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The algorithm for finding an ordered sequence of discrete linear 
function values is presented.It is possible to start with any value.The 
applied method does not need much memory and is effective.The 
algorithm can be treated as useful tool in discrete optimisation. 

Introduction 

The problem of structure optimization while considering for instance its 
weight or cost and taking into account the selection of its elements from a given 
finite catalogue leads to a discrete problem with a linear objective function and 

nonlinear constraints. An effective method for solving discrete problems is the 
enumeration of the solution set [1), [2], [3). In most cases the full survey of 

the set of solutions has no practical value because the number of solutions is 
too large. Thus certain strategy for eliminating some solutions is necessary. 

A possible method [1) may consist in examining the solutions in such a way 
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that monotonicity of the values of the objective function is ensured. The first 
encountered solution satisfying the admissibility conditions is the solution of 
the problem. If we start our searching from the objective value corresponding 

to the continuous solution, we will be able to solve on Personal Computer even 

such problems for which the full enumeration method would be impossible to 

perform on large cort?-puters [2]. To achieve this we need a sufficiently effective 

algorithm for finding the aforementioned sequence of solutions. The algorithm 
presented in [1] is practically, except for very small problems, of no use because 
of its memory requirements and time consumption. Its essential weakness is the 
necessity to determine the whole sequence starting from the smallest value. The 
algorithms presented in this paper do not require to store intermediate solutions 
so they do not need much memory. They allow us to start with any value of the 
objective function. That means if we give any value we obtain these solutions 
(not necessary unique) for which the function takes its first value greater than 
the given one. The efficiency of such a method for finding solutions is implied 
by the fact that we browse some groups of solutions for which we can easily 
calculate the minimum of the corresponding function values. In practice in some 
cases the problems of structure optimization lead to problems in 0-1 variables. 
Therefore in this paper we describe separately the algorithm for 0-1 variables 
and for variables from a certain catalogue, although main assumptions of both 
algorithms are similar. 

I. 0-1 variables 

1 Problem statement 

Define a function: 

f(x) = 2:~1 c,x, 
x,E{0, 1} c,ER i = 1,· · ·,N. 

(1) 

Assume, that coefficients are orderd and distinct i.e. 

C;-:/; Cj i-:/; j. 
c, < Ci+l i = 1, ... ) N -1. 

(2) 

The case of equal coefficients, see 2e. 
Let us state the following problem : 
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Problem 1. Let a real number w E R be given. Find all the vectors i 

satisfying the following conditions: 

(f(i) > w) 1\ 1\ (f(x) ~ w V f(x) ~ /(i)) (3) 
X;tX 

This problem is equivalent to finding all the points, for which the function 
(1) takes the smallest possible value exceeding the number w fixed before. 

2 An algorithm to find the numerical solution 
for the problem 1 

a. A model and its certain properties 
The function (1) is defined in 2N different points. These points can be 

assigned to the vertices of a suitable graph which has a tree structure. 
The graph construction and this assignment enable us to estimate the mini

mal and maximal values of the function corresponding to some groups of points 
and thus also to vertices. This property will be essentially used in the algorithm. 

The tree corresponding to the problem 1 is constructed recursively in the 
following manner: 

1. Choose the root and assign to it an index equal to 0. 

2. The vertex with the index i is the parent of the vertices with the indices 
i + 1, i + 2, · · · , N. The vertex with the index N has no children, it is a 
leaf. 

3. If the index of a child is equal to i then weight of the edge between it and 
the parent is equal to Ci. 

An example of such a tree for N = 5 is shown in Fig. 1. 

The set of graph vertices can be divided into subsets called layers, according 
to the following rule: 

to the i- th layer belong all the vertices which can be reached from the root in 
i steps. 

From the construction of the tree follows, that there are e~actly N + 1layers 
namely 0, 1, · · · , N. If a vertex lies in the L-th layer then a path from the root 
to this vertex passes through exactly L vertices including that of destination. 
To every vertex kL of any layer with the number L we can assign a unique 
sequence of indices of vertices lying on the unique path from the root to I:L. 
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c, 
5 

Figure 1 

Using ( 4) we can assign to every vertex a unique vector: 

XkL _ [.,.kL ... zkL]T 
- ""1 • • N 

with the coordinates: 

x:L= rE )1 ,···.JL 
{ 

r { ·k£ •KL} 

0 otherwise 

r= l,· .. ,N. 

Z . IWANOW 

Layer 

0 

1 

2 

3 

5 

(4) 

(5) 

(6) 

Using (6) we can assign to every vertex a unique value of the function (1), 
namely f(xkL ). 

This value is also equal to the length of the path from the root to this vertex. 

From (4)- (6) follows that a vector assigned to any vertex from the L-th layer 

has exactly L components equal to 1, the remaining equal to 0. From the manner 
in which the graph has been constructed one can inductively prove that in the 

L- th layer there is exactly (Z) vertices. Otherwise one can say that there are 
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as many vertices in this layer as different vectors (5) with exactly L coordinates 

equal to 1. From the equality '2:~0 (i) = 2N we deduce that the vertices of 
the constructed graph represent all the points belonging to the domain of the 

function (1). The assignment of the sequence of indices ( 4) to a vertex allows 
us to order lexicographicaly vertices of a layer. Let us consider two different 

vertices of the same layer L with their corresponding sequences 

(7) 

Define: 

n := min (ilifL # jfL) (8) 

Let us assume that this vertex is earlier which has smaller index with the number 
n, 1.e. 

j~L < j~L ==> kL -< IL 
j~L < j~L ==> h -<( kL 

(9) 

The above ordering implies that the first vertex in the layer L is 1£ with the 
sequence of indices: 

1,2, ... ,L (10) 

At the same time the value of the function (1) which corresponds to this vertex 
is the smallest one in the layer L. It is implied from the construction of the 

graph condition 2 and by (10), (6). Every vertex later than (10) must have one 
of the indices greater than (10). All the next indices have to be also greater 

than the corresponding indices from (10). Since the coefficients Cj, according to 
(2), form an increasing sequence, the value of the function (1) corresponding to 
the vertex (10) is the smallest value corresponding to the vertices in this layer. 
The same considerations imply that the last vertex in the layer L > 0 is the 
vertex whose sequence of indices is: 

N-L+1,···,N-l,N (11) 

The value of the function (1) corresponding to this vertex is the greatest of all 
the values assigned to the vertices of the layer L. 

From (10) and ( 4)-(6) vve get the following properties of the sequence of the 
values of the function ( 1) assigned to the first vertex in a layer: 

1. if ci > 0 (j = 1, · · ·, N) -then this is an increasing sequence. 
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2. if Cj < 0 (j = 1, ... ,i), Cj > 0 (j = i + 1, · · ·, N) then the values cor
responding to the layers 1, · · ·, i form a decreasing sequence, while these 
corresponding to the layers i + 1, · · ·, N -an increasing sequence. 

Similarly, the sequence of the values of the function (1) assigned to the last 
vertices in the layer, have the following properties: 

1. if ci > 0 <f= 1, · · · , N)- then this is an increasing sequence. 

2. if c; < 0 (j = 1, · · ·, i), Cj > 0 (j = i + 1, · · ·, N) then the values cor
responding to the first (N - i) layers form an increasing sequence, while 
these corresponding to the layers N- 'l + 1, · · ·, N a decreasing sequence. 

Let us take any vertex from the layer L1 which is earlier than the layer L, that 
is 

(12) 

and a sequence corresponding to this vertex: 

.mLl .mLl 
Jt , · · ·,JLl (13) 

By the graph construction principle 2. and by the definition of the order (9), 
this vertex has its descendants in the layer L if 

(14) 

By the order rules (9) in the layer the earliest descendant is the vertex whose 
corresponding sequence of indices is: 

(15) 

while the latest one: 

(16) 

The first and the last vertices in a layer are special cases of the earliest and 

the latest descendant of the root (L1 = 0) in the layer L. The same reason 
as for the first vertex in a layer leads us to the following conclusion : let v 1 
be the vertex with the index sequence (15) and v2 - with the index sequence 
(16). Then vl corresponds to the smallest and v2 to the greatest value of the 
function (1) among the values of all the descendants of the vertex (13) in the 

layer L. If the subsequent vertices mL1, mL1 + 1, · · · of the layer L1 have their 
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descendants in L, then we get the following increasing sequences of values: the 
sequence corresponding to the earliest and the sequence corresponding to the 

last descendants of the subsequent vertices. 

This property is substantial for the enumeration of vertices in a given layer. 

The properties we just described are essentially used in the algorithm. They 

allow us to treat and to examine the whole groups of vertices in the layer L·as 

descendants of the vertex belonging to the previous layer. 

The algorithm for finding the desired points consists of three main parts: 

1. - determining the layer from which we start our search 

2. - determining the first vertex in the layer for which the corresponding 
function value is greater than w. 

3. - examining the subsequent vertices in the layer in order to find ones for 

which the excession of the value w is less than in the found vertex - then 
the modification of the vertex proceeds - or in order to find and to include 
the equivalent vertices. 

The first two steps which are not time consuming, allow us to exclude some 
groups of vertices whose number is in certain cases quite considerable. Whereas 
the search in step 3 is performed in groups and there is a stopping criterion 
for it, so we do not need to continue the search process until the set of vertices 
becomes empty. Hence the reduced time consumption of the algorithm. On the 
other hand the storage requirements are determined by the number of equivalent 
vertices which should be kept in the memory. For the search itself we need 

actually to store only the sequence (4) defining the path to the first vertex of 
the group examined subsequently. 

b. A layer with which we begin our search 

The determination of the layer with which we begin our search and the 
strategy of the order of the search of the further layers depend on the specifics 
of a given problem. 

If optimization concerns the problem in mechanics which has been modeled 
as a problem with 0 - 1 variables then usually the number n of variables equal 
to 1 is known, e.g. in the optimization of bar structures n is the number of bars. 
In this case it suffices to examine the level with the number equal to n. 
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In the more general case the suitable layer can be found whiie considering 

the properties of the smallest and the greatest values assigned to vertices in the 

respective layers described in part a. 

c. An algorithm for finding the first vertex in the determined layer with the 

function value exceeding a given value. 

Let us fix a layer number L and a real number w. Let us state the following 

problem: find the earliest vertex with respect to the order (9) for which the 

corresponding value of the function (1) is greater than w. 

After finding such a vertex we can exclude from our search process all the 

earlier vertices. In certain of the cases it can substantially reduce the number 

of the remaining vertices. 

In the construction of the algorithm the properties (12)- (16) have been used. 

The algorithm has the folowing form: 

fix : w- a given real number. We are looking for a vertex with the smallest 

possible value greater than w. 

L - the number of the layer in which we are looking for this vertex. 

sp(i) = L:~=l Cj i = 1, .. N sp(i)- the minimal value in the i-th 

layer 

sk(i)={ Ef==icii=l,···,N 
0 i = N+l 

sk(i) - the maximal value in the layer 
N- i+ 1 or the maximal possible con

tribution of ( N - i + 1) layers to the 
length of the path. 

if ( w 2:: sp( L)) go to 2 if the smallest value in the layer L is greater 

than w then the vertex we are looking for is 

the first vertex in L, otherwise proceed to the 

proper search. 

pw( i) = i ( i = 1, · · · , L) determine the path to the vertex we are look
ing for and go to the end. 

al = sp(L) 
go to 8 

2 il= N-L+l 
if(w < sk(il)) go to 3 

stop 

if w 2:: maximal value in the layer L 
then the problem has no solution. 
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3 i= l 

al=O.O 

101 i2=i1 

i1=i1+1 

w1=w-a1-sk(i1) 

the counter - it denotes at the same time the 
number of the layer to which belongs the sub
sequent just determining vertex on the path 
leading to the desired vertex. 
al -the contribution in the length of the path 

to the desired vertex of the subpath alredy 
found. After the end of the procedure it be

comes a value corresponding to the desired 
vertex. 

the maximal admissible number of the index 
of a vertex in the i-th layer (with respect to 

the layer L; see (14) 
- the same for the i + 1-layer 
a1 - the length of the path from the root 
to the last already determined vertex on the 

path to the desired vertex 
sk(i1) - the maximal possible length of a path 
from vertices of the i-th and L-th layer. 
wl- the minimal length of an edge between 
( i- 1 )-th and i-th layer needed to ensure that 
the path in the L-th layer could achieve the 
value w. 

nr = min file; > w1] the choice of an edge with the index nr, that 
is with the length Cnr. It ensures that the 
path (with the subpath already determined) 
ending in the layer L exceeds the length w. 

From the definition of w1 it follows that no 
path (ending in the layer L) can be of the 
length greater than w, when the index in the 
i-th layer is less than nr. 

if( nr < i2) go to 4 if the index nr is smaller than the maximum 

go to 5 admissible one in the i-th layer with respect 
to the L-th, we proceed to the further part 

of the algorithm.If this index is equal to that 
maximum one, the task is finished (go to 5) 
because the remaining indices of the path 
ending in the layer L have to be also maxi
mal according to the layers (c£.(16)). 
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Index nr can not be greater than the max
imum admissible one because otherwise it 
would mean that the problem has no so
lution. This possibility has been excluded 
earlier 

4 if ( i < 2) go. to 9 according to the construction of the graph 

the index must be greater than the pre

ceding one. Thus if nr is less or equal 
if (nr > pw(i- 1)) go to 9 

nr = pw( i - 1) + 1 

9 pw(i)=nr 

to the previous index (for i - 1) then 

to the variable nr an adequate value is 
assigned.Checking this inequality makes 

sense for i 2: 2. 

in the matrix pw the indices of the subsequent ver
tices on the path leading to a vertex in the L-th layer 

with the desired property are stored. 
a1 = al + Cnr actualize the value al. 

i=i+l 
if(i ~ L) go to 101 if not all the layers up to the desired one has been 

examined, repeat the loop. 
stop otherwise the path has been found. 

5 al = a1 + sk(i2) 
do 102 i3 = i,L 
pw(i3) = i2 

102 i2 = i2 + 1 
8 stop. 

d. An algorithm for examining the vertices of the given layer 
After finding the first vertex in the given layer to which a value of the 

function (1) greater than the given value has been assigned, we have to examine 
remaining vertices in the layer in order to find out if there is a vertex with 

the value greater than the given value but smaller than the value assigned to 
the vertex just found. Since the desired vertex may not be uniquely defined, 
all the equivalent vertices should also be found. The search algorithm consists 

in visiting some groups of vertices, descendants of a certain vertex, which will 
be changed during the performance of the algorithm. There is a manner in 
which we can estimate whether a vertex which is the prospective one from the 
point of view of our search criterion belongs to such a group. In this case we 
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examine a group of descendants of an immediate descendant of the vertex whose 
descendants have been examined before and which is the earliest one in its layer. 

If there is no such a prospective vertex in a given group, we examine the next 

group of vertices - descendants of a vertex defined anew with respect to the 

previous group. The algorithm will be presented similarly to that in c. 

Input data 

w 

L 

the assumed real number. We are looking for a vertex 
with the smallest possible value greater than w. 

the number of the examined layer. 
pw( i) ( i = 1, · · · , L) the path to the earliest vertex in the layer L for which 

the value w is exceeded - the standard vertex. 
a1 

lp=1 

i4 < L 

1 if (i4 < 1) stop 

il=pw(i4)+1 

the value assigned to this vertex. 
the counter of equivalent vertices. 

the number of the greatest such index that pw(i4) 
is less than the maximum admissible value for this 
index i.e. the vertex with the path pw( 1), · · ·, pw( i4), 
pw( i4 + 1) + 1 does not exist or it has no descendants 

in the layer L, while pw(1),pw(i4- l),pw(i4) + 1 
does exist and has its descendants in the layer L 

(cf.(12)-(15)). If pw(L) is less than the maximum 
admissible value we set i4 := L - 1. In practice i4 
is being determined in the procedure described in c., 
so to say parallelly to the determination of a desired 
vertex. For the clarity of the description we have 
skipped this problem there. 
if i4 = 0, then it means that all the vertices in the 
layer have been examined (it follows from the further 
description of the algorithm) 

the group of the descendants of the vertex pw(1), 
· · · ,pw(i4 - 1), i1 in the layer L is the group of 

vertices which has been examined subsequently. All 
the vertices earlier than the vertices of this group 
have been examined in the procedure described in 
c or during the subsequent iterations of the current 
procedure. 
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3 

5 

6 
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i4-1 L 

the smallest value in the ex

amined group of vertices (it 
corresponds to the earliest of 
them (15)) 

r = L Cpw(i) + Ci1 + L Ci1+(i-i4) 
i=l i=i4+1 

if ( r > w) go to 3 

go to 4 

if(r < a1) go to 5 
if (r = a1) go to 6 
if (r > a1) go to 7 

lp = 1 

a1=r 
go to 8 
lp=lp+1 

if the smallest value in the group of vertices is 

greater than w , this and a1 must be compared. 
If r = al then the equivalent vertex has been 
found and it has to be included into the list. If 
r < a1 then we have found a vertex with the value 
closer to w than the one with the corresponding 

value a1, so the list is initialized anew. If r > al 
- proceed to the examination of the next group. 
if r ~ w then find in the current group a vertex 
with the value greater than w. 
compare rand al. 

the newly found vertex is better than the pre
vious one. The counter of vertices set to 1. 

change of a pattern value 

proceed to the recording of the path 
the equivalent vertex has been found 

8 pw(i4)=il in the matrix pw a path to the earliest de-
pw(i)=pw(i-1)+1 scendant of the vertex defined by the path 
fori= i4 + 1, · · ·, L pw(1), · · · ,pw(i4 - 1), i1 (layer i4) in the L-th 

layer. 
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7 

i4=i4-1 

go to 9 
i4=i4-1 
go to 1 

4 pw(i4)=i1 
i4 

r = Li=l Cpw(i) 

i1=N-L+i4+1 

i=i4+1 

101 i2=i1 
i1=i1+1 

w1=w-r-sk(i1) 

nr = min (j l Cj > wl] 

if (nr < i2) go to 14 

go to 15 

14 if (nr > pw(i-1)) 
go to 19 

to all the vertices from the layer i4 which are 
the descendants of the vertex with the path 

pw(1) 1 • • • 1 pw(i4 - 1) correspond values greater 
than r. So we have to examine the group of 

descendants of the vertex in the layer i4 - 11 

which is the next to the vertex with the path 

pw(1) 1 • • • ,pw(i4- 1), in the layer L. 
proceed to the recording 
see the previous comment. 

in the group of the descendents of the vertex from 

the layer i4 with the path pw( 1), · · · 1 pw( i4 - 1) 1 

i1 we are looking for the first vertex whose cor
responding value is greater than w. The search 

algorithm is similar to the procedure described in 
part c. 
the maximum admissible value of the (i4 + 1)-th 
element of the path which ends at the layer L 
with the element of the value N. 

we store the maximum admissible value of the 
index in the layers i and i + 1. 

the minimal length of an edge between (i- 1)-th 
and i-th layer needed to ensure that the path in 
the L-th layer could achieve the value w. 
the smallest value of the index ensuring that wl 
is exceeded. 

if the index is equal to the maximum admissible 

then the remaining indices should attain the given 

values according to (16). 

the value of the subsequent index must be 
greater than that of the previous one 
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19 
nr=pw(i-1)+1 

r=r+Cnr 

pw(i) = nr 

i=i+1 

Z.lWANOW 

the subsequent vertex of the path to the vertex with 
the demanded property has been found. Modify the 

length of the subpath. 

store the index of the vertex found. 

if (i ~ L) go to 101 if still some of the L layers have not been used, 
proceed to the next layer. 

i4=L-1 
go to 16 

actualize the value of the parameter i4. 
the vertex is fixed, go to the comparison with 
the patern value. 

15 i4=i-1 actualize the value of the parameter i4. 

pw(i)=i2 
pw(j)=pw(j-1)+1; 
j = i + 1, ... I L 

r=r+sk(i2) 

the subsequent vertices of the path to the ver

tex with the demanded property (in the case 
when this is the latest descendant of the ver
tex pw(1), · · · ,pw(i -1)), and the length of this 
path are stored. 

16 if ( r > a1) go to 1 
if (r=a1) go to 21 

if the value corresponding to the found vertex is 
greater than the pattern value , we skip it, pro
ceeding to the next branch. If this value is equal 

lp =1 
al=r 
go to 9 

to the pattern, we include the vertex into the 
list as a vertex equivalent to the pattern vertex. 
If this value is less than the patern we abandon 
the list of the equivalent vertices and the newly 
found vertex becomes the pattern vertex. 

the counter of equivalent vertices is set to 1. 

the new pattern value is fixed. 

proceed to the recording of the new pattern 
vertex. 

21 lp=lp+1 if the vertex we found is equivalent to the pat-

9 

tern, increase the counter of equivalent vertices 
by 1 and add it to the list. 

record in the suitable set the path to the found 
vertex on the position determined by lp. 

go to 1 proceed to the search of subsequent branches. 

e. An algorithm to determine vertices equivalent to the fixed one in the case of 
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equal coefficients. 

If in the sequence of indices determining the vertex we change one of the 

indices and a.t the same time the coefficients corresponding to the old index and 

to the new one are equal then the same value of the function (1) corresponds 

to the vertex determined by the new sequence and to the initial one. If we 

substitute a new index , we have to take into account the principles of the 

construction of the graph given in 2a., especially the second condition. The 

application of this fact allows us to skip certain groups of vertices while searching 

in the algorithm presented in d. The algorithm described below enables us to 

determine equivalent vertices by the suitable change of indices. 

pw( i), i = 1, · · · , L the defined sequence of indices describing a vertex 
in the layer L. For this vertex we have to determine 

equivalent vertices taking into account the equality 

of coefficients. 

1 

pw 1 (i)=pw(i) store pw. 

pw2(i) = 

= 

i=L 

{ 
N + 1 ifcpw(i) = Cpw(i)+l = · · · = CN 
min[j l c; > Cpw(i)] 

1, · · · ,L 

the ranges of the variation of the respective indices are 

stored. They ensure that the respective coefficients 

Cj are constant. 

if (pw(L)+1 < pw2(L)) go to 4 

go to 3 

the loop beginning with the control 

variable i equal to L is beeing per

formed. For every change of an in

dex on any position, all the permit

ted changes of indices on the subse

quent position are performed. i is the 

pointer to the position of the vector 

pw, where the equivalent indices are 
substituted. If an index on the i-th 

position has attained its upper limit, 

we proceed to the previous position. 
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4 pw(L )=pw(L )+ 1 
store pw 

pw defines a path to the vertex equivalent to 

the initial one. We store (or we use it in an
other way) this path and we proceed to the 

further execution of the loop for the control 

variable equal to L. 

go to 1 

3 i=i-1 we proceed to the previous position. 

if(i< 1) go to 7 if i = 0 then the set of all the positions have 
been exhausted. 

if (pw(i)+1 < pw2(i)) go to 6 
go to 3 

6 pw(i)= pw(i)+ 1 

do 101 i5=i+1,L 
i2=pw1(i5) 
if(i2 > pw(i5-1)) goto 9 
i2=pw(i5-1 )+ 1 
if(i2 < pw2(i5)) goto 9 
go to 3 

9 pw(i5)=i2 
101 continue 

i=L 
store pw 

go to 1 

7 stop. 

f. An algorithm to solve the problem!. 

we check whether the loop on the i-th 

position is exhausted. If it is the case, 
proceed to the earlier position, if not -
proceed to the substitution on the later 
positions. 
on the positions i + 1 to L the indices 
from the initial (pattern) path are sub
stituted, they are stored in pwl. The 
condition 2. of the construction of 
the graph is checked. We check also 
whether the admissible value of a.n in
dex on a given position (pw2(i5))is ex
ceeded. If it is unable to fulfil the re
spective conditions, we proceed to the 
position i- 1. 

proceed to the execution of the loop 
for the control variable equal to L. 

Using the algorithm described above, for a given value w, it is possible to 
find a sequence of solutions such that its corresponding sequence of values of 
function (1) is nondecreasing. The algorithm has the following form: 
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1. define w. If w is greater than or equal to the maximum admissible value 
then the problem has no solutions. Otherwise go to 2. 

2. define layers in which the search will be performed (cf. part b.) 

3. define as a pattern value Ww maximal value of the function (1). 

4. To each of the layers defined in 2 do 4.1- 4.2. 

4.1 find the earliest vertex in the layer, whose corresponding value is 
greater than w, denote it w111 (the algorithm from part c.). 

If w111 < W 111 modify the pattern vertex and the pattern value and skip 
the list of the equivalent vertices. 

If Ui111 = W 111 add the vertex to the list of the equivalent vertices. 

If W111 > W 111 go to 4.2. 

4.2 visit the remaining vertices in the layer according to the algorithm 
described in part d. During this algorithm the pattern vertex and 
the pattern value w 111 are modified. 

5. for every vertex from the list of the found equivalent vertices with the same 
value W 111 , find all equivalent vertices taking into account the equality of 
the coefficients. 

6. set w:::: W 111 , if subsequent elements of the sequence are needed ,go to 1. 

11. Any bounded variables. 

3 Problem statement 

Define the function: 

!l(x) 
X= [:z:l, · · ·, XN]T 

Xi E {ci, · · · ,c}v) 
Ci. ER· •- 1 N· 1 ) • - ,· .. , ) 

i:::: 1,· .. ,N 
j:::: 1, .. · ,Ni 

(17) 

Assume, without loss of generality, tha,t c} are ordered for the corresponding 
variables and distinct. 
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i=l, .. ·,N; j = 1,· .. ,Ni -1 (18) 

The case when the values are equal needs a simple trick: we "stick the branches 
together" . It will be described separately. 

For such a function an algorithm solving the problem 1 from the part 1. will 

be described. 

4 An algorithm for the numerical solution of 
the problem with any variables 

a. A model. 
Consider a graph with the tree structure (Fig. 2) constructed recursively as 

follows: 

1. Choose the root and assign to it a pair of indices (0,0). 

2. A vertex with (i,j) is a parent of the vertices with the indices (i + 1,k) 

for k = 1, · · · , Ni+t· The vertex with the first index equal to N has no 
children. 

3. If the indices of a vertex which is a child are equal to ( i, j) then the weight 
of the only edge between this child and its parent node is equal to c;. 

The vertices of the graph can be devided into layers as in the previous case. 
However the interpretation of this division is different. Namely from the point 
of view of the current problem which is the general one, all the vertices of the 
previously constructed graph would belong to the layer N. 

The cardinality of this layer is equal to Nt * N2 * · · · * N N. To every vertex 
a unique sequence of second indices of the vertices on the unique path from 
the root to this vertex can be assigned. We can apply (4)-(5) and assign to 

every vertex the value ft ( xk L) = 'Ef=t c~~ L . The vertices in each layer can be 

ordered using (7)-(8). According to this order, the first vertex in the layer Lis 
the vertex with the sequence of indices: 

~ (19) 

L times 

and the last one: 

(20) 
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Layer 

0 

2 

3 

To the first vertex corresponds the smallest value of the function ft in the layer 
L and to the second vertex - the greatest one. 

Let us take any vertex from the layer L 1 - this layer ie earlier than the layer 
L. 

Let the following sequence of indices corresponds to this vertex: 

(21) 

The earliest descendant of this vertex in L is: 

it, .. ·,hll 1,· .. ,1 
. -...._.-
L- L1 times 

(22) 

and the last one; 

(23) 

From the construction of the graph and from the ordering of the variables (18) 
it follows that to the vertex (22) corresponds the smallest value of the function 
ft and to the vertex (23) the greatest one among the values assigned to the 
descendants of (21) in the layer L. 
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The relations described in this part allowed us to construct the algorithm 
for determining succesive values of the function (17). 

b. An algorithm for finding the first vertex in the layer N with a value of the 

function (17) exceeding the given value 

For fixed w we have to find in the layer N the first vertex, with respect to 
the defined order, to which a value greater than w is assigned. 

i= N 
i=1,· .. ,N-1 

the given auxilary values. 

sp(i) = { 0 N . 

Lj=i+l ci 
i=N 

i = 1, · · ·, N -1. 

ips=O 

isw=O 

1 ips=ips+1 

the control variable of the loop - the number of the layer 
of the currently appointed vertex (its first index) 

the length of the subpath from the root to the vertex 
preceding the vertex found. 
beginning of the loop; we determine ips-th vertex on the 
p·ath to the desired vertex. 

ia=w-isw-sk(ips) isw- the length of the subpath found. 
sk{ips) - the maximum possible length of the subpath 
from the layer ips to the layer N. 

ia - the minimum value which must be exceeded by 
the weight of an edge to the vertex we are looking for. 
It guarantees that the path which ends in the layer N , 
attains the length greater than w. 

i = min [ilct > ia] the minimum index of an edge joining the layers (ips-
1)-th and ips-th with the weight greater than ia (cf. the 
comment concerning ia). The desired vertex in the layer 
ips has indices ( ips, i) 
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isw = isw + c!P' 
pw(ips)=i 

the modified length of the subpath found. 
we store the index of the succesive vertex of 
the path we are looking for. 

if(ips < N) go to 1 if the layer N has not yet been reached, pro-

stop 

ceed to the search for the next vertex. 

pw( ·) maintains a sequence of indices which 

identifies the vertex with the desired property. 

c. An algorithm for searching the layer N 

After finding the first vertex with the value greater than w, we have to 
perform a survey of the remaining vertices in order to find the vertices equivalent 
to this vertex or better than this one, i.e. with the smaller value. Searching 
for the first vertex is useful because it excludes from the survey a certain set of 
vertices and is not time-consuming. 

The search algorithm is analogous to the case of 0- 1 variables with regard 
to the differences' in the construction of the adequate graphs. 

pw(i) i = 1, · · ·, N the path to the pattern vertex. 

isw > w the value corresponding to this vertex. 
sp(i), sk(i) see part b. 
lp=l the counter of vertices equivalent to the pattern vertex (pat

tern vertex included). 
11 l=N 

3 l=l-1 

the movable pointer pointing to the layer of which the ver
tex, whose descendants in the layer N are being examined 
in the actual loop, is a member. 
after arriving at this place for the first time we get a vertex 
of the layer N and its assigned value. We have to answer 
the following question: is there, among the descendants of 
some vertices of the layer N- 1, a vertex better than the 
pattern. 
Afterwards we have to proceed to the examination of the 
descendants of some vertices from the previous layer. The 
explanatio~ of the details we can get by the analysis of the 
steps from which the procedure jumps to the label 3. 
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if(l < 1) stop 

i=pw(l)+1 

Z.IWANOW 

all the vertices in the layer N have been 

examined. 

the index of the first neigh hour, next to the 
vertex identified by the path pw( 1), · · · , pw( I), 
in the current layer. 

if( i > N1 ) go to 3 if there is no such a neighbour, proceed to the 
previous layer. 

pw(l)=i 

. 1 - "l-l _j I th I . d t h t tsw - L-j=l C"pw(j) + c1 e va ue ass1gne o sue a ver ex. 

7 

il=iswl+sp(l) the value corresponding to the earliest descen
dant in the layer N of the aforementioned 
vertex. 

if (i1 > w) go to 6 if this value exceeds w, compare it with isw. If 

it is not greater than w find the first descen-

ips=l 
ips=ips+l 

ia=w-isw1-sk(ips) 

dant of the vertex determined above of the 
layer l in the layer N ·to which corresponds 
the value greater than w. Such a vertex must 
exist, it exists among the descendants of the 
vertex predeceasing the aforementioned vertex 
in the layer l (the pattern vertex). In the next 
part we look for such a vertex. 

similar to the part described in b. After its per
formance pw() maintains indices of the path to 
the desired vertex, iswl-its corresponding value. 

i = min [ilct' > ia] 

iswl = iswl +eta 
pw(ips)=i 
if (ips < N) go to 7 

if (iswl < isw) go to 9 the vertex better than the pattern one has 
been found. Its value is greater than w 
but less than that of the pattern vertex. 
Modify the pattern vertex. 
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if (iswl=isw) go to 10 a vertex equivalent to the pattern vertex has 
been found, store it, modify the value of I. 

if (isw1 > isw) go to 11 the vertex found is worse than the pattern. Its 
value is greater than w and also than isw. Ex
amine later vertices. 

6 if (i1 > isw) go to 3 if the earliest descendant, this one with the 

smallest value, is worse than the pattern one 
then there is no better vertex among the descen
dants of the next neighbour of the described 
vertex in the layer 1. Thus we will visit the 
descendants of the suitable vertex in the layer 

1- 1. 

pw(j)=1 j = 1 + 1, ... , N fix a path to the aforementioned earliest 

descendant of the current vertex. i1 -

if(il < isw) go to 18 

if(i1=isw) go to 15 

18 lp=O 
isw=isw1 
go to 15 

9 lp=O 
isw=isw1 

10 l=N 
15 lp=lp+1 

store pw(i) i = 1, ···,N. 

its corresponding value. 
if the found vertex is better than the 
pattern, modify the pattern. 
if it is equivalent, store it (label 15). 

go to 3 proceed to the further survey. 

d. The case when the admissible values of the elements of individual cataloques 

are equal 

We assumed until now that every variable can take different discrete values 
(18). It makes sense, from the practical point of view, to consider also the 
case of multiple values. Namely, in the case of structure optimization , if the 
variable represents the cross-section area of a bar, it may happen that to the 
same cross-section area correspond different parameters e.g. moment of inertia. 
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Assume that: 

Ci-ci _ -ci 
j - jll - .. . - jiA:j (24) 

Consider the function (17). Consider a given vertex in the layer N with the 

path: 

(25) 

Let its corresponding value be w. From (24) follows that the same value corre
sponds to all the vertices with the following paths defined by the loops: 

do 100 il=O, kJ
1 

do 100 i2=0, kJ, 

do 100 iN=O, k~ 

h = h +il 

iN =iN +iN 
100 continue. 

e. An algorithm to perform the problem 1 in the case of discrete variables 
Using the procedures described above, we can construct the following al

gorithm building the sequence of solutions whose corresponding values of the 
function (17) is nondecreasing: 

1. define w. If w is greater than or equal to the maximum value in the_ layer 
N 1 the problem has no solution. Otherwise go to 2. 

2. find the earliest of the vertices (the pattern) in the layer N with the value 
of the function (17) greater than w. Let us denote it by Ww - the algorithm 
from the part b. 

3. visit other vertices in the layer N- the algorithm from the part c. During 
this algorithm the pattern vertex and the value Ww are modified. 

4. for every vertex from the list of the found equivalent vertices with the 
same value Ww 1 find equivalent vertices taking into account the equalitis 
of certain values from the discrete catalogue. 

5. w = Ww; if the subsequent elements are needed, go to 1. 
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The example problem is a ten-member planar truss often presented by the 

authors discussing elastic structure optimization (Fig. 3). We consider the 

following case of this structure. Each of ten structural memebers can be se

lected separately. The structure is subjected to the displacement constraint 
u ~ 2in imposed on the vertical displacements of all nodes and stresses in all 

rods u ~ 2.5 * 104 lbfin2 . The catalogue of available sections contains ten 
following section areas [in2) [0.1, 0.5, 1.0, 2.0, 4.0, 7.0, 12.0, 19.0, 27.0, 36.0). 

The search was performed on PC XT. It has started with the value w equal 

to the continuous solution w = 5026.39(/b). The found discrete solution was 
equal to 5356.11[/b). The full survey of the set of solutions (10 10 cases) would 

be impossible to perform even on large computers. 
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