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Different mechanical objects are described by partial differential equations, 

and in many cases optimization of such objects is reduced to the domain shape 

optimization problems, that is to the optimal choice of the domain, in which 

these differential equations are solved (see [1-8]). In [7-8] the general formu­

lations of such domain shape optimization problems were given for objects, 
described by systems of elliptical equations, and the question of solvability of 

these problems were studied. Some applications have also been made to the 

optimization problems in mechanics of deformable solid and in mechanics of 

viscous liquid. 

Notice that in [7,8] optimization problems were studied in which weak solu­

tions of state equations in the form of systems of elliptical equations were used. 
In many applications, though, only smooth solutions of the state equations are 

allowed. In particular this situation occurs in the optimizations problems for 
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deformable solids, plates and shells with restrictions on strength. In such opti­

mization problems solution of the state equation is the function of displacements, 

and this function as well as its derivatives of some orders should be continuous 

and bounded. 

We do consider here the domain shape optimization problems for objects de­

scribed by the system of equations elliptical in the sense of Douglis-Nirenberg 

[9-11]. These optimization problems are considered on the set of allowed do­

mains and smooth solutions of elliptical equations in these domains. The general 

formulation of such optimization problem is given, and existence of the solution 

of that problem is stated. The Frechet differentiability of the solution of the 

state equation and the cost and constraint functionals with respect to control, 

determinig the domain shape, is investigated. In terms of application the prob­

lem of the choice of optimal form for two-dimensional elastic solid is considered 

with which this solid has minimal weight (volume) and a restriction on strength 

is satisfied. 

1. Systems of elliptical equations 

Let the state of some object be described by the following system of differ­

ential equations: 

A(x, D)u(x) 

B(x, D)u(x) 

f(x) X En 
g(x) X E S 

(1.1) 

(1.2) 

Here n is a bounded domain in Rn with the boundary s, u = ( Ul, ... 'Um), 
f = (ft, ... , fm) are m-dimensional vector functions defined in fl, X= (xb ... , 

Xn) are points offl, A(x, D) is the square matrix m x m with elements A;J(x, D), 
D = (D1 , ... , Dn), D; = 8~,, A;j are polynomials in D with coefficients depend­

ing on x over n, B(x, D) is a rectangular matrix, having r rows and m columns, 

with elements Bqj ( x, D), Bqj are polynomials in D with coefficients depending 

on x over S, g = (g1, ... , 9r) is a r-dimensional vector function defined on S. 

We assume that the problem (1.1), (1.2) is elliptical in the sense of Douglis­
Nirenberg [9-12], that is the system of equations (1.1) is elliptical, the sup­

plementary condition and the complementing boundary condition are satisfied. 

The problem (1.1), (1.2) is considered in Holder spaces C1(0) where l > 0, l not 

being an integer. C1(0) is provided with the norm 
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where [~ is such integer that 1- [~ E (0, 1), 

lluJJcriJ(n) = 2: sup JDku(x)J. 
lkiS:(r] xEn 

Define the spaces Vi and Hr in the forms 

m m r 

Vi= IT cr+tj (n), Hr= IT cr-s;(n) X IT cr-uq(S), 
j=l q=l 
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(1.3) 

(1.4) 

(1.5) 

Here ti, s1 and u q are integers, max, s, = 0. With this the order of the operator 

A1j(x,D) does not exceeds; +ti, rrq = maxi=l, ... ,m(f3qj -tj) and {3qj is the 
order of the operator Bqj(x,D). We also define the operator LE .C(Vi,Hr) in 

the form L: u-+ Lu = (A(x,D)u,B(x,D)u) and let "Cl= kerL, Hr= L(Vi). 
Then the following representations are valid, [12], 

(1.6) 

where EB is the sign of the direct sum of subspaces. With this the dimensions of 

"C/ and il1 are finite, and "Cl and il1 do not depend on 1 if the coefficients of the 

operators A(x, D), B(x, D) and the boundary S are of the classes coo . 

THEOREM 1.1 (SOLONNIKOV'S THEOREM) Let (1.1}, (1.2} be an elliptical prob­
lem, l not an integer, 1 > max(O, u1 , ... , Ur ). Let also the boundary S be of 
cl+tmax I where tmaX = max(tll,,, 1 tm) 1 and the Coefficients of the Operators 
Aj(x,D), Bqj(x,D) belong to cl-•;(Q) and cl-Uq(S), accordingly. Then the 

operator L is the isomorphism of Vr onto H1. 

The proof of Theorem 1.1 can be found in [12]. Taking into account Theo­

rem 1.1 it is easy to obtain the following statement. 

THEOREM 1.2 Assume that the conditions of Theorem 1.1 hold and the dimen­

sions of "Cl and il1 are equal. Let { </Ji }f=1 be a basis in Vr and { ,P, }f=1 be a basis 

in il1. Determine the operator G E .C(Vi, H1) in the form 

G</J; = ,p, i = 1, ... , k, Gu=O 'v'uEVr . 

Then the opemtor L1 : u -+ L1 u = Lu + Gu is the isomorphism of Vi onto H1. 
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2. Elliptical problems in domains and a fixed 

domain 

Let M be a space of controls. We assume that M is an open set in an affine 

normed space X and M is provided with the topology generated by the topology 

of X. We suppose that the domain Oq in Rn with the boundary Sq of the class 
C1Hmax and the diffeomorphism p of n onto n of the class c[ll+ 1Hmu are q q 

given for every q E M, that is 

(2.1) 

Then the mapping u -+ u o Pq is an isomorphism of CP(O) onto CP(Oq) and 

CP(S) onto CP(Sq) for any p E [0, I +tmax]· Such elliptical problem in Oq of the 

type pointed above is also given for every q E M. 

Aq(y, D)u(y) = /q(Y) yE Oq 
Bq(y, D)u(y) = Uq(Y) yE Sq 

(2.2) 

We designate by V/q and H1q the spaces Vi and H1 (see (1.5)) in which 0 
and S are substituted for Oq and Sq, accordingly. We suppose also that 

for any q EM } 
the operator Lq : u-+ Lqu = (Aq(Y, D)u, Bq(Y, D)u) 
is an isomorphism of Viq onto H1q . 

(2.3) 

For every q E M we define the operator Lq = (Aq, Bq) E C(Vi, H1) in the 
form 

(Aqu, Bqu), 

(Aq(u o Pq)) o pq- 1 , 

(Bq(u o Pq)) o pq-1 , 

(2.4) 

Here Aq and Bq are the operators from (2.2), and we write Aq, Bq instead 

of Aq(y, D) , Bq(y, D) here and below. The operator Lq is obtained from the 
operator Lq under the replacement of variables, corresponding to the mapping 

Pq. Owing to (2 .1) and (2.3) we have 

the operator Lqu = (Aq,Bq) } 
is an isomorphism of Vi onto H1 

(2 .5) 

and if the function u E Vi is the solution of the problem 
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inn, 

on S, 
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(2.6) 

where (fq, 9q) E H1q, then the function u = u o Pq is the solution of the prob­

lem (2.2) . On the contrary, if u is the solution of the problem (2.2), then 

u = u o pq- 1 is the solution of the problem (2.6). Suppose that 

q-+ Lqu = (Aq,Bq) is continuous mapping } 
from M into C(V/, H,). 

q-+ (fq o Pq- 1 , 9q o pq-1 ) is continuous mapping } . 

from M into H,. 

(2.7) 

(2.8) 

THEOREM 2.1 Let the conditions {2.1}, {2.3}, {2. 7), {2.8) hold. Then for every 
q E M there exists a unique solution u of the problem {2.6), and the function 

A : q-+ A(q) = u, determined by this solution, is a continuous mapping from M 

into Vi. 

PROOF. The existence and uniqueness of the solution of the problem (2.6) follow 

from the (2.1) and (2.3). Let q E M, {qk}f=1 C M and qk -+ q in M. Owing 

to (2.7) and (2.8) we have 

(2.9) 

(2.10) 

From (2.9) and from the reversibility of the operators Lqk and Lq there follows 

the convergence of the inverse operators (see [14]), that is 

(2.11) 

Now from (2.10) and (2 .11) we obtain A(qk)-+ A(q) in Vi. • 
Determine the mapping T : M x Vi -+ H1 by the expression 

q EM, u E Vi 
T(q, u) = (Aqu- fq o P

9
- 1 , B9u- g9 o P

9
- 1 ) 

(2.12) 

It is obvious that the function A : M -+ VI, introduced in the formulation of 

Theorem 2.1, is the implicit function, determined by the mapping T, that is 

T(q, A(q)) = 0, (2.13) 
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and >.(q) = u, where u is the solution of the problem (2 .6). The existence and 

continuity of the implicit function >. follow from Theorem 2.1. Consider now 

the question of differentiability of the function >.. We would remind that M is 

the open set in the affine normed space X . 

THEOREM 2.2 Let the conditions {2.1}, {2.3} hold and q -+ Lq (Aq, Bq), 

q-+ (/q o pq-l, gq o pq- 1) are Frechet continuously differentiable mappings from 

M into .C(VI, H1) and into H1 accordingly. Then the function >., determined by 

equation (2.13 ), is Frechet continuously differentiable mapping from M into VI, 

and Frechet derivative >.' at a point q E M of the function >. is given by the 

expresszon 

- 1 87 
>.'(q)h = -L; o aq(q, >.(q))h hEX, 

where the opemtor ~~ (q, u) is determined by the formula 

8T 
aq(q ,u)h = 

= {(A~h)u- (fq o pq- 1)'h, (B~h)u- (gq o pq- 1)'h} hE X 

(2.14) 

(2.15) 

PROOF . It is obvious that T is a Frechet continuously differentiable mapping 

from M x VI into H1. With this, ~~ (q, u) is determined by formula (2.15) and 

~~ (q, u) = Lq = (Aq, Bq) · From here, taking in account (2.3), we obtain that 

the operator ~~ (q, u) is an isomorphism of VI onto H1. Now Theorem 2.2 follows 

from the Theorem of differentiability of the implicit function [14]. • 

REMARK. We assumed above that condition (2 .3) holds. Let condition (2.3) be 

not satisfied now. In that case, owing to (1.6) the following representations are 

valid 

(2.16) 

'iqEM, (2.17) 

where kq is a positive integer. By analogy to operator G from Theorem 1.2 we 

determine opera tor G q in the form 
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(2.18) 

where </Jq; and 'lj;qi are basis functions in Vzq and H1q. Then, the operator Lq1 = 
Lq + Gq is an isomorphism of Vlq onto Hlq· Therefore, with all the suitable 

conditions stated above the results remain true if we substitute the operator Lq 

for the operator Lqt. 

3. The problem of domain shape optimization 

Let functionals \11; over M x VI be given such that 

(q, u)-+ W;(q, ~) is conti~uous mapping } 
from M x Vi mto lR, z = 0, 1, ... , k 

We define the functionals ci>i over M in the form 

ct>i(q) = wi(q, .X(q)) i = o, 1, ... , k, 

(3.1) 

(3.2) 

where .X(q) is determined by expression (2.13). Let M 1 be a compact set in M. 

We take set of admissible controls U in the form 

U = {qjq E Mt, ci>;(q)::; 0 i = 1, 2, ... , k}. (3.3) 

The optimization problem consists in finding q0 such that 

qo E U, ci>o(qo) = inf ci>a(q). (3.4) 
qEU 

THEOREM 3.1 Let conditions (2.1), (2.3), (2. 7), (2.8), (3.1) hold, M 1 be a 

compact set in M and a non-empty set U determined by expression (3.3). Then 

there exists a solution of the problem (3.4). 

PROOF. As M 1 is a non-empty set, there exists a minimizing sequence { qn} 
such that 

lim cl> a( qn) = inf cl> a ( q). 
qEU 

(3.5) 

As M 1 is a compact set in M we can choose a subsequence {qm} such that 

qm-+ z in M, z E Mt. Owing to Theorem 2.1, .X(qm)-+ .X(z) in VI, where q(z) 
is the solution of the problem (2.6) with q = z. Now it is easily seen that q0 = z 
is the solution of the problem (3.4). • 

In connection with finding a solution of a problem (3.4) there arises the 

question of differentiability of the functionals cl>;.· Using Theorem 2.2 and the 

theorem on differentiability of a composite function [14], we obtain such asser­

tion. 
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Figure 1. 

THEOREM 3.2 Let the conditions of Theorem 2.2 hold, and \ll; : (q, u) -
\ll;(q, u) is a Frechet continuously differentiable mapping from M x Vi into R. 
Then the functional41;, defined by formula (9.2}, is a Frechet continuously dif­

ferentiable mapping from M into R, and the Frechet derivative 41~ of functional 

41; at a point q E M is defined by the formula 

41:{q)h = 
8
8
:; (q, ,\(q))h + (8

8
!; (q, -\(q)) o ,x'(q))h hEx. 

4. Shape optimization of two-dimensional elas­

tic body 

4.1. Sets of controls and domains in the optimization prob­
lem 

As before let M be a space of controls, which we shall define below. The 

domain 0 9 in Ra, occupied by an elastic body, is given for every q EM. The 

boundary S9 of 0 9 consists of two connected components S1 and S2q (see Fig.l). 
The points of S1 are held fixed, and S1 does not depend on control q. Surface 

forces F = (F1, Fa) are given on S21, where Sat is an open set in Sa9 , and 

these forces .are continued onto all Sa9 by zero. With this, Sa1 does not depend 

on a control q, and S~!) = Sa9 \ Sa1 is the controlled part of the Sa9 , that is, 

s~~) is the part of the boundary which should be chosen from the conditions of 

optimization. 
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Define the space of controls in the form 

M = {qjq E C[l]+3(0,21r),r1 < q(a) < r2 Vet E [0,21r], 

q(a) = f3(a) Vet E (a1,a2)}. 
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(4.1) 

Here r1, r2 are positive constants, r1 < r2, f3 is given over the ( et1, a 2) function, 
which defines s21 in polar coordinates. 

6[11+3 (0, 21r) is the subspace of periodical functions in c[ll+3 (0, 21r). Period­

icity of a function q E C[11+3 (0, 27r) means that, if ij is periodical with the period 

[0, 21r] continuation on R of q, then q E C[ll+3 (a, b) for arbitrary [a, b] CR. 
The set M is provided with the topology generated by the topology of 

C[ll+3 (0, 21r). Now for each q E M we define the domain Oq such that the 

internal boundary s1 of it is given in polar coordinates with the function 

i E 6[11+3 (0, 21r) and the external boundary S2q with the function q. 

We define the domain 0 in the form 

(4.2) 

Designate by E the function which maps polar coordinates onto Cartesian 

coordinates, 

E: (r,a)---+ E(r,a) = (y1,Y2), Y1 = rcosa, Y2 = rsma, (4.3) 

and let E-1 be the inverse of function E. Determine Pq : Oq ---+ n by the 

formula 

Pq = Eo Gq o E- 1 , 

(r, a)---+ Gq(r,a) = (e, c/>), 

{! = r- 2i(et) + q(a), 4> =a. 
q(a)- i(a) 

(u, 4>)---+ Gq 1(u, 4>) = (r, a), 

r = 2!(4>)- q(c/J) + [q(c/J)- i(cP)]u, a= c/J. 

( 4.4) 

(4.5) 

(4.6) 

It is easily seen that the mapping Pq defined by formulae ( 4.4), ( 4.5), satisfies 

conditions (2.1). 
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4.2. A theory for problems of elasticity in domains. 

Where u = ( u1, u2) is a vector function of displacement, A, J.L are the positive 

constants. Designate by t:;j(u), O';j(u) the components of strain and stress 

tensors 

(4.8) 
i,j = 1,2, 

{ 
1 if i = j 

where 8;j = 
0 

if i f- j . Define the boundary operators B and Bq, re-

spectively on S and S2q by the expressions 

Bu = { u1lls1 
} , Bqu = { ((O"u((u))vlq + 0'12((u))v2q))lls,q } , (4.9) 

U2 S1 0'21 U Zllq + 0'22 U Z12q S 2 q 

where v;q are the components of the unit outward normal to S2q, i = 1, 2. 

THEOREM 4.1 Let the set M be defined by expression (4 .1). For each q E 

M determine a two-connected domain Oq C R2 such that the internal and 

external boundaries of Oq are defined in polar coordinates with the functions 

1 E C[I]+3(0, 27r) and q. Then the operotor Lq : u ---+ Lqu = (Aqu, Bu, Bqu), 

defined by formulae (4. 7), (4.9), where A, J.L are the positive constants, is an 

isoriwrphism of the space1 Viq = c 1+2(0q )2 onto the space Hlq = C1 (Oq )2 X 

ci+2(S1)2 x cz+l(S2q)2. 

PROOF. Consider the problem 

Aqu 

Bu (4.10) 

where (!, g1, g2) E Hlq· The ellipticity of the operator Aq follows from Korn's 

inequality [15,16]. The ellipticity of problem ( 4.10) follows from the ellipticity 

1 Here and further on: Ck ( B)2 = Ck (B) x Ck (B) 
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of the first and second problems of the theory of elasticity [17]. The kernel space 

of the operator Aq is the space of small rigid displacements, which has the form, 

[7,16], 

Q { uJu = ( u1, u2), u1 = a1 + a3y2, u2 = a2 - a3y1, 

.a1, a2, a3 ER}. 
(4.11) 

Let y(1) = (y~1 ), y~1 )), y(2) :::: (y~2 ), y~2 )) be two different points of S1. From 

condition Bu = 0 it follows that u(y(1)) = u(y(2)) = 0, and if, in addition, 

u E Q, then, owing to (4.11), we have a 1 = a2 = a3 = 0. Therefore the 
kernel space of the operator Lq = (Aq, B, Bq) consists only of zero. For each 

(f,g1 ,g2 ) E H1q there exists a solution of the problem (4.10). Now Theorem 4.1 

follows from Theorem 1.1. 

4.3. The problem of optimization 

We would remind that for each q E M we determine the two- connected 

domain S"lq such that the internal, S1 , and external, S2q, boundaries of S"lq are 

defined in polar coordinates with the functions 1 and q. For each q E M we 

consider the problem 

(4.12) 

where the operators Aq, B, Bq are defined by formulae (4.7), (4.9). We suppose 

that 

(4.13) 

where (see (4.1) and (4.3)) 

S21 = {sJs = E(f3(o:),o:), a E (o:1,o:2)} 

Now we pass to the constraint on strength. For a vector function of displacement 

u = ( u1 , u2) the components of the stress deviator (shear stress tensor) are 

defined by the formula 

1 
Tij(u) = O";j(u)- 2(o-u(u) + o-22(u))b;j i,j = 1,2, 

and the second invariant of the stress deviator has the form of 



214 W.O. LITVINOV 

2 

"" 2 1 2 2 T(u) = L.J (r;j(u)) = 2(uu(u)- 0'22(u)) + 2(ut2(u)) . 
i,j=l 

(4.14) 

Define the functional G1 over M by the formula 

G1(q) = m~x[(T(uq))(y)- b], 
yEfl 9 

(4.15) 

where uq is the solution of problem ( 4.12), b is a positive constant. For an 

isotropic material the restriction on strength may be taken in the form Gt(q) ~ 
0. The volume of the material is defined by the expression 

Go(q) = f dy. ln9 

Define the set M1 in the form 

M1 = {qjq EM, q E 01+3(0, 21r), jjqllc'+3(o,2,..) ~ c1, 

r1 + 8 ~ q(a) ~ r2- 8 't/a E [0,21r]}, 

( 4.16) 

( 4.17) 

where M is determined by ( 4.1), c1, 8 are positive constants and 8 is small. We 

take the set of admissible controls U in the form 

U = {qjq E M1, Gt(q) ~ 0}. 

The optimization problem consists in finding q0 satisfying 

qo E U Go(qo) = inf Go(q). 
qEU 

(4.18) 

(4.19) 

THEOREM 4.2 Let the operators Aq, B, Bq be defined by formulae (4. 7}, (4.9}, 
and A, J.L be positive constants. Suppose that condition (4 .13} hold, and the 

functionals G1 and Go are defined over M by formulae (4.15}, (4.16} where 

uq is the solution of problem (4.12}. Let also a non-empty set U be given by 

expressions (4.1}, (4.17}, (4.18}. Then, for any I > 0, I not being an integer, 

there exists a solution of the problem (4.19}. 

PROOF. Define the spaces Vi and Hz by expressions 

Vi= C1+2(0)2' Hz = C1(0)2 
X C1+2 (Sot)2 

X C1+1(So2)2
. 

Here 0 is the domain defined by (4.2), So1 and So2 are the internal and external 

boundaries of 0. In the same way as it was made in Section 2, the problem 

( 4.12) is reduced to such problem: find the function Uq E Vi, satisfying 

Aquq 0 inn, 

Buq 0 on Sot, (4.20) 

Bquq = F o pq-l on So2, 
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Here operators Aq, B, Bq are defined by expressions 

(Aq(u o Pq)) o pq-1, 

(B(u o Pq)) o pq- 1, 

(Bq(u o Pq)) o pq- 1 . 
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(4.21) 

From (4.12), (4.20) and (4.21) it follows that uq = uq oPq. It is then easily seen 

that 

q-+ Lq = (Aq,B,Bq) is continuous mapping} 
from M into .C(Vi, H1). 

(4.22) 

Owing to (4.13) q-+ FoPq- 1 is the constant mapping, and from Theorem 2.1 

we now obtain 

q -+ uq is continuous mapping } 
from M into Vi, 

(4.23) 

where uq is the solution of problem ( 4.20). Under the replacement of variables 

corresponding to the mapping Pq the functionals G1 and Go from ( 4.15), ( 4.16) 

take on the form 

G1(q) mC~¥(T(uq o Pq))(Pq- 1(x))- b, 
xEn 

(4.24) 

Go(q) In det i(Pq- 1 )'(x)jdx. (4.25) 

Here (T(uq o Pq))(Pq- 1(x)) is the value of the function T(uq o Pq) at a point 

pq- 1 ( x) and ( pq- 1 )' ( x) is the value of Frechet. derivative of the mapping pq- 1 

at a point x. Taking into account ( 4.23)-( 4.25) and ( 4.4)-( 4.6) we obtain that, 

G1 and Go are continuous functionals over M. As the imbedding ofC1+3 (0,27r) 

into c(ll+3 (0, 271') is compact, we have that M1 is a compact set in M. Therefore 

there exists a solution of the problem (4.19). 

REMARK. In the considered case the function q -+ ( Aq, .iJ, Bq) is a Frechet con­

tinuously differentiable mapping from M into .C(Vi, H1), and using Theorem 2.2 

we obtain that q-+ .X(q) = uq is a Frechet continuously differentiable mapping 

from M into Vi. However, the functional G1 from ( 4.24) is not differentiable 

as the functional v -+ maxxEO v(x), v E C(O) is not differentiable. On the set 

Q = { vlv E C(O), v( X) ~ 0, Vx E n}, however, the last functional may be 

approximated by a Frechet continuously differentiable functional v -+ llvli£p(n) 
if p is sufficiently large. 
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Figure 2. 

5. Optimization of internal boundary of a two­

dimensional elastic body 

In Section 4 we considered the optimization problem for two-connected elas­

tic body, in which we give displacement on the internal boundary and surface 

forces on the external boundary. In that case there exists a unique solution of 

the problem ( 4.10) for any(!, g1 , g2 ) E Hlq, and owing to Theorem 4.1 condition 

(2 .3) holds. Now we consider the optimization problem for two- connected elas­

tic body in which we gave surface forces on the internal and external boundaries 

of the body. In this case condition (2.3) is not satisfied. 

Let us pass over to the formulation of the problem. Let M be the space 

of controls, and the two-dimensional domain nq, occupied by elastic body be 

defined for every q E M . The boundary Sq of f2q consists of two-connected 

components, S2q and S1 are the internal and external boundaries of nq , respec­

tively (see Fig.2.) We give "self- balanced" forces F on S1 and zero forces on 

S2q. With this S1 and F do not depend on a control q and S2q should be chosen 
from the conditions of optimization. 

Define the space of controls M in the form 

(5.1) 

where r 1, r2 are positive constants. For each q E M determine the two­

connected domain f2 q such that internal boundary S 2q is defined in polar co­

ordinates with q and the external boundary S1 with the fixed function 'Y E 
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6Ul+3 (0,27r). The domain n is defined by (4.2) and the mapping Pq by (4.4), 

where Gq : E- 1(0q) ___, E- 1(0) has the form 

(r,a) ___, Vq(r,a) = (e,</1), 

_ r- 2q(a) + 1(a) -~. _ 
e - ( ) ( ) , '+' - a. 1a -qa 

(5.2) 

The invers mapping G-q 1 : E- 1(0) ___, E- 1(0q) has the form 

(e,<P) ___, G-q 1(e,<P) = (r,a), 
r = 2q(</J) -7(</1) + [!(<P)- q(<fi)]e, a=</!. 

(5.3) 

The operator Aq is defined by (4.7) and the boundary operators Bq and Bare 

given by expressions 

B _ { (cru(u)vlq + cr12(u)v2q)ls,q } 
qU- > 

( cr21 ( u )vlq + cr22( u )v2q) ls,q 
(5.4) 

Bu = { (cru(u)vl + cr12(u)v2)ls1 } • 

(cr21(u)v1 + cr22(u)v2)ls1 

(5.5) 

Here v;q and v; are the components of the unit outward normal to S2q and 51 

accordingly, i = 1, 2. Define spaces V/q and Hrq in the form 

Vlq = c1+2(0q)2, Hrq = C1(0q)2 x c1+1(S2q)2 x C1+1(S1)2. (5.6) 

where l > 0, l not being an integer. It is obvious that 

Lq = (Aq,Bq,B) E C(V/q,Hiq)· 

The kernel space of the operator Lq is the three-dimensional space "C/q = Q, 
where Q is defined by (4.11). The following functions are the basis in "C/q 

</!ql = (1, 0), </Jq2 = (0, 1), </!q3 = (y2, -yl)· (5.7) 

For given functions of volume and surface forces (!, R, F), defined on Oq, S2q 
and sl accordingly, consider the problem of finding the function of displacement 

u such that 

(5.8) 

We assume the volume and surface forces (!, R, F) to be "self-balanced", that 

is these forces are orthogonal to the space ~q in the sence that 
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{ fidy + { Rids+ { Fids = 0 i = 1, 2, 
lnq ls2q lsl 
{ (hY2- f2yt)dy + { (R1Y2- R2Y1)ds+ 

lnq ls2q 
+ { (F1Y2- F2Y1)ds = 0 

lsl 

W .O. LITVINOV 

(5.9) 

Conditions (5.9) are necessary and sufficient for the existance of a solution of 

problem (5.8) (see [16]). From (5.9) it follows that the space H1q = H1q \Lq(Vlq), 

where Lq = ( Aq, Bq, B), is three dimensional, and the following functions are 

the basis in H1q: 

'1/Jql ((1, 0), (1, 0), (1, 0)), 

((0, 1), (0, 1), (0, 1)), (5.10) 

Here in the expressions for the functions '1/Jqi the first pair belongs to C 1 (Oq )2 , 

the second to C1+1(S2q)2, and the third to C1+1(S1)2. In the c~e considered 

equality (2.17) holds with kq = 3, and we deifne the operator Gq by (2.18). 
Owing to the Remark of Section 2 we obtain the following assertion. 

THEOREM 5.1 Let the spaces Vlq and H1q be given by expressions (5. 6), the 

operator Lq = (Aq, Bq, B) .be defined by the formulae (4. 7), (5.4), (5.5) and the 

operator Gq by (2.18} with kq = 3, where </Jq;, '1/Jqi are determined by (5. 7) and 

(5.10}. Then the opemtor Lq1 = Lq + Gq is an isomorphism o/V/q onto H1q. 

Suppose now that the surface forces F, given on the external boundary, 

satisfy conditions 

FE C1+1(S1)2
, { F;ds = 0 i = 1, 2, 

Js1 
{ (F1Y2- F2Y1)ds = 0. 

lsl 
(5.11) 

Then, owing to Theorem 5.1, there exists a unique function Uq E c1+2 (0q)2 

such that 

Aquq = 0 in Oq, Bquq = 0 on S 2q, 

Buq = F on S 1 , Gquq = 0 in H1q(in R 3
). 

(5.12) 

In the same way as above, using Theorem 5.1 we prove the subsequent assertion. 
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THEOREM 5.2 Let the conditions of Theorem 5.1 hold and the sets M, M 1 be 

defined by {5.1} and (4.17), the functionals G1 and G0 given by (4.15}, (4.16}, 

where uq is the solution of the problem (5.12). Let also function F satisfies 

conditions {5.11}, and a non-empty set U be given by (4.18}. Then there exists 

a solution of problem (4.19). 

It is obvious that in the considered case the optimization problem consists in 

finding the shape of internal boundary with which the elastic body has minimal 

weight (volume) and the constraint on strength is satisfied. 
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