed on the
boundary I', are points of T'.
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5. The angles of all T € 7, are bounded from below by a constant # inde-
pendently of h.

As consequence of these hypotheses we get that Q; — Q in the following sense:
for every compact set E C  there exists hy > 0 such that E C Qj for all
h < ho. Now to every boundary triangle T of 7; we associate another triangle
T ¢ Q with two interior sides to © coincident with two sides of T' and the third
side is the curvilinear arc of T limited by the other two sides. We denote by 7;,
the family formed by these boundary triangles with a cuvilinear side and the
interior triangles to Q of 74, s0 Q = Upe7 T.
As in the one dimensional case, let us consider the spaces:

Un = {us € C(Q) : unlr € P1 VT € Tp}
Va = {yn € C*() : alr € Ps VT € Tu}.

So we have thought of the Argyris triangle to get the function space V;, but
obviously we could have considered other finite elements of class C*, for instance
the Bell triangle. In these conditions it is well known that V;, C H?*(Q,), then
we define Vo = Vi N HZ(Q). In fact the elements of HF(Q4) can be extended
by zero to Q and so we can consider HZ(Q) as a subspace of H2(Q).

Let {z; ];'3,) be the set of vertices of 7;. As in the beam case we denote by
{e; ;‘L’;’ the basis of Uy defined by the equalities ¢;(z;) = §;; and {uj};'g;} are
the coordinates of uj in this basis: u; = up(z;).

Now we define

Uaan = {un €U :a < u; <b (0<j < n(h))
and “V‘uhlrll <eVT € T}

We note that Vuy|r is a constant of R? for each T € Tj, so the constraints on
uy, are easy to handle. We must remark too that U4, & Uag in general because
an element up € Ugqn can take values lower to a or upper to b in the domain
T\T, supposed T C T.

As in the one dimensional case we denote by yx(ux) the unique element of
Von that satisfies

au, (Un(un), 2n) =< fozn > V2 € Vo

where

By (B 28) =< Ay By 23 5= L D(us)[vAysDzn+
h
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(1-— V)(ﬂf;ly;.agl 2y + 02, yn02 zn + 202, yn 02, 2n))dz.

Now we state the discretized optimal design problem:

min Jy (up) =/ up(z)de = Z meas(T)un(zr)

]
(Ph) h TeTy,

up € Usqn and |ys(un)(z;)| < 6,5 € I

where zp is the barycenter of the triangle T and I is the set of indices cor-
responding to interior vertices of 7,. So the discrete state does not satisfy the
constraint on the deflection in every point of €2, but in order to solve numerically
the problem it is necessary to take a system of constraints easy to handle.

An important question to note here is that if u € U,4 and u is the function
of Uy which interpolates u in the points z;, then it is not true in general that
up € Uzan because of the constraint on the gradient. To verify this consider the
triangle T' with vertices (0,0),(1,1) and (—1,1), the function u(z) = ||z|| and
¢ = 1. Then we have that ux(z) = v/2z; is the element of P; which interpolates
u and it does not satisfy the constraint on the gradient. This makes more
difficult to prove that Uygp constitutes an internal approximation of Uy, in fact
we need to prove the following previous lemma:

LEMMA 2 Let Uy be the sel
Up={ue CONQ):3e=e¢(u) >0 such that a+e<u(z)<b—e
and ||Vu(z)|| < e¢—e}.

Then for every u € Ugq there ezists a sequence {ux} C C*(Q) N Uy converging
uniformly to u.

Proof. Let zo € Q be a fixed element. For each A € (0,1) we define
1
MW={y= ;(:ﬂ—zg)-i—mg:zeﬂ}.

Since € is convex, we have that Q C Q). Given u € Uzq we take uy : Q) — R
defined by ux(z) = u(zo + A(z — z0)). Then it is obvious that uxlg € Uaq and
uy — u uniformly in Q when A — 1. Now if we extend u, by zero to R? and we
make the convolution of u, with a regularizing sequence {¢;}, we get a sequence
{uxj} € C*®(RN) that converges to uy uniformly in . Furthermore if we take
jx € N such that ¢;(z — y) = 0 ¥(z,y) € Q x Qf for every j > ja, then we
deduce for all z € Q
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a< [y, ¢i(z —y)ady < [, ¢i(z — y)ua(y)dy = uaj(z) <
fﬂx ¢i(z —y)bdy = b

and

IVuri @l = | fo, 4i(z — 9)Tuaw)dy] <
Ja, 8i(z = W) Vur(v)lldy < Ae < c.

Then uy;|5 € Usq and we can take a subsequence converging to u. Thus we have
proved that C®(Q) N Uy is dense in Uyg for the uniform convergence topology.
To conclude the proof let us take a function u € C®(Q) N Uaq and let us see
that it can be approximated by a sequence of C*(Q) N Up. For each t € (0,1)
let u; : § — R be the function
ta+ (1—1)b
ut( ) t2q + ( iz)b [t t)b]
Then u; € C®°(Q) N Up and u; — u uniformly in Q@ when ¢t — 1. O
Now we can prove the following result

LEMMA 3 1. For every u € Uyy there exists a sequence {up}, with up €
Uadn, such that

dadlr—mllagm ="

2. If {un} is a sequence thal converges uniformly towards u and if up € Ugan
for every h > 0, then u € Ugq.

Proof. To prove the first part, thanks to lemma 2 it follows that it is enough
to consider an element u € Cm(ﬁ) N Up and show that it can be approximated
uniformly by elements of Uzg4,. So given u let us take
n(h)
up = Z u(z;)e;.

j=0
Because of the regularity of u we get from the interpolation theory (Ciarlet [6])
[Ju — uh||W1,m(n) < Ch”u“w:,m(n). (4.1)
Let € = €(u) as in the definition of Uy, then from the previous inequality we
deduce

Jho > 0 such that |lu— upllweq) < €/2 Yh < ho

hence up € Uqan Yh < hy. Moreover the equation 4.1 implies [|u — uh||c(ﬁ) —0
and so the proof of the first part is complete. The second part of lemma 1s
immediate. O
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4.3. Convergence analysis

In this Section we are going to consider two different situations. The first
one consists in assuming the Slater hypothesis 3.7, in this case we will prove
that (Py) has at least one solution %@y, for h small enough and that @, converges
to a solution of the continuous problem. The other situation occurs when we do
not assume 3.7. In this case we will see that any limit of a sequence of points
satisfying the optimality system for the discrete problem verifies the optimality
conditions 3.1-3.4 and 3.5 or 3.6. Before stating these results we need to stablish
the next lemma:

LEMMA 4 Given up,u € A(Q) such that ||u — up|| ¢z — 0 when h — 0, then
the following equalities are salisfied:

1. }{El}l J;,(uh) = J(u)
2. lim [lyn(un) = yullzz(a) = 0-
Proof. The first equality is obtained in the following way:

|J(u) = In(un)| = <

/m [u(z) — un(z))dz + .[n\n,. u(z)dz

[n lu(e) — un(e)lde + ]n o Juae <

meas(Qp)||u — “-‘l“c(ﬁ} + meas(Q\Qp)||ull gy — 0 if A—0,

where Q, = @ = (0, L) in the one dimensional case.

For the second equality we must remember that ys(up) € Von is extended
by zero to  and then yx(us) € H3(Q). In order to simplify the notation let
us denote y, = yn(up). Now from the uniform convergence of u; to u we get
the existence of a constant ¢; > 0 such that up(z) > ¢; Vz € Q. Then the
bilinear forms a,, are uniformly coercive and consequently from the definition
of y» we deduce that {ys}a>o is a bounded sequence in H3(Q). Thus we can
get a subsequence {y, } converging weakly to an element y € HZ(Q2). Let us
prove that y = y, or what is the same A,y = f. Let be ¢ € D(Q2) and let ¢ be
the element of Vo5 which interpolates ¢, so we have ¢ — ¢ in HZ(Q). Then,
using the uniform convergence of uj to u, the weak convergenée of yp, toy and
the strong convergence of ¢, to ¢, we get
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< Auy, ¢ >= lim < Au;.kyhp‘ibh; >= lim Quy, (yhkr‘nﬁh;.) =
k=00 k—co

lim < f,én, >=< f,0>.

k—oo

Since ¢ € D() is arbitrary we deduce that A,y = f and so y = y,. Hence
yr converges to y weakly in H2(Q) when A — 0. It remains to prove the
strong convergence. For it we begin noting that the uniform convergence of
{un} implies

| < (Au — Aup)yn, un > | < coffu— “h“c(ﬁ]”yh”?;g(g) <

csllu — un|lg@ — 0

From this relation and the coercivity of a, we obtain
cally = ynllEragay S< Au(y — ),y — va >=
<LYy—um>—<[fyp >+ < Authh,th >=
<f[y—um>—<fiun >+ < Auy¥ni ¥ > + < (Au — Au, JUn, Up >=
< fiy—un >+ < (Au — Au,)vn, un >— 0.

Finally we are ready to study the convergence of the discrete optimal design
problem.

THEOREM 5 Suppose that the Slater condition 3.7 is satisfied, then there
exists hog > 0 such that (P,) has at least one solution Uy for each h < hq.
Moreover there exist subsequences {Up, }ren of {Un}agn, and elements G € U,y
such that

}E& (@, — ﬁ”c(ﬁ) =0.
Each one of these limit points is a solution of problem (Ps). Finally we have

Eln’{l} J},(Eh) = min(P;).

Proof. We will prove that the set of elements up € Uaqgn such that |y, (up)(z;)| <
6 for all j € I, is nonempty. Then we can argue as in the proof of theorem 2
and to obtain the existence of a solution.

Let % be the solution of (Ps) and (ug, 29) € Usax HZ(R2) the pair considered in

the Slater condition 3.7. For every A € (0,1) we take uy =T+ A(uo — @) € Uaq
-y

and yx» = yu,. Then we have that — zo when A — 0. Therefore we
deduce from 3.7 that there exists Ao > 0 such that
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§+y*;ye3,, YA < Ao

hence we get

A

From lemmas 1 and 3 we deduce the existence of a sequence {uxn}, with

y;.zz\[§+u]+(l—/\)§€8§ VA < Ap. (4.2)

uap € Uadn, such that |Juyy — "’*”c(ﬁ) — 0 when h — 0. Now from lemma 4 we
obtain the convergence of yxs = ya(uxs) towards yy in Hg(ﬂ), which implies
that yxp — yy in C(ﬁ) So if A < Ay, from 4.2 we deduce the existence of
hg > 0 such that yx; € Bs Yh < hg and therefore the set of admissible points is
nonempty for every h < hg, thus we conclude the proof of existence of solution.

To prove the second part of the theorem, first we note that {u,} is a bounded
sequence in C%(Q) and then from Ascoli’s theorem we deduce the existence of
uniformly convergent subsequences to elements .

Now let us take A < Ap. Since %y, is a solution of (Py,) and uyp, is an
admissible point for h < ho we get with the aid of lemma 4 that

Jﬁk(ﬁflk) < Jhk(uAhk) = J(ﬁ) = limg—co Jhs (i-’u) <
limk“m J}u (u;;.*) = J(HA)

hence
J(i) < }1_{% J(up) = J(u) = min (Ps).

It remains to prove that @ is an admissible point to deduce that it is a solution
of (P5). From lemmas 1 and 3 we obtain that @ € U,g and from lemma 4 we get
that §j,, = Y, (TUn,) converges uniformly to yg in Q, then gy, (z;)| < 6 Vj € I,
implies that y; € By, so i is an admissible point. O

We have seen that the Slater condition is not only useful to derive the op-
timality system but it is a stability condition that guaranties the discrete set
of admissible points is nonempty for h small enough and at the same time it
allows us to prove the convergence of the discretizations. When the Slater con-
dition is not satisfied the usual process to prove the previous results consists of
changing ¢ by &5 in such a way that 6, | § when h — 0. However this process
can diminish the convergence order, which is obviously not desirable.

In practice we use algorithms to solve the discretized problem (Py) that sup-
ply points satisfying the optimality necessary conditions. The following theorem
states the optimality conditions for (Pj) and assures that points satisfying these
conditions converge to points that satisfy the optimality conditions of (P;) given
in the theorem 4.
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THEOREM 6 Let Uy be a solution of problem (Py), then there ezist a real
number X > 0 and elements 7I, = (@;)jen € R\ and g, , B, € Voi satisfying

T+ Y IEl=1 (4.3)
JEI
az, (Tn, yn) =< foyn > Vyn € Vou (4.4)
az, (B vn) = ) Biun(z;) Vum € Von (4.5)
JEIL
Bia(z) 20 and B (a(e)—8)=0 Vi€l (4.6)
and one of the following inequalities
BEAM:
L —
f (Ah - 2E0"t_!h§g.ﬁ;:)(uh —ifh)d.’c >0 Yup € Ugan (47)
0
PLATE:

fn (X = D(@n, 1)[vAG, ABy + (1 — v)(82,7402, 5, + 02,5, 02, Bp+
h

202, 2,9107,2,P1)]) (un —n)dz > 0 Yup € Unan (4.8)

where |Iy| = Cardinal of I,. Moreover for all sequence {(ﬁh,xh,ﬁhjh,ﬁh)}h
satisfying the optimalily system 4.3-4.8, and assuming that Uy € Ugap, there
exisi subsequences {(Ehh,xhk,ﬁhk,'ghk,ﬁhk)}k and elements (4, \, 7, ,P) such
that

Jm |7 =, |lo) = Hm [[7 - B, llmz@) = lim A =D |=0 (49

klim Pr, =P weakly in HZ(Q) (4.10)

Jlim 7, = lim > Bibp =F weakly* in M(Q) (4.11)
JEIy,

Each one of these limit points satisfies the optimality system 3.1-3.4 and 3.5 or
3.6.

Proof. The optimality system 4.3-4.8 is obtained in a similar way as in the
proof of theorem 4 by using the abstract result of theorem 3, taking in this case
U=Un 2Z2=R"M K =Usn Cs={6cRM™ .|| <biely)}, J=Js and
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G(un) = (yn(un)(2;))jer,. The equality 4.3 is obtained dividing 7, s and B,
by a suitable constant.

Since Wy € Usan Vh we have that {%} is a bounded sequence in C%1(Q),
then using again the Ascoli’s theorem we deduce the existence of a subsequence
{un, } converging uniformly to an element ¥ € Usq. Then {ys,} converges to
¥ = yz in HZ(Q) (Lemma 4).

On the other hand the equation 4.3 implies that {As,} and {f,, } are
bounded sequences in R and M(S) respectively, where we are identifying fi;
with the element of M(Q) defined by

By = Zﬁj‘s[z,-]-
JEIn

So we can extract two subsequences, denoted still in the same way, converging
to XA > 0 and i € M(Q) respectively. Now using the equation 4.5 and arguing
as in the proof of lemma 3 and remembering that the inclusion M(2) C HZ(Q)
is continuous, we deduce that p, — P weakly in H3(Q), where 7 is the state
associated to . Now it is easy to pass from 4.3-4.8 to the system 3.1-3.6, which
concludes the proof. O
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