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In this paper mixed elements are applied to the optimal shape 
design of two dimensional elastic structures. The mixed finite ele
ment model is based on a eight node mixed isoparametric quadratic 
element, whose degrees of freedom are two displacements and three 
stresses, per node. The design objective is to minimize compliance 
of the structure subject to an area constraint . are calculated using 
formulae obtained by the variational method. The corresponding 
nonlinear programming problem is solved using the method of se
quential convex programming and the modified method of feasible 
directions, available in the commercial program ADS (Automated 
Design Synthesis). The formulation developed is applied to the op
timal shape design of two dimensional elasticity problems and the 



170 R.P. LEAL &nd C.A . MOTA SOARES 

advantages and disadvantages of the mixed elements are discussed 
with reference to applications. 

1. Introduction 

Shape optimal design differs from structural optimization with fixed smce 

the domain in which state equations are defined constitutes the unknown of the 

problem. Consequently, in shape optimal the representation of the boundary 

and the finite element model must be adequate as design proceeds. The use of 

Bezier curves and B-splines to define the design boundary in shape optimization 

is commonly used [1]-[2]. 

The regularity of the finite element mesh is important to obtain numerical 

solution of the problem with enough accuracy. The poor results in analysis 

implies bad results in sensitivity analysis, which is one of the essential ingredients 

to obtain a good optimization solution. Boundary element methods have been 

used to overcome this problem [3] since distortion in boundary is much smaller 

than the correspoding distortion of the domain. 

In a finite element design model, the necessary quality of the mesh, must be 

guaranteed by the use of an automatic adaptive mesh generator [2],[4] as design 

proceeds. 

It is well known that efficient shape optimization requires a good sensitivity 

analysis. Accurate sensitivity values provides a good relation between shape per

turbation and corresponding variations of the objective function and constraints. 

Sensitivity analysis can be calculated from analytic or numerical differentiation 

of finite element equations. These procedures are generally designated as discret 

methods and have been considered by Zienkiewicz and Campbell [5], Francavilla 

et al. [6] and Braibant and Fleury [7], among others. 

Alternatively the gradients can be obtained by analytical expressions for 

sensitivity of objective and constraint functions or from the explicit expressions 

of optimality conditions. Haug et al. [8], Dems and Mr6z [9] and Banichuk 

[10] have been developing this technique designated as continuum or variational 

method. 

In this paper, formulae obtained by the variational method are used to cal

culate sensitivities of objective and constraint functions of the optimiztion prob

lem. The design objective is to minimize compliance of the structure subjected 

to an area constraint. In this formulation values obtained on the boundary, 
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namely displacements and stresses are required. Consequently, the employment 

of displacement finite elements has been shown to be inefficient, since the results 

obtained on the boundary are not, generally, accurate enough. 

Mixed finite elements offer advantages over displacement finite elements, 

since in general the corresponding stresses are more accurate. Thus it is expected 

that mixed finite elements are more suitable to optimal design than displacement 

finite elements. 

Only recently the mixed finite element has been applied to the optimal de

sign of structures. The sensitivity analysis of beams and plates with static, 

dynamic and stability constraints, based on mixed formulations had been devel

oped by Leal and Mota Soares [11]-[12]. The theory has been applied to mini

mum weight design of plates, subject to constraints on displacements, stresses, 

natural frequences or buckling stresses [13] . Also, Rodrigues [9] developed a 

variational formulation for shape optimal design of a two-dimensional linear 

elastic structures, using four node, isoparametric mixed finite element based on 

the functional of Hu-Washizu to interpolate the stress, strain and displacement 

fields. 

The mixed finite element used in this paper, is the isoparametric quadratic 

element based on de Hellinger-Reissner's functional, with 8 nodes and 2 dis

placements and three stresses as degrees of freedom per node. The perturbation 

field on the boundary is interpolated with linear design elements. The mesh 

regularity of the finite element discretization is guaranteed by a mesh regener

ator. 

2. Mixed elements in hi-dimensional elasticity 

Mixed elements are based on the Hellinger-Reissner principle. For elasticity 

this functional is given by 

fn [!uii(ui,i + UJ,i)- U0(uiJ)- biui] dO. 
fr

1 
utiidr- frJui- ui)tidr ij=1,2 

(1) 

where n is the domain, rt is the with known forces, r u is the boundary with 

displacements and the superscript bar indicates the forces and displacements 

in the boundary, Xi are the global coordinates, Ui are displacements, O'ij are 
stresses, bi are body forces and ti are tractions on boundary. U0 is the comple

mentary energy density. Throughout this paper index notation and summation 
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convention is used; besides, comma denotes differentiation with respect to x, 

i.e., Uj,i = ouifox;. 
Assuming that the geometric boundary conditions are satisfied in r u 

(2) 

the Hellinger-Reissner functional (1) for isotropic and linear elastic materials 

can be written in matricial form: 

VR(u, 17) = L ( 17T L.u- ~17T Cl7- uTb) dO.- [uT tdf 

where 

u U1 U2 jT is th vector of displacements 

b b1 b2 jT is the vector of body forces 

t t1 t2 jT is the vector of tractions on boundary 

17 17u 1722 1712 jT is the vector of stresses 

[ a;~., 0 l D. ojox2 is a differential operator 

ojox2 Ojox1 

[ 
1 -V" 0 

l c _L -V* 1 0 
is the matrix of elastic 

E• properties of material 
0 0 2(1 +V*) 

with 

E"=E 

V" =V 

in plane stress and 

E*- E - 1-V2 

V .. - _lL_ 
- 1-V 

(3) 

(4) 

(5) 

in plane strain; E is Young's modulus and V is Poisson's ratio of the material. 

Representing displacement and stress fields by 

u=Nqe 

17 = L me 

(6) 

(7) 
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where qe and me are the displacement and stress degrees of freedom of the 
element and N and L are the shape function matrices, given by 

N N1 N2 Ns 
(8) 

L L1 L2 Ls 

with 

N; [ ~· 0 l = 
N; 

[ ~· 
0 0 l L; N; 0 
0 N; 

where N; are the corresponding element interpolation functions. 

Introducing (6) and (7) in the functional (3) gives 

VR =Le ( mf fn. LT .6.Nd0qe- ~mf fn. LTC L dOme 
-qT r NTb dO qT r NT t dr ) 

e Jn. e Jr. 
(9) 

or 

(10) 

where 

Ge = fn. LT C L dO is the element flexibility matrix 

He = fn. LT .6. N dO is the element flexibility /stiffness matrix 

Pve = fn. NT b dO is the element vector of body forces 
(11) 

Pse =fr. NT t df is the element vector of boundary forces 

Representing by fe the element force vector, the equation (10) can be written 

as 

(12) 

The stationary condition of the Reissner's functional (12) leads to an equation 

at element level: 

(13) 

Assembling in the usual way equations (13) for all elements, we obtain the global 

equation for hi-dimensional elasticity 
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7 

e -nodes 

x.y- global coordinates 

~,T)- local coordinates 

Ui ,vi -nodal displacements 

0 xx. 'o·yy· 'crxy·- nodal stresses 
1 1 1 

Figure 1. - Isoparametric quadratic mixed element 

(14) 

where m is the global vector of stress degrees of freedom and q is the global 

vector of displacements degrees of freedom. 
The mixed element used in this paper has 8 nodes and 2 displacements and 

3 stresses degrees of freedom per node. This mixed isoparametric quadratic 
element is represented in Fig. 1. 

The corresponding element interpolation functions are: 

1 
Ni = 4(1+ eo) (1 + 77o) (eo+ 77o- 1) 

for the nodes 1,3,5 and 7, 

1 2 
Ni = 2(1 - e ) (1 + 77o) 

for the nodes 4 and 8, 

Ni = ~(1 +eo) (1- 772 ) 

for the nodes 2 and 6. 
In these expressions we have 

(15) 

(16) 

(17) 
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x2 r2 
u2 r 0 - rigidly fi xed boundary 

eo= e. e 
T}o = TJs 1J 

r 1 - loaded boundary 

r 2 - design boundary 

0 - domain 

u 1 - displacements 

xi- coor dinates 

Figure 2. - Bi-dimensional elastic structure 

where ei and 7Ji are the local coordinates or the node i. 

(18) 

The element matrices are calculated substituting equations (8 and 15-18) 

into equations(ll). The matrices are integrated numerically using 3*3 and 3 
Gaussian points. 

3. Shape optimal design based on minimum 

compliance 

In the optimization of elastic structures, the compliance, which is the work 

done by external force, has been used to measure the global stiffness of the 

structures. 

For the two dimensional linear elastic structure described in Fig. 2, the 
objective is to determine the domain 0 such that the compliance is minimized. 
ro is the boundary with known displacements, rl is the boundary with known 
tractions and r 2 is the design boundary. We assume that we have neither body 
forces nor boundary tractions on r2 and that ro is held rigidly fixed (ui = 0). 

The problem is defined as the minimization of the compliance 
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(19) 

subject to the area constraint 

W1 =in dO-A:::; 0 (20) 

where A is the pre-defined area. The minimization problem is also subject to 

the condition for equilibrium which is defined by the stationarity condition of 

Reissner's functional (1. 
The solution for this nonlinear programming problem (19-20) needs the first 

variation of objective and constraint functionals. Using the general formulation 

of Haug et al. [8], based on representing the modifications in design by a ve

locity field and applying the material derivative concept, the first variation of 

compliance (19), for unloaded boundaries and without body forces, is 

8"Wo = - { UVn df 
lr, (21) 

where U is the strain energy density and Vn is the normal perturbation field of 

the domain, defined on f 2 . The first variation of the area constraint (20) is 

8W1 = { Vn df 
lr, (22) 

The first variation ofthe compliance (21) can be efficiently obtained with mixed 

finite elements. Since mixed elements can provide better boundary results, we 

may expect more accurate sensitivity results than obtained by displacement 

finite elements. 

The specific strain energy at one boundary point of an unloaded boundary 

is given by 

(23) 

where (]'33 is the tangential stress, which is the first invariant ofthe stress tensor 

(24) 

The mixed element used is an isoparametric eight node mixed element with two 

displacement and three stress degrees of freedom per node. Thus, the variation 

of tangential stress on the element side is quadratic. The boundary geometry 

is described by linear design elements. The nodes of each design element are 

coincident with the extreme nodes of one side of the mixed element, as shown 
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nodal point: of design 
element e 

"'---+-..0: 

0 

177 

nodal points of mixed 

Figure 3. -Design variables and its correlation with mixed finite element mesh 

in Fig. 3. The design variables are defined as the norm of the position vector of 
the interpolation nodes with respect to a pre-defined origin 0. 

The tangential stress u, on the side of mixed element m, can be described 
by the quadratic shape functions Li as 

(25) 

where u.,i is the tangential stress of each nodal point and the shape functions 

Li are: 

L1(~) = i<e -~) 
L2(~) = (1- ~2) (26) 

Ls(~) = !(e +~) 
where ~ is the local (tangential) coordinate of the side of the element. 

The normal boundary perturbation Vn on linear geometric design element 

e, can be described by the linear shape functions Nf as 

(27) 

where Vi is the normal perturbation of each nodal point and the shape functions 
Nf are: 

Nf(~) = t(l- ~) 
Nf(e) = t(l + ~) 

(28) 
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where e is the local (tangential) coordinate of the element. 

As shown in Fig. 2 

(29) 

where, r; and b; are, respectively, the unit vector and the norm of the position 

vector of the respective interpolation node i, t5b; is the variation of design vari

able b; and n; is the unit normal vector to the boundary in node i. So, the 

normal perturbation field is 

(30) 

Introducing (23) and (30) in expression (21) we obtain, for geometric element 
e, in matricial form 

t5'1lfo = - 4~. (sT Mv) 

where le is the element length and 

with 

s [ u~31 u~, 2 u~,3 2u331 u,2 2u331 u812 2u332 u633 V 
M = r~: L• NLT de 

L~ L~ 
Nf Nf 

L~ L1L2 L1L3 L2L3 ]T 
V 

and, finally, 

(31) 

(32) 

where i and j represent nodal points of element e. Equation (32) is numerically 
integrated by 3 Gauss points. 

The first variation of the area constraint (22) can be obtained for element e, 

as shown in Fig. 4, by the expression: 

(33) 

The nonlinear programming problem 19-20) is solved using the method of 

sequential convex programming [15) and the modified method of feasible di
rections, available in the commercially available programme ADS (Automated 
Design Synthesis) [16). 



Slt.ape optimal 11.rac1.aral duiaa 

0 

179 

CD - initial boundary 

® - perturbed boundary 

r. - initial boundary of element 

r"'- perturbed boundary of element 
c 

0 i - design variable 

0 0 . - perturbe.tio'n of design variable 
1 

Figure 4. - Influence of perturbation of design variables in the variation of the 
area 

4. Applications 

Consider the problem represented in Fig. 5 

For the infinite plate the analytical solution [10] is a circular hole, when the 
load T1 = T2 and an elliptical hole with a semi-axis ratio equal to the ratio 
of the external applied forces when T1 :1: T2 • Since it is known the analytical 
solution of the problem, the example treated is a good test to check the numerical 
procedure developed. 

The problem data are the following: 

- plane stress 

- material elastic properties: 

E = 200GPa 

V= 0.3 

- applied forces: 

first load case: Tt = T2 = 100 M Pa 
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Figure 5. - Square plate with hole 
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Figure 6. - Design variables 

second load case T1 = 75 MPa T2 = 100 MPa 

- objective function is the compliance 

- maximum admissible area is equal to the initial area of the hole. 

The problem is solved modelling 1/4 of the plate with 16 mixed quadratic 

elements. It is used 5 design variables as represented in Fig.6. 

For the first load case, T1 = T2, results are pre8ented in Fig. 7 to 9. 

In Fig. 7, are shown the evolution of the compliance and area constraint. 
The constraint value presented is obtained by the expression: 

~1 6 
'ltlrep = fo dO* 10 (34) 

In Fig. 8, are shown initial and final meshes. The mesh regenerator updates 
only 8 elements of the sub-domain near the design boundary. 

The evolution of hole design is presented in Fig. 9. 

For the second load case, T1 = 0.75T2, results are presented in Fig. 10 to 

12. In Fig.fig10, are shown the evolution of the compliance and area constraint. 
The constraint value presented is obtained by the expression (34). 

In Fig. 11, are shown initial and final meshes. The mesh regenerator updates 
only 8 elements of the sub-domain near the design boundary. 

The evolution of hole design is presented in Fig. 12. 
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Figure 7. - Evolution of objective and constraint functions. First load case. 

Figure 8. -Initial and final mesh. First load case 



183 

a) - Initial hole b)- 18 t iteration 

c) - 2 Zld iteration d)- ')rd iteration 

e) - Final hole 

Figure 9. - Evolution of hole design. First load case 
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Figure 10. - Evolution of objective and constraint functions. Second load case. 

Figure 11. - Initial and final mesh. Second load case 
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Figure 12. a) - initial hole b) - 1'' iterations 

Figure 12. c) - 2nd iteration d) - 3rd iteration 
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Figure 12. e) -4th iteration f) - 5th, 6th iterations and final hole 

Figure 12. - Evolution of hole design. Second load case. 

5. Concluding remarks 

In the applications, the final design is almost equal to the analytical solu

tion for infinite plates[10]. For bi-axial equal loads, final design is an excellent 

approximation to the circle, presenting in design variables a maximum variation 

of 0.16% . The mean stress factor on the boundary of the hole is 2.025 which 
has an 1% error comparing with the analytical solution of the infinite plate. 

For bi-axial unequal loads, final design is a polygon having a strong resem
blance to the ellipse. The semi-axis ratio is 0.73 which compares favourably 
with 0.75 given by analytical solution. 

Considering that the model used is very simple, only 5 design variables and 
4 linear elements describing design boundary, the results are excellent. It can 
be concluded that mixed elements can be efficient in shape optimal structural 
design. Mixed elements may offer some advantages over displacement& finite 

element since the stresses are more accurate. 
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