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A sufficient, and in some cases necessary, condition is given for 
finding the eigenvalues and eigenvectors of a class Infinite Horizon 
Linear Quadratic Regulator problems in a Hilbert space. The uncon
trolled systems are assumed to be conservative with their controls 
introduced by linear operators which in the most interesting cases 
are unbounded. (MR and Zbl Classification 93D15, 93C20, 351). 

Introduction 

In this paper we apply complex analysis techniques to obtain solutions of 
linear quadratic regular (LQR) problems in Hilbert space 1i. We assume the 
uncontrolled systems generate uniformly bounded Co-semigroups on 1i, the 
controls are introduced through linear operators, which may be unbounded, 
and that the cost functionals are positive semidefinite in the space variables and 
positive definite in the control variables. A well- known class of systems which 
conforms to this description is linear elastic systems governed by hyperbolic 

partial differential equations with controls on their boundaries. (See [6] for a 
\ omprehensive survey of such systems). 
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It is well-known (see e.g., [6]) when an LQR problem is optimizable, its 
optimal controls are feedback controls which generate a linear system. In this 

paper we make no assumption on the optimizability of the system. Instead 
we seek solutions which are of the form xoe>.ot, ReAo < 0, Xo E 'H., which are 

optimal. We call these solutions spectral solutions. If xo is nontrivial, then the 
corresponding .Ao is called an eigenvalue of the problem. 

The main contribution of this paper is a sufficient condition for the existence 
of non trivial specttal solutions which presents a constructive method for obtain
ing them. This condition is given in Theorem 2.10. Bearing in mind that such 
a condition may be vacuous, we give, in Theorem 2.12, criteria for Theorem 2.10 
to also be necessary condition. 

Section 3 presents a. method for computing certain optimal solutions of LQR 

problems in terms of contour integration in the left half plane Re .A < 0. This 
method is the analogue of spectral approximation by eigenvectors of the solu

tions to linear operator equations in a Hilbert space. 
In Section 4 we restrict the problem to the special case of abstract linear 

elastic systems. That is systems representable in the form 

x(t) + A2(x(t)) = Bu(t), (0.1) 

where A represents a symmetric positive semidefinite unbounded operator on 1{. 

and B is a possibly unbounded linear mapping from a Hilbert space H into 1{.. 

For such systems the sufficient condition of Theorem 2.10 reduces to an eigen
value problem (Equations (4.13) and (4.14)). 

Three special cases of the LQR problem are considered. One observation 
based on these cases is that the velocity term, x(t), appears to be the most 
important component of the cost functional so far as stabilization is concerned. 

In Example 4.2 we specialize the system to one where the control is one
dimensional. For these systems Theorem 2.10 reduces to finding the roots of 
a symmetric meromorphic function which lie in Re .A < 0. Theorem 4.4 presents 
a criterion for Theorem 2.10 to also be a necessary condition. This criterion 
consists of the ability to construct a certain entire function, q, of order one (see 
e.g. [1]) which cancels the poles of the operator (.A2 I+ A2)-1 and is such that 
(.A2 I+ A2)-1 q(.A) is a finite Lapla.ce transform (F.L.T.) (see e.g., [3]). 

Examples 4.5 and 4.6 are explicit examples of systems which satisfy Theo
rem 4.4 and for which Theorem 2.10 is necessary and sufficient. Example 4.5 is 
the one-dimensional wave equation with Neumann boundary conditions on one 
end. Example 4.6 is a two-dimensional beam which can have a finite' number 
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of pointwise controllers at interior points and is neither approximately control
lable nor weakly stabilizable. Nevertheless the spectrum of an associated LQR 
problem is nonempty. There is one appendix. 

1. Preliminaries 

1. R will denote real numbers, R+ the positive real numbers and C the 

complex numbers. 

2. 'H is a complex Hilbert space with inner product (-, ·) and norm 11 · 11 · 

H is a complex Hilbert space with the inner product ((·, ·)) and norm 11 ·lie· 
V and V' (the dual of V) are Banach spaces such that V C 'H C V' and V and 

'H are dense in their successors under continuous injection. The norm on V is 

denoted by l·lv and that on V' by 1·1. If v' E V' we denote the functional on 

V generated by v' by the notation {·, v'}, and observe that if v' E 'H 

{v, v') = (v, v') (1.1) 

for all v E V. 
3. Let X and Y be complex Banach spaces. We denote the Banach space 

of continuous linear mappings from X into Y by [X, Y] and if X = Y by [X]. 

The identity mapping on all Banach spaces will be denoted by I and the zero 

mapping by (). The adjoint of any Banach space X, except V, will be denoted 

by X*. If Q E (X, Y] the adjoint in (Y•, X*] will be denoted by Q•. 
4. L2(R+, X) will denote the space of all Bochner square-integrable map

pings from R + into X. 

5. S(t), t E R+, will denote a co-semigroup of operators on V' with in
finitesimal generator a. It is assumed S(t) is uniformly bounded on V', that 

S(t) : 'H -+ 'H for all t E R+ and is also uniformly bounded there, that the 

domain of a, considered as the generator of S(t) on 'H, V( a), is in V, and that 

a- 1 is a bounded linear operator on 'H and on V'. The adjoint of a in 'H is 

denoted by a*. 

6. [3 E [H, V1 is such that a-1[3 E [H, V]. 
7. WE ['H] is symmetric positive semidefinite and W: V-+ V. 

8. If q E L2(R+, X), we denote its Laplace transform by q, i.e. 

q(s) = 100 

e-•tq(t)dt, (1.2) 

where s is such that (1.2) converges absolutely in the norm of X. 
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2. Statement and discussion of the problem 

Let u E L2(R+, H) and xo E 1-l . We consider mild solutions of the differen

tial equation 

x(t, Xo, u) = ax(t, Xo, u) + ,8u(t), t ~ 0, (2.1) 

in 1-l. 

DEFINITION 2.1 If u E L2(R+, H) , xo E 1i and the formal Laplace transform 

of(2.1), 

i(s) =(si - a)- 1[xo + ,Bil(s)], (2.2) 

is the Laplace transform of a mapping x : R+ __.1-£, then x(t) is called a mild 
solution of (2.1). An equivalent statement is that 

x(t) = S(t)xo + 1t S(t- <1),8u(<1)d<1 (2.3) 

is a continuous mapping from R+ into 1i which has a Laplace transform. 

REMARK 2.2 Since ,8 E [H, V'] the term under the integral sign in (2.3) is for 
each pair t, <1, 0 ~ <1 ~ t, in V', but not necessarily in 1-l. Hence (2.1) is not 
quaranteed a priori to possess a solution for all u E L2(R+,H). However, for 

Res> 0, (si- a)- 1,8 E [H, V], and thus J~ S(t- <1),8u(<1)d<1 E 1i for all t ~ 0 
since u E L2(R+, H). 

We now consider the optimal control problem. Given x0 E 1-l, minimize the 

functional 

C(u,xo) = 100

((Wx(t,xo,u),x(t,xo,u))+((u(t),u(t)))]dt (2.4) 

over L2(R+, H) subject to the constraint that x(t, xo, u) be a mild solution 
of (2.1). If for some u E L2(R+, H) C(u, x0) < oo, we define 

m(xo) = inf C(u,xo). 
mEL2(R+,H) 

(2.5) 

DEFINITION 2.3 We define the subset U C L2(R+, H) as the set of 
h E L2(R+, H) such that mappings 

y(t, h) = 1t S(t- <1),8h(<1)d<1 (2.6) 
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satisfy the condition 

100

(Wy(t,h),y(t,h))dt < 00. (2.7) 

PROPERTY 2.4 U is a subspace of L2(R+, H). 

PROOF. The proof is a consequence of fact that the positive square root of (2.7) 

defines a seminorm on U and that y(t, ·) is linear in h. 

PROPERTY 2.5 Let C( u, zo) < oo. Then a sufficient condition that there exists 
uo E L2(R+, H) such that 

m(zo) = C(uo,zo) (2.8) 

is that 

C(uo + h,zo)- C(uo,zo) 2:0 (2.9) 

for all hE U 

PROOF Assume (2.9) is satisfied. Let 

C(u,zo) < oo (2.10) 

and let 

h = u- uo (2.11) 

Since 

x(t, zo, u) = z(t, zo, uo) + y(t, h) (2.12) 

and (2.10) holds, it follows from the quadratic nature of (2.4) that y(t, h) satisfies 

(2.7) and hence hE U. But this implies that 

C( u, zo) - C( uo, zo) 2: 0 (2.13) 

Since u is arbitrary this proves that C(uo, zo) = m(zo). 

PROPERTY 2.6 IfC(uo,zo) = m(zo), then uo is unique. 

PROOF. The proof is a consequence of the convexity of (Wx(t, zo, u), z(t,z0 , u)) 

as a function of u and the strict convexity of the norm squared in H. 
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THEOREM 2.7 A sufficient condition that C(uo, xo) = m(xo), is that 

100 

[(Wx(t, xo, uo), y(t, h)+ (( u(t), h(t)))]dt = 0 

for all hE U. 

PROOF. By direct computation 

C(uo + h,xo)- C(uo,xo) = 

R.OATKO 

(2.14) 

100 

[(Wy(t, h), y(t, h))+ ((h(t), h(t)))]dt (2.15) 

+ 2 Re 100 

[(Wx(t, xo, uo), y(t, h))+ ((uo(t), h(t)))]dt. 

Hence if (2.14) is satisfied 

C(uo + h,xo)- C(uo,xo) ~ 0 

for all hE U and by Property 2.5 this implies C(uo, xo) = m(xo). 

DEFINITION 2.8 A point :eo E 1i for which there exists uo E L2{R+,H) and 

Ao E C such that 

0 < C{uo, zo) = m(xo) < oo (2.16) 

and 

(2.17) 

is called a spectral point of the optimization problem (2.4). The point Ao is 

called an eigenvalue of the problem {2.4). 

PROPERTY 2.9 If xo f. 0 is a spectral point of the problem (2.4}, (Aol- at1 

exists, II WS(·)xoll ~ L2(R+, 1i) and (Wxo, xo) > 0, then the eigenvalue Ao 
satisfies Re Ao < 0, and there exists qo E H such that 

(2.18) 

and 

PROOF. The Laplace transform of (2.17) must satisfy (2.2). That is 

A ~\0 = (U- a)-1[xo + .Buo(A)]. (2.20) 
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Thus 

(2.21) 

and hence 

A :\
0 

= (Aol- o)-1.Buo(A). (2.22) 

Equati9n (2.22) implies that 

~ (Aol- a) 
.Buo(A) = A_ -Xo zo. (2.23) 

Consequently 

(2.24) 

and uo(t) must be of the form 

uo(t) = qoeAot + ho(t); Z(j = (Aol- a)- 1.8qo , (2.25) 

where ho E U is such that 

y(t,ho) = 0 (2.26) 

because .Bho(t) = 0 a.e. on R+. Moreover, since (Wzo, zo) > 0, it follows that 

0 < 100 

(W z0eAot , zoeAo')dt = 2~\0 (W zo , zo). 

Thus Re Ao < 0 and 

C(qoeAot, zo) < oo 

But then, if ho(t) =/= 0 a.e. on R+, 

J.lo(t)- ho(t) = eAo'qo EU, 

since hoE U. 
However this is impossible because 

1' S(t- u).BqoeAou du = zoeAot - S(t)zo 

and IISOzoll ft L2(R+, 'H). Thus ho(t) = 0 a.e. on R+ , 

(2.27) 

(2.28) 
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and 

uo(t) = qoe-"ot. 

THEOREM 2.10 lf Xo :f= () in 1£ satisfies 

:r:o =(AI- a)-1(J{r(U + a*)-1Wx0 

for some A E C with Re A< 0, then the pair 

uo(t) = e-"t{J*(AI + a*)-1Wxo 

and 

x(t,to,uo) = xoe"'' 

are optimal for the problem {2.4). 

R. OATKO 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

PROOF. (i) Observe that if :r:o satisfies (2.31) and uo and x(t, t0 , u0) satisfy 

(2.32) and (2.33), then (U - a):r:o E V', 

and 

"( ) XQ xs =--
S-A (2.34) 

[ 
(J{J*(AI + a*)-1W] 

(si- a)- 1[x0 + {3u0(s)] =(si- a)-1 I+ s _A xo 

= (si- a)-1 [xo + (M- a) xo] (2.35) 
s-~ 

xo 
= 

s-~ 

Thus xoe-"' and uo form a mild solution of (2.1) and clearly C(uo, xo) < oo. 
(ii) Let hE U then 

100 

[(Wx(t, xo, uo), y(t, h))+ (( uo(t), h(t)))]dt = 

= 100 

(Wxo, eXt 1' S(t- u){Jh(u)du)dt 

+ 100 

(((J*(U + aQ)-1Wx0 , ex'h(t)))dt (2.36) 

-(Wxo, (~I+ a)- 1(Jh(-~)) + ((J*(AI + a*)- 1Wx 0 , h(-~)) 

= 0 

Thus by Theorem 2.7 the pair (2.32) and (2.33). are optimal for the prob

lem (2.4). 
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REMARK 2.11 If xo satisfies (2.31) then it is a spectral point. The question 
naturally arises. Do all nontrivial spectral points satisfy an equation of the 

form (2.31)? In Section 4 we shall give an example of a class of systems all 
of whose spectral points are determined by (2.31). In the general case it is 

conceivable that there are only trivial solutions of (2.31). However, there is 
a condition which states that (2.31) is necessary and sufficient for x0 to be 

a spectral point of the problem (2.4). This is given by the following theorem. 

THEOREM 2.12 If for all >. E C with Re>. > 0 and any qo E H there exists 

h E U such that 

h(>.) = qo, (2.37) 

then Equation (2.91) determines the spectral points of the problem {2.4) for 

those points which satisfy the conditions of Property 2.9. 

PROOF. Let the hypotheses of Property 2.9 be satisfied in addition to condi
tion (2.37). Let xo be a spectral point for the Problem 2.4 with eigenvalue >.o. 
The corresponding optimal control is then u0(t) = e>.otq0 , where qo E H satisfies 

Equation (2.18). We choose hoE U such that 

ho( -.Xo) = -{3•(>.ol + a•)- 1 Wxo + qo. 

Then since C(uo +h)- C(uo) ~ 0 for all hE U it follows that 

Re [100 

[(We>.otxo, y(t, hn)) + ((e>.otqo, ho(t)))]dt] = 0 

Using (2.38) we can express (2.39) in the form 

Hence 

qo = {3*(>.ol + a•)-1Wxo. 

Substituting (2.41) into (2.18) shows that x0 satisfies (2.31). 

3. A class of optimal solutions 

(2.38) 

{2.39) 

(2.40) 

(2.41) 

In this section we construct a class of optimal solutions for the functional 

(2.4) using contour integration techniques. 
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DEFINITION 3.1 A mild solution of (2.1), x(t, xo, uo(t)), and its controller, uo(t), 
are called an optimal pair if 

C(uo, xo) = m(xo) < oo (3.1) 

The mapping u 0 is termed the optimal control. 

Let 

(3.2) 

wherever the inverse exists. Since 

S1(A) = (H- a)-1[I- {3[3*(H + a•)- 1W(H- a)-1t 1, (3.3) 

it is clear that S1 (A) E [1t]. 

PROPERTY 3.2 Let Xo E 1t and r be a Jordan curve in ReA < 0 such that 

S1(A) exists on r. Define 

xr = -
2

1
. f S1(A)xodA. (3.4) 

1n lr 
Then the pair 

and 

ur(t) = -
2

1
. f e>-tp*(AI + a*)-1W.Sl(A)xodA 

1n lr 

xr(t, xr, ur) = -
2

1
. f e>.t Sl(A)xodA. 

11't lr 
are an optimal pair for the functional (2 ... 4) 

(3.5) 

(3.6) 

PROOF. (i) We first show that for Res > 0 the Laplace transform of (3.5) and 

(3.6) satisfy (2.2). 

Observe that for Res > 0 

(si- a)- 1[xr + f3ur(s)] = 

2~i £(si- a)-1 [I+ PP"'(Asi_+Ao:•)-
1

] S1(A)x0 dA (3.7) 

Using (3.3) 

(si- o:)-1 [I- (AI- o:) +(H-o:)+ PP*(AI + o:>-)-
1

] S
1
(A)x

0 
= 

B-A S-A 

= (si- a)-1 [I- (H-a) S1(A)- _I_] xo (3.8) 
s-A s-A 

= [S1(A) _(si- a)-
1
] Xo. 

s-A s-A 
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Since ''1;~[
1 

is analytic on rand its interior, (3.7), with its integrand repre

sented by (3.8), satisfies 

(si- a)- 1(:z:r + .Bur(s)] = -
2

1
. f St(A! xodA = ir(s,:z:r,ur), (3.9) 

?n lr s-" 
which proves that (3.5) and (3.6) satisfy (2.2). 

(ii) To show that (3.5) and (3.6) are an optimal pair we observe that for any 

hE U we can use Tonelli's Theorem (see e.g., (4]) to write 

100 

(W(:z:t,:z:r, ur), y(t,h))dt = 

= -
2

1
. f 100 

(WS1(A)x0 ,1t eXt S(t- o-),Bh(o-)do-)dtdA (3.10) 
1rl lr o o 

= --
2
1 

·1(WS1 (A)x0 ,(XI +a)-1,8h(-X))dA. 
1rt I' 

On the other hand, again using Tonelli's Theorem, we can write 

100 

((ur(t),h(t)))dt = 

= -
2
1

. f [((.B*(AI + a•)-1WS1(A)x0 ,eXth(t)))dtdA (3.11) 
1rt lr o 

= -
2

1
. f ((,B*(AI + a•)-1WS1(A)x0 , h( -X)))dA 

1rs lr 
Thus, since (3.10) is the negative of (3.11), Equation (2.14) in Theorem 2.7 is 
satisfied by the pair (3.5) and (3.6) and hence they are an optimal pair. The 

following theorem is now an obvious consequence of Property 3.2. 

THEOREM 3.3 If r; 1 1 $ j $ n are a finite sequence of Jordan contours in 
Re A < 0 such that St (A) exists on each r i 1 then the functions 

(3.12) 

and 

(3.13) 

form an optimal pair for the functional (£ .. 1) 
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4. Conservative elastic systems 

Let A be a strictly positive self-adjoint operator with a. dense domain, V( A), 
and a. compact resolvent, ()..I -A)-1 , on a Hilbert space 1£0 whose inner product 

is denoted by(·,·). We consider the following Ba.nach spaces 1£1 = V(A) with 
the inner product 

(x,y)?t1 = (Ax,Ay) and norm llxll?t1 

where Vo and 1£0 are dense in V0 under continuous injection. 

We define the Cartesian products 

1i = 1£1 x 1io 

V= 1£1 x Vo 

v' = 1£1 x va 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The norms on 'H. , V and V' a.re the usual norms induced by the product 

topology. 

We consider a Hilbert space H with the inner product((-,-)) and a mapping 

BE [H, V0] such that 

On 1{ we consider the differential equation 

x = y, x(O) = xo E 1£1 

if= -A2x + Bu, y(O) = Yo E 1io 

and the functional 

(4.6) 

(4.7a) 

(4.7b) 

C(u,xo, Yo) = 100 

[v1llx(t)i1~ 1 + vaily(t)il2 + ((u(t), u(t)))]dt (4.8) 

where /j, j = 1, 2, are nonnegative constants. 

The system (4.7) and (4.8) conforms to the model (2.1}, (2.4) given in Sec

tion 2. In this case a, a- 1 and f3 are the following operators defined on the 

Cartesian product space 

(4.9) 
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(4.10) 

(4.11) 

Notice that 

in [H, V]. 

In this case 

W = ( vg v~l). (4.12) 

For the above system Equation (2.30) reduces to the equation 

( :: ) - ( ~;:~) :2rr~;) ) ( v~l v~l ) ( :: ) , (4.13) 

where 

Notice that from ( 4.14) we can obtain the equalities 

r( -~) = r(A) and 

r*(~) = r(~). 

Some special cases 

1: v1 = 1, v2 = 0. The Equation (2.30) becomes 

:t:o = -r(~)xo, Yo = -~r(~)xo. 
Thus 

11: v1 = 0, v2 = 1. The"Equa.tion (2.30) satisfies 

(4.14) 

( 4.15) 

(4.16) 

(4.17) 
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or 

xo = .Ar(.A)yo, Yo = .A2r(.A)yo. 

Since x(t) = x0e>.t and :i:(t) = .Ae>.'x0 = y(t), 

xo = .A2r(.A)yo . 

Ill: v1 = 112 = 1. Then (2.30) reduces to 

xo = (A2
- 1)r(A)xo. 

R.OATKO 

(4.18) 

(4.19) 

Cases II and Ill seem to indicate that the dominant term in the cost func
tional ( 4.8) is lly(t)ll and not llx(t)ll?t 1 • We shall give below an example where 
this is clearly the case, but we do not know if this is true in the general case. 

However, the following observation seems to indicate that lly(t)ll is the dominant 
term in ( 4.8). 

OBSERVATION 4.1 Assume v1 = 1 and v2 = 0 in (4.12). Let 

1i ='Ho x 'Ho 

and 

(4.20) 

( 4.21) 

Then for xo E 'Ho .and Yo E 'Ho we can express the control problem ( 4. 7), ( 4.8) 
in the form 

x =Ay, iJ = -Ax + A-1Bu, (4.22) 

with C( u, xo, Yo) given by ( 4.8), where 111 = 1, 112 = 0. 

The system ( 4.22) has now a bounded control input. Since the homogeneous 
system (i.e. u(t) = 0) is conservative and the cost functional contains only 
bounded operators it is not plausible for the system to be made uniformly stable 
via a feedback based on optimization of the infinite horizon problem. 

EXAMPLE 4.2 Let H = R and B = b E V'. (This is a rank-one control 
problem). We assume 111 = 112 = 1 and A-2b E V. Then (2.30) reduces to 

The corresponding eigenvalues are easily computed to satisfy the equation 
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If v1 = 0 and v2 = 1 the equivalent of ( 4.24) reduces to 

1 = .A2(((.A2I +A2)-2b,b}, ReA< 0. 

If v 1 = 1 and v2 = 0 the equivalent of (4.24) is 

-1 = (((A2 I+ A 2)-2b, b}. 

A condition for Theorem 2.12 to be satisfied. 

123 

(4.24) 

(4.25) 

(4.26) 

Systems of the form ( 4.7) which arise in LQR problems involving linear 

hyperbolic partial differential equations with controls on their boundary often 

satisfy conditions of the following kind 

00 1 
(.AI- a)-1{3 = L .A2 A~ [~A;+ B;], 

j=l + J 

(4.27) 

where {A;} and {B;} are in [H,?t], {A;} a.re real and 

00 1 L A~ < oo, s~p[IA; I+ IB; I] < oo. 
j=l J J 

(4.28) 

(See e.g., (6], for a general survey of such systems, and (2] for properties related 

to the poles of the associated operators (.AI- a)- 1 .) 

DEFINITION 4.3 A Bochner inegrable mapping f from a finite interval, [0, T], 
into a Banach space X has a finite Laplace transform (F.L.T.) given by 

](.A) = 1T e>.t f(t)dt. (4.29) 

The inverse transform of ( 4.29) has support on [0, T], and ](~) is an entire 

analytic function of exponential type which is L2-integrable over ( -ioo, ioo) 
(see e.g., [1], p. l03, or [3]). 

THEOREM 4.4 Let q: C-C be an entire function such that q(.A) ~ 0 and such 
that the function 

(4.30) 

where (AI- a)-1{3 is given by (4.27), is a F.L. T. from C into [H, ?t], and such 

that, for any .Ao ERe .A < 0, l£~)0 is in the Hardy- Lebesque space H2(0) (see e.g. 
{8]}. Then Equation {2.90} determines the spectral points of the optimiz,ation 
problem for those points which satisfy Property 2. 9. 
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PROOF. Let >.o ERe>.< 0. Define 

(4.31) 

if q( ->.o) :f: 0, and the entire function 

(4.32) 

if q has a zero of order m at ->.o. Let hoE Hare arbitrary. Then the function 

h(>.) = q1(>.) ho 
>. - >.o 

is the Laplace transform of some hE L2(R+, H) as is the function 

(see e.g., [8], p. 162- 163). 

Let So(t)/3 denote the inverse Laplace transform of 

(4.33) 

(4.34) 

(4.35) 

It is obvious that if {4.30) is a F.L.T. then (4.35) is also since it satisfies the 
F.L.T. version of the Paley- Wiener Theorem (see e.g., [1), p. 103). Thus, for 

some T > 0, S0 (t)f3 = 0 ift > T, and fort> T 

y(t, h)= lot S(t- u)f3h(u)du = lo' S(u)f3h(t- u)du 

=lot So(u)f3hoe>..o(t-u)du = loT So(u)f3hoe>..o(t-u)du. (4.36) 

Hence y(·,h) defined by (4.36) is in L2(R,H), hE U and 

(4.37) 

Since ho is arbitrary Equation (2.31) yields the spectral points of (2.4) for those 
points satisfying Property 2.9. 



EXAMPLE 4.5 Consider the problem 

vu{z, t) = v.,.:(z, t), 0 < z < 1, t > 0, 

v.,(1, t) = hu(t), v(O, t) = 0, u E L2(R+, R), 
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(4.38) 

(4.39) 

plus appropriate initial conditions. Using a standard eigenvalue expansion (see 

e.g. [5] , Chapter 4) the problem ( 4.38), ( 4.39) can be reduced to the following 

version of (2.1) defined on the sequence space 12 x 12 . 

Xn+(mr+~?xn=(-1t(2)u, n=0,1,2,···. {4.40) 

For the system ( 4.39) a is the infinite matrix operator on 12 x 12 defined by 

a= { ( -(n•CJ+ j)' ~ )} .' n = 0, 1,2, , ( 4.41) 

f3 is the vector in 100 given by 

/3={(-1t(2)}, n=0,1,2,···, and (4.42) 

{(.AI- a)-1/3} = { (-1)n(2) ( 1 ) } 
n .A2+(mr+~)2 .A n 

(4.43) 

n = 0, 1, 2, · · ·, is a bounded vector on 12 x /2 . Notice that ( 4.43) has the 

structure of {4.27), where .Aj = (j1r + ~)2. Let 

(4.44) 

then it is trivial to show that all conditions of Theorem 4.4 are satisfied and 

that Equation (2.31) is a necessary and sufficient condition for a point zo ::j; 0 

to be a spectral point of the system ( 4.38), ( 4.39) when the cost functional is 

given by 

C(u,xo) = 100 [;[x~(t) + (xn(t))2] + (u(t))2] dt, ( 4.45) 

For the system ( 4.38), ( 4.39) and ( 4.45) the equation for the eigenvalues 

corresponding to Equation ( 4.24) reduces to 

1 = 4(.A 2 - J) ~ 1 
f;;o (A2 + (n1r + ~)2)2 

= -(.A2- 1)(.Asech2~;ta.nh.A). (4.46) 
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(See Appendix A for the derivation of ( 4.46).) It is also not difficult to show 
that the solutions of ( 4.46) in Re~ < 0 are asymptotic to the solutions of the 
equation 

1 =- sech2 ~. (4.47) 

which satisfy R:e ~ = ~ log(3 - VS) < 0. 

EXAMPLE 4.6 In [9] Y. You considered, among other things, the controllability 
and stabilizability of the two-dimensional vibrating plate over the region, 

r={(x,y): 0<x<1, 0<y<1}, 

given by the equation 

m 

Wtt + w»xx2J + 2wz»Wyy + ww1111 = Eo(x- Pk ,Y- q~c)fk(t), 
k=l 

t > 0, (x, y) Er and 

w= 0, 
f:Pw 
-=0 
8n2 

( 4.48) 

( 4.49) 

(4.50) 

on the boundary, B(r), of r . In (4.49) 6(x- Pk, y- qk) is the Dirac delta 
function concentrated at the point (Pk , qk) in r and fk is a control. 

It was shown in [9], that no matter where the points {(pk, qk)} are placed 
there is no system of finite controls, {/k}, 1 $ k $ m, such that ( 4.49)- ( 4.50) is 
either approximately controllable or weakly stabilizable. However, despite the 
negative result, Theorem 4.4 is still applicable in obtaining the spectral points 
of a quadratic cost problem of the form ( 4. 7)- ( 4.8). 

To see this observe that (4.49)-(4.50) can be translated into the form (4.7) 
(see e.g. [9] , in particular the derivation of Equation (2.25)) , where H = Rm. 

For purposes of this example let us assume H = R. In this case the resulting 

system is described by the infinite-dimensional system 

(4.51) 

n, m= 1, 2, ···,where for each m, n 

bmn = 2(sin mp11")(sin nq11"), 

0 < p < 1, 0 < q < 1, fixed. Clearly bmn :f 0 for all (m, n). 

We can rewrite (4.51) in the first order form as the infinite set of equations 
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Xmn = -Ymn 
Ymn = -(m2 + n 2

)21T
4 Xmn + bmnf(t) 

(4.52) 

m, n ~ 1. The Laplace transform, (M- a)-1 /3, for this system is the bounded 
operator on [2 x [2 whose components are 

(4.53) 

m,n ~ 1. 
An· entire function q which satisfies Theorem 4.4 for the system ( 4.53) is 

easily seen to be given by 

-~'-

q(A) = 1-e-.. 
A 

(4.54) 

In fact the inverse Laplace transform of (M- a)- 1f3q(A) for this example is the 

vector on /2 x /2 whose components satisfy for m, n ;::: 1 

and 

( 
Xmn(t) ) = ( 
Ymn(t) 

1-coe(m~+n2?,..2 t 
(m0+n3)3,..• 

sin(m~+n~t,..~t 
(m~+n~) ,... 

( 
Xmn(t) ) = ( 0 ) 
Ymn(t) 0 

2 
if t > -. 

-1!' 

If we choose the quadratic cost function 

0 <t < ~ 
- - 1T 

(4.55) 

(4.56) 

(4.57) 

then, on the basis of Example 4.2, the spectrum of the resulting LQR problem 
is given by the solution of 

1 A2 "" b;,n ReA< 0. - L:_ (A2 + (m2 + n2)2~]2' 
m,n-1 

(4.58) 

Clearly since bmn '# 0 for some m and n it follows that ( 4.58) can have at least 

one solution with Re A < 0. Hence even though a system is neither approx

imately controllable nor weakly stabilizable the spectrum of a corresponding 
LQR problem need not be empty. For example if the right side of ( 4.58) has 
a value T > 1 when A = - 1, then clearly (4.58) has at least one solution with 
ReA< 0. 
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Appendix A. 

Using the methods in [7), p. 64, it is easy to show that 

tanh .A _ 
2 
~ 1 ) 

A - LJ _A2 + (mr + !:)2 · (A.1 
n=O 2 

Thus 

( 
tanh A)' = A sech

2 
A - tanh .A = _4.A ~ 1 (A.2) 

.A _A2 ~ [.A2 + (mr + ~)2]2' 

From which ( 4.43) follows. 
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