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In structural optimization one often encounters the problem of 
minimizing the weight of a plate or a beam under some geometric 
constraints and considering some bounds on the deflection or stress. 
Sometimes these problems have been studied as state constrained 
optimal control problems governed by elliptic differential equations, 
the control being a parameter that appears i~ the coefficients of the 
corresponding differential operator. In this paper we consider three 
aspects of these problems. Firstly we do the sensitivity analysis and 
prove the existence of a solution. Next we derive the optimality sys
tem from an abstract theorem of existence of a Lagrange multiplier. 
And finally we perform the numerical discretization of the control 
problem and prove the convergence of approximate solutions. In or
der to derive the optimality conditions and to prove the convergence 
of the numerical approximations we make a stability hypothesis of 

1 This reaearch was partially supported by Direccion General de Investigation Cientifica y 
Tecnica (Madrid) 

-------------------------------------- --
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the Slater type, which avoids the necessity of enlarging the set of 
admissible states in the discretization. This approach is interesting 
since it is well known that this increasing of the admissible state set 
diminishes the order of convergence. 

1. Setting of the problems 

We consider two cases of optimal design of structures. 

1.1. Beam 

Let us consider a clamped beam, subject to a vertical load f and let u(:z:) 
be the variable cross-sectional area of this beam. The weight of the beam is to 

be minimized. It is required that the deflection remains within certain limits: 

ly(:z:)l ~ 6. So the problem can be formulated as follows: 

min J(u) = 1L u(:z:)d:z: 

u E Uad 

subject to 

y(O) = y(L) = y'(O) = y'(L) = 0 

ly(:z:)l ~ 6 inn= (0, L] 

where 

Uad = {u E C0
•
1(Q): a~ u(:z:) ~ b, lu'(:z:)l ~ c}, 

6, a, b and c are positive constants, L is the length of the beam, E > 0 is the 
Young's modulus of the material used and u is a constant depending on the 
shape of cross-section of the beam. C0•1(Q) denotes the space of Lipschitz 
functions in n. 

For every u E Uad and every f E n- 2 (0) there exists a unique solution Yu of 
the above Dirichlet problem belonging to the space HJ(O). Furthermore there 
exists a constant Go > 0 such that 

(1.1) 
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It is important to note that while we are considering clamped-clamped beam 

in this paper, we could carry out the study assuming other boundary conditions 

such as 

• Cantilevered: y(O) = y'(O) = y"(L) = d~[Euu2(z)y"(z)]~=L = 0. 

• Simply supported: y(O) = y''(O) = y(L) = y"(L) = 0. 

This problem has been studied by E. Casas (4], J. Haslinger and P. Neit

taanmii.ki [9], E.J. Haug and J .S . Arora [10] and E.J. Haug and B. Rousselet 

(11]. See also I. Hlavacek, I. Bock and J. LoviSek (12]. 

1.2. Plate 

Let n be a convex and bounded subset of R2 and let r be its boundary. Let 

us consider now a clamped plate transversaly loaded, f being the distribution of 

load. Suppose that n is the mean plane of the plate and u(z) is the thickness. 

The structural optimization problem is: 

min J(u) = fo u(x)dx 
u E Uod 

subject to 

y = 8n y = 0 on r 

iy(x)l ~ 6 inn 

where 

Uod = {u E C0
•
1(0): a~ u(x) ~ b, II Y'u(z)ll ~ c}, 

D( u) = 12(1- v2)' 

E > 0 is the Young's modulus and 11 E (0, 1/2) is the Poisson's coefficient. 

For every u E Uod and every f E n-2(0) there exists a unique solution 

Yu E H6(0) of previous boundary value problem. Moreover this solution satisfies 
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the inequality 1.1 and it is a continuous function inn because H5(n) c Ca(O) 
since n = 2 (Adams (1]), where C0(0) denotes the space of the continuous 

functions in n vanishing on r. Let us remark that r is a Lipschitz boundary 

because n is bounded and convex, Grisvard [8]. The convexity assumption on 

n is useful only for the numerical approximation, the study of the continuous 

problem can be made simply supposing r to be Lipschitz. 

This problem has been considered by E. Casas (4], E.J. Haug and J .S. Arora 

[10] and E.J. Baug and B. Rousselet [11]. See also I. Hlavacek, I. Bock and J. 

LoviSek [13]. 

In the next section we will prove that the previous optimal design problems 

have at least one solution, supposed the existence of a function u E Uad such that 

IYu(x)l:::; 6for all X En, and we derive the optimality conditions. The numerical 
approximation and the proofs of convergence are considered in Section 3. 

2. Sensivity analysis and existence of a solution 

In the sequel (Po) will denote the optimal design problem corresponding to 

the beam or to the plate, 6 being the limit imposed to the displacements y(x). 
In these problems the constraints a:=; u(x) :=;bare motivated by technological 

reasons, but it is known that they are not enough to assure the existence of a so

lution, see F. Murat [14] and W. Velte and P. Villaggio (15]. In order to overcome 

this difficulty we have added the constraint on the gradient. This constraint is 
justified because the previous state equations describe the physical situation 

correctly only if the variation of the plate thickness or the cross-sectional area 

of the beam is smooth. Before proving that (Po) has a solution we are going to 

state some continuity and differentiability properties of the function u --+ Yu. 

THEOREM 1 Let A(G) be the open subset of C(O) formed by the strictly 
positive functions in n. Then the mapping F : A(G) --+ H~(n) defined by 

F( u) = Yu is infinitely differentiable. Moreover for every u E A(O) and every 
v E C(O), z = DF(u) · v is the unique solution of the following boundary 
problem: 

{ 
Auz + Au,vYu = 0 

z=O 

where Au,11 is given by 

in n 
on r 



Optlm•U'y Co:a.dHiou• •:a.d Nv.m.uicaJ. Approxima.tion• for Some Optim•J Oeti(D Problemt 

d2 [ d2y ] 
BEAM: Au,v y = d:c2 2Euu( :c )v( :c) d:c2 (:c) 

PLATE: Au,vY =a;. [D(u, v)(a;.Y + va;,Y)} +a;, [D(u, v)(a;,Y + va;
1
y)] 

+2(1- v)a;.2:, [D(u, v)a;
1

2:
2

Y] 

. Eu2v· 
wtth D(u, v) = 

4
(
1 

_ v2). 
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Proof. In order to prove this theorem we are going to consider the mapping 

G: A(n) x HJ(n)- s-2 (!l) defined by G(u,y) = Auy- f. It is obvious that 

G is of class coo, a11G(u, y) = Au is an isomorphism of HJ(!l) onto H-2(n) 
and G(u,yu) = 0 for every u E A(!l), then from the implicit function theorem 
we deduce that the mapping F is of class coo 0. 

THEOREM 2 Let us assume that there exists an element u E Uad such that 

the associated state satisfies the constraint IYu(z)l ~ 6 'V:c En. Then (P6) has 

at least one solution. 

Proof. First let us note that U4 d is a closed and bounded subset of C0•1(Q) 
and that the inclusion C0·1(Q) C C(O) is compact. Moreover Uad C A(!l), the 

mapping F : A(n) - HJ(n) is continuous and the inclusion HJ(n) C C0(!l) 
is continuous, hence the set 

{u E Uad: IYu(z)l ~ 6 'V:c En} 

is compact and nonempty in C(O). Thus the problem (P6) consists in minimi~ 

ing a continuous function J on a nonempty and compact set, so it has at least 
one solution. 0 

Let us remark that (P6) has admissible points if b or 6 are sufficiently large. 

3. Optimality conditions 

We are going to derive the optimality conditions for problem (P6)· This is 

done by using the following result proved by J .F. Bonnans and E. Casas [2] and 

[3]. 

THEOREM 3 Let U and Z be two Banach spaces, U being separable, and 

K C U and C C Z two convex subsets, C having a nonempty interior. Given 
0 

zo EC and 6 > 0, let C6 = (1- 6)zo + 6C and u E K be a solution of problem 
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(P.s) { Min J(u) 
u E K and G(u) E C.s 

where J : U ---+ R and G : U ---+ Z are of class C 1
. Then there exist a real 

number X 2: 0 and an element p. E Z' such that 

X+ IIP.IIz' > o 

< Ji,z- G(u) >~ 0 \:fz E C6 

< XJ'(u) + [DG(u)]*p., u- u >2: 0 VuE K. 

Moreover X can be taken equal to one in the following cases: 

1. If the following condition of Slater type is satisfied: 

0 

3u0 E K such that G(u) + DG(u) · ( u0 - u) EC6 

2. For almost every 6 belonging to the interval [ 6o, 61], supposed that ( P6) has 
a solution for each 6 of this interval. 

In the sequel we will denote by B.s the closed ball of Co(O) of center 0 and 
radio 6, and by M(O) the space of real and regular Borel measures on n, that 
is to say M (O) = C0(0)' . Now we prove the next result. 

THEOREM 4 Let u be a solution of problem (P.s), then there exist a real 
number X 2: 0 and elements y,p E H6(0) and Ji E M(O) satisfying 

X+ lliLIIMCn) > 0 

{ 
Arr'fi= f 
Y = On'fi= 0 

{ 
Arrf5 = Ji 
P = OnP = 0 

inn 

on r 

inn 

on r 

in (z(x)- y(x))dji(x) ~ 0 Vz E B.s 

and one of the following inequalities: 
BEAM: 

(3.1) 

(3.2) 

(3.3) 

(3.4) 
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1L (I- 2Ecruy"p")( u- u)dx ~ 0 Vu E Uad 

PLATE: 

L (X- D(u, l)[v.6.yb.p + (1- v)(a;l -ya;lp + a;l-ya;lp+ 

28;1~2y8;1~2p)]) ( u- u)dx ~ 0 Vu E Uad 
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(3.5) 

(3.6) 

Ecru2 -
where D(u, 1) = 

4
(
1 

_ v2). Moreover>. can be chosen equal to one in the fol-

lowing cases: 

1. If the Slater condition is satisfied: 

3(uo, zo) E Uad x H6(0)such that 

Atrzo + Au,uo-tiY = 0 and y + zo E B6. 

2. For almost every 8 E [So, oo) supposed that (P60 ) has a solution. 

(3.7) 

Proof. It is enough to apply the theorem 3 taking U = C(n), Z = Co(O), 
I<= Uad, c6 = B6, J(u) = In u(x)dx and G(u) = Yu· Now taking y = G(u) 
and pas the solution of 3.3, we deduce that 3.1-3.4 is verified. In order to prove 
the inequalities 3.5 and 3.6 we use the theorem 1 and so we can deduce for every 

u E Uad that z = DG(u) · (u- u) belongs to Hs(n) and verifies the equation 

Au-z + Au-,u-uY = 0. Now from theorem 3, integrating by parts and using 3.3, 
we get 

0 ~< XJ'(u) + [DG(u)]*/i, u- u >= XJ'(u) · (u- u)+ < Ji,z >= 

1L I( u - u)dx+ < Au-P, z >= 1L I( u - u)dx- < Au,u-ufi, p >= 

1L (X- 2Ecruy"p")( u- u)dx. 

Inequality 3.6 is got in the same way. The rest of the proof follows easily from 
theorem 3. D 

REMARKS 1 1. Following F.H. Clarke {7} we will say the problem (P6) 
is normal if there exist Ji E M(O) and y,p E H6(0) such that the opti

mality system 3.1-9.6 is verified with>:= 1. The previous theorem states 
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that almost every problem (P6) is normal. Also it affirms that the Slater 
constraint qualification implies (P6) is normal. In the next Section we will 
show that under hypothesis 9. 7 it is possible to prove the convergence of 

the numerical discretization. 

£. The Slater condition is satisfied if the constraints II\7U(z)ll $ c and u(z) $ 
b are not active. Indeed it is enough to take uo = (1 + £)u, with £ > 0 

small enough, so uo E Uad and 

Au-zo = -Au-,uo-uY = -n£A,.Y = -n£f, n = 2 or 3, 

thus zo =-my and then y + zo = (1- n£)y E B6. 

In optimal design it is frequent to have f $ 0 in such a way that the 
deflection is negative y( x) $ 0. In this case the Slater condition is satisfied 
if we can find an element uo E Uad such that zo is positive and smaller 

than 6. I suspect that uo = u + £ could be a correct element in many 
realistic cases. 

9. From 9.4 it is easy to deduce that the Lagrange multiplier Ji associated to 
the state constraint is concentrated on the set of points where the constraint 

is active. In particular if this set is finite, let us say {x~.:}k'=t• then 

_ = ~A 6 with { A~: ~ 0 if y(x~.:) = 6 and 
J.L ~ 1.: r~·l· \ < 0 f -( ) - _c 

k:l AJ.: - l Y Xk - 1.1, 

where 6[.,•1 is the Dirac measure concentrated at the point z~.:. See Casas 
[5] for this question. 

4. Numerical approximation 

In order to carry out the numerical approximation we must distinguish the 

one dimensional and two dimensional cases. So we are going to consider both 
cases separately, studying the discretization properties, and then we will prove 
some convergence results. 

4.1. Beam 

Let Th : 0 = zo < x 1 < · · · < Xn(h) = L be a partition of (0, L] such that 

-----------------------------------------------------
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h = max (x; - x;_t). 
1$j$n(h) 

Let us consider the following function spaces 

Uh = {uh E C((O,L]): uhl[>;;-t,zil E Pt , 1 ~ j ~ n(h)} 

Vh = {Yh E C 1([0, L]): Yhl[z;_ 1,z;] E Ps , 1 ~ j ~ n(h)} 
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where Pt and Ps are the spaces of the polynomials of degree less than or equal 
to 1 and 3 respectively. It is well known that Vh C H 2(0, L), Ciarlet [6]. Now 
we take Voh = Vh n ng(o, L) and Ucdh = Uh nUcd· If we denote by {e;}j~~) the 
functions of Uh such that e;(x;) = 6;;, then this set of functions constitutes a 
basis of uh and each element Uh E uh can be written in the following way 

n(h) 

Uh = 2: u;e;, with u; = uh(Xj), 0 ~ j $ n(h). 
i=O 

So we have 

For each uh E Ucdh we define the bilinear form 

where < ·, · > denotes the duality product in H6(0, L). Now we denote by 
Yh ( uh) the unique element belonging to Voh that satisfies 

Finally the discretized optimal design problem is stated as follows: 

l 
1 

n(h) 

minh(uh) = J(uh) = 2 2:(u;- u;-t)(x;- x;-t) 
(Ph) i=t 

Uh E Ucdh and !Yh(uh)(x;)l $6, 1 ~ i ~ n(h)- 1 
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The following result states that {Uadh}h constitutes an internal approxima

tion of Uad· 

LEMMA 1 1. For every u E Uad there exists a sequence { uh}, with uh E 

U adh, such that 

~~ llu- Uhllc([O,L]) = 0. 

2. If { uh} is a sequence that converges towards u and if uh E Uadh for every 

h > 0, then u E Uad. 

Proof. In order to prove the first part is enough to take uh as the element of Uh 
which interpolates u at the nodes { Xj} 'j~';), that is to say 

n(h) 

uh =I: u(xj)ej. 
j = O 

So we approximate u by a polygonal line and then Uh-+ u uniformly in [O,L]. 
Furthermore we have 

a :5 Uj = Uh(Xj) = U(Xj) :5 b, j = 0, • • • 1 n(h) 

lui- Uj-11 = 1 l1z; u'(t)dt l :5 c 
Xj- Xj -1 Xj- Xj - 1 :7:j-l 

hence Uh E Uadh. The second part follows from the inclusion Uadh C Uad· D. 

4.2. Plate 

Let 1h be a triangulation of n satisfying 

1. hT = diam(T) = max llx- Yll and h = max hT. 
z,yET TET,. 

0 0 

3. If T, T' E Th , T :f. T' then we have T n T'= 0 and either T n T' = 0 or T 
and T' have in common one whole edge or only one vertex. 

4. Let us take Oh = Urer,. T, Oh its interior and rh its boundary. Then 
we assume that Oh is convex and that the vertices of Th placed on the 

boundary rh are points of r. 
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5. The angles of all T E Th are bounded from below by a constant (J inde
pendently of h. 

As consequence of these hypotheses we get that nh -+ n in the following sense: 
for every compact set E c n there exists ho > 0 such that E c nh for all 

h < ho. Now to every boundary triangle T of Th we associate another triangle 

T c n with two interior sides ton coincident with two sides ofT and the third 
side is the curvilinear arc of r limited by the other two sides. We denote by Th 
the family formed by these boundary triangles with a cuvilinear side and the 

interior triangles ton of Th, son= UTe7, T. 
As in the one dimensional case, let us consider the spaces: 

So we have thought of the Argyris triangle to get the function space Vh, but 

obviously we could have considered other finite elements of class C1 , for instance 
the Bell triangle. In these conditions it is well known that Vh c H2(!lh), then 

we define Voh = Vh n HJ(nh)· In fact the elements of HJ(!lh) can be extended 
by zero ton and so we can consider HJ(nh) as a subspace of HJ(n). 

Let { z i} j~~) be the set of vertices of Ti.. As in the beam case we denote by 

{ e;} j~~) the basis of U h defined by the equalities e; ( z;) = 6;; and { u;} j~~) are 
the coordinates of uh in this basis: u; = uh(z;). 

Now we define 

Uadh = {uh E uh: a~ Uj ~ b (0 ~ j ~ n(h)) 
and I!Vuh!TII ~ c 'v'T E Ti.}. 

We note that V'uhlT is a constant of R2 for each T E Th , so the constraints on 
uh are easy to handle. We must remark too that Uadh (/. Uad in general because 
an element uh E Uadh can take values lower to a or upper to b in the domain 
T\T, supposed T C T. 

As in the one dimensional case we denote by Yh(uh) the unique element of 
Voh that satisfies 

where 
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Now we state the discretized optimal design problem: 

{ 

minJh(uh) = 1 uh(x)dx = L: meas(T)uh(XT) 
(Ph) n~> TETh 

Uh E Uadh and IYh(uh)(x;)l ~ o,j Eh 

where XT is the barycenter of the triangle T and h is the set of indices cor

responding to interior vertices of Th. So the discrete state does not satisfy the 
constraint on the deflection in every point of n, but in order to solve numerically 

the problem it is necessary to take a system of constraints easy to handle. 

An important question to note here is that if u E Uad and uh is the function 

of Uh which interpolates U in the points Xj, then it is not true in general that 

Uh E Uadh because of the constraint on the gradient. To verify this consider the 

triangle T with vertices (0,0),(1,1) and (-1,1), the function u(x) = llx JJ and 

c = 1. Then we have that uh(x) = -/2xz is the element ofP1 which interpolates 
u and it does not satisfy the constraint on the gradient. This makes more 

difficult to prove that Uadh constitutes an internal approximation of Uad, in fact 

we need to prove the following previous lemma: 

LEMMA 2 Let Uo be the set 

Uo = {u E C0
•
1(IT): 3£ = £(u) > 0 such that a+£~ u(x) ~ b- £ 

and IJ \7u(:z:)JJ ~ c - £}. 

Then for every u E Uad there exists a sequence { Uk} c C00 (U) n Uo converging 
un~formly to u. 

Proof. Let xo En be a fixed element. For each >. E (0, 1) we define 

1 
0>. = {y = A(x- xo) + xo : X E 0}. 

Since n is convex, we have that IT c n,\. Given u E Uad we take U,\ : 0>. --+ R 
defined by U>.(x) = u(xo + >.(x- :z:o)). Then it is obvious that u>-Jn E Uad and 
U>. --+ u uniformly in IT when >.--+ 1. Now if we extend U>. by zero to R2 and we 
make the convolution of U>. with a regularizing sequence { ifJ;}, we get a sequence 

{ U>.j} C coo (0) that converges to U>. uniformly in IT. Furthermore if we take 

i>- EN such that ifJj(x - y) = 0 V(x,y) E IT x n~ for every j ~ j>., then we 

deduce for all x E IT 
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and 

a~ In>. <Pi(x- y)ady ~In>. <Pi(x- y)u>.(y)dy = U>.j(x) ~ 
In>. <Pi(x- y)bdy = b 

II 'Vu>.j(x)ll = IIIn>. <Pi(x- y)'Vu>.(y)dyll ~ 
In>. 4Ji(x- Y)II'Vu>.(Y)IIdy ~ .\c <c. 
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Then U>.j In E Uad and we can take a subsequence converging to u. Thus we have 

proved that coo(n) n Uad is dense in Uad for the uniform convergence topology. 

To conclude the proof let us take a function u E C00 (0) n Uad and let us see 

that it can be approximated by a sequence of C00 (0) n U0 • For each t E (0, 1) 

let Ut : n __..... R be the function 

ta + (1 - t)b 
Ut(x)= 2 (l 2)b[tu(z)+(l - t)b]. 

t a+ - t 

Then Ut E coo (IT) n Uo and Ut -+ u uniformly in n when t -+ 1. 0 

Now we can prove the following result 

LEMMA 3 1. For every u E Uad there exists a sequence {uh}, with uh E 
Uadh 1 such that 

lim llu- uhllccn) = 0. h-o 

2. If { uh} is a sequence that converges uniformly towards u and if Uh E Uadh 

for every h > 0, then u E Uad· 

Proof. To prove the first part, thanks to lemma 2 it follows that it is enough 

to consider an element u E C00 (D) n U0 and show that it can be approximated 

uniformly by elements of Uadh . So given u let us take 
n(h) 

Uh = L:u(xj)ei· 
i=O 

Because of the regularity of u we get from the interpolation theory (Ciarlet [6]) 

(4.1) 

Let f = E(u) as in the definition of U0, then from the previous inequality we 

deduce 

3ho > 0 such that llu - uhllw•.oo(n) ~ E/2 Vh < ho 

hence uh E Uadh Vh < ho. Moreover the equation 4.1 implies llu- uhllc(n) -+ 0 
and so the proof of the first part is complete. The second part of lemma is 

immediate. 0 
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4.3. Convergence analysis 

In this Section we are going to consider two different situations. The first 
one consists in assuming the Slater hypothesis 3. 7, in this case we will prove 

that (Ph) has at least one solution uh for h small enough and that uh converges 
to a solution of the continuous problem. The other situation occurs when we do 
not assume 3.7. In this case we will see that any limit of a sequence of points 

satisfying the optimality system for the discrete problem verifies the optimality 
conditions 3.1-3.4 and 3.5 or 3.6. Before stating these results we need to stablish 
the next lemma: 

LEMMA 4 Given uh, u E A(O) such that llu- uhllc(i'i)-+ 0 when h-+ 0, then 

the following equalities are satisfied: 

Proof. The first equality is obtained in the following way: 

where Oh= 0 = (0, L) in the one dimensional case. 
For the second equality we must remember that Yh(uh) E Voh is extended 

by zero to 0 and then Yh(uh) E H~(O). In order to simplify the notation let 
us denote Yh = Yh(uh)· Now from the uniform convergence of uh to u we get 
the existence of a constant Cl > 0 such that uh(:z:) 2::: Cl V:z: E n. Then the 
bilinear forms auh are uniformly coercive and consequently from the definition 
of Yh we deduce that {Yhh>o is a bounded sequence in H6(0). Thus we can 
get a subsequence {Yhk} converging weakly to an element y E H6(0). Let us 
prove that y = Yu or what is the same AuY =f. Let be <PE D(O) and let <flh be 
the element of Voh which interpolates </1, so we have <Ph -+ 4> ~n H~(O). Then, 
using the uniform convergence of uh to u, the weak convergence of Yhk to y and 
the strong convergence of </Jh to </1, we get 
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lim < /, 4>h« >=< / , 4> > . 
k-oo 

Since 4> E D(n) is arbitrary we deduce that AuY = f and so y = Yu· Hence 

Yh converges to y weakly in H6(n) when h -+ 0. It remains to prove the 

strong convergence. For it we begin noting that the uniform convergence of 

{ uh} implies 

I < (Au- Au,.)Yh, Yh >I$ c2llu- uhllc(o)IIYhll~g(n) $ 
c3llu - uhiiC(n) -+ 0. 

From this relation and the coercivity of au we obtain 

c41!Y- Yh~~~~(O) $< Au(y- Yh)~Y- Yh >= 

< /, Y - Yh > - < /1 Yh > + < AuYh 1 Yh >= 

< /1 Y - Yh > - < f, Yh > + < Auh Yh 1 Yh > + < ( Au - Auh )Yh 1 Yh >= 

< /1 Y- Yh > + < (Au- Au,.)Yh, Yh >-+ 0. 

Finally we are ready to study the convergence of the discrete optimal design 

problem. 

THEOREM 5 Suppose that the Slater condition 9. 7 is satisfied, then there 

exists ho > 0 such that (Ph) has at least one solution ih for each h $ ho. 

Moreover there exist subsequences {uh~ heN of {uhhSho and elements u E Uad 
such that 

Each one of these limit points is a solution of problem (P6 ). Finally we have 

Proof. We will prove that the set of elements Uh E Uadh such that IYh(uh)(xj )I $ 
b for all j E h is nonempty. Then we can argue as in the proof of theorem 2 
and to obtain the existence of a solution. 

Let ube the solution of(P6) and (uo, zo) E U4 dxH6(n) the pair considered in 
the Slater condition 3.7. For every A E (0, 1) we take U). = u + A(u0 - u) E Uad 

Y>-.- y 
and Y.l. = Yu~. Then we have that -).- -+ zo when A -+ 0. Therefore we 

deduce from 3.7 that there exists >.0 > 0 such that 
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y + Y>.- yE B6 V>..< >..o 
>.. 

hence we get 

Y>. = >.. [w + Y>.; y] +(I- >..)yE B6 V>..< >..o. 

E.CASAS 

(4.2) 

From lemmas 1 and 3 we deduce the existence of a sequence {u>.h}, with 

U>.h E Uadh, such that llu>.h - U>.IIC(n) -+ 0 when h -'-+ 0. Now from lemma 4 we 
obtain the convergence of Y>.h = Yh( U>.h) towards Y>. in H5(0), which implies 
that Y>.h -+ Y>. in C(?i). So if >.. < >..0 , from 4.2 we deduce the existence of 

ho > 0 such that Y>.h E B6 'Vh :S ho and therefore the set of admissible points is 
nonempty for every h ~ ho, thus we conclude the proof of existence of solution. 

To prove the second part of the theorem, first we note that {uh} is a bounded 

sequence in C0•1(?i) and then from Ascoli's theorem we deduce the existence of 

uniformly convergent subsequences to elements u. 
Now let us take >.. < >..o. Since Uh• is a solution of ( Ph•) and u>.h• IS an 

admissible point for h < ho we get with the aid of lemma 4 that 

Jh.(uh.) ~ Jh.(u>.h.) ===> J(u) = limk ..... ooh.(uh.) ~ 
limk ..... oo Jh.(u>.h.) = J(u>.) 

hence 

J(u) ~ 1~ J(u>.) = J(u) = min (P6). 

It remains to prove that u is an admissible point to deduce that it is a solution 

of (P6)· From lemmas 1 and 3 we obtain that u E Uad and from lemma 4 we get 

that Yh. = Yh. (uh.) converges uniformly to Yu in IT, then IYh• (xj )I :S 6 'Vj E h. 
implies that Yu E B6, so u is an admissible point. D 

We have seen that the Slater condition is not only useful to derive the op

timality system but it is a stability condition that guaranties the discrete set 

of admissible points is nonempty for h small enough and at the same time it 

allows us to prove the convergence of the discretizations. When the Slater con

dition is not satisfied the usual process to prove the previous results consists of 

changing 6 by 6h in such a way that 6h ! 6 when h ..... 0. However this process 

can diminish the convergence order, which is obviously not desirable. 

In practice we use algorithms to solve the discretized problem (Ph) that sup

ply points satisfying the optimality necessary conditions. The following theorem 
states the optimality conditions for (Ph) and assures that points satisfying these 

conditions converge to points that satisfy the optimality conditions of ( P6 ) given 

in the theorem 4. 
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THEOREM 6 Let uh be a solution of problem (Ph), then there exist a real 
number 'Xh 2: 0 and elements lih = (7ii)iEI~> E RII,.I and yh,Ph E Voh satisfying 

xh + L: IJijl = 1 
jEh 

au-,. (ph, Yh) = L: Ji;Yh(x;) '<lyh E Voh 
jE!,. 

and one of the following inequalities 

BEAM: 

1L (Xh - 2Euuh~P~)( tth - tih)dx 2: 0 lrfuh E Uadh 

PLATE: 

f (Xh - D(uh, 1)[v.6.yh.6.Ph + (1 - v)(a;,,1h8;,Ph + a;,,1ha;,Ph+ Jn,. 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

where lhl = Cardinal of h. Moreover for all sequence {(uh, >:h, /ih, ih,Ph)h 
satisfying the optimality system 4.3-4.8, and assuming that uh E Uadh, there 

exist subsequences {(uhk,Xhk,lih~ , Yhk •PhJh and elements (u,'X,/i,y,p) such 
that 

lim Ph~. = p weakly in H~(O) (4.10) 
k-+00 

lim lih~< = lim " 7i1·8[x ·] = Ji weakly* in M(O) ( 4.11) 
k-+00 k-+00 L..J ) 

jEI,.k 

Each one of these limit points satisfies the optimality system 3.1-3.4 and 3.5 or 
3.6. 

Proof. The optimality system 4.3- 4.8 is obtained in a similar way as in the 

proof of theorem 4 by using the abstract result of theorem 3, taking in this case 

U = Uh, Z = RII~>I, I<= Uadh, C6 = {{ E Rlhl: i{il ~ 6,i Eh}, J = Jh and 
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G(uh) = (Yh(uh)(xi))ieh. The equality 4.3 is obtained dividing Ph, Xh and Ph 
by a suitable constant. 

Since uh E Uadh Vh we have that {uh} is a bounded sequence in C0•1(0), 
then using again the Ascoli's theorem we deduce the existence of a subsequence 

{ uhk} converging uniformly to an element u E Uad. Then {Yh.} converges to 

y = Yu in H6(0) (Lemma 4). 
On the other hand the equation 4.3 implies that {X h.} and {Ph.} are 

bounded sequences in R and M{O) respectively, where we are identifying Ph 
with the element of M(O) defined by 

Ph = I)tjO[z;]· 
jElh 

So we can extract two subsequences, denoted still in the same way, converging 
to X~ 0 and p E M(O) respectively. Now using the equation 4.5 and arguing 
as in the proof of lemma 3 and remembering that the inclusion M(O) C HJ(O) 
is continuous, we deduce that Ph~< -+ p weakly in HJ(O), where pis the state 
associated top. Now it is easy to pass from 4.3-4.8 to the system 3.1-3.6, which 
concludes the proof. D 
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