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A shape optimization problem of an elastic body being in contact 
with a rigid foundation is considered. The contact with given friction 
occurs at a portion of the boundary of the body. The problem 
consists in finding, in the contact region, the boundary of the domain 
occupied by the body in such a way that the normal contact stress 
is minimized. It is assumed that the volume of the body is constant. 
A dual variational method, where the function satisfying the state 
inequality and its gradient are selected as independent variables, 
is employed to solve this problem. Taking into account this dual 
approach ,the necessary optimality condition is formulated using the 
material derivative method. Numerical examples are provided. 

1. Introduction 

This paper is concerned with formulation of a necessary optimality condition 

for a shape optimization problem of an elastic body in unilateral contact with 

a rigid foundation as well as with numerical solution of this shape optimization 
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problem. It is assumed that the contact with given friction [4,6,8,13] occurs at a 

portion of the boundary of the body. The equlibrium state of this contact prob

lem is described by an elliptic variational inequality of the second order. The 

existence, uniqueness and regularity of solutions to this variational inequality 

were investigated in [4,6,8,13]. 

The shape optimization problem for the elastic body in contact consists in 

finding, in a contact region, such shape of the boundary of the domain occupied 

by the body that the normal contact stress is minimized. It is assumed that the 

volume of the body is constant. 

Shape optimization of contact problems was considered, for instance in 

[6,7,11], where necessary optimality conditions were formulated and convergence 

of finite-dimensional approximation was shown. In literature this problem was 

solved by use of variational methods where the function satisfying the state 

inequality was selected as the state variable only. · 

Numerical experiments reported, e.g. in [10], indicate that we can solve 

numerically the elliptic problem more accurately using the decomposition ap

proach. In this approach, based on Hellinger-Reissner variational principle [3], 

the function satisfying the state inequality and its gradient are chosen as inde

pendent variables. 

In this paper we shall study this shape optimization problem for an elastic 

body in unilateral contact employing this dual variational approach. Taking 

into account this approach and using material derivative method [14] as well as 

the results of differentiability of solutions to the variational inequality [11,12] 

we calculate the directional derivative of the cost functional and we formulate 

necessary optimality condition for this problem. Note that in this paper we 

employ a different dual formulation of the contact problem than the one em

ployed in [11]. The shape optimization problem for a punch pushed in a rigid 

foundation was solved numerically. Finite element method [3,8] was used as 

discretization method. Uzawa's algorithm [8] combined with SOR algorithm 

[8] were used to solve the state system. Shifted penalty function method com

bined with conjugate gradient method [6] were used as optimization method. 

Numerical examples are provided. 

We shall use the following notation : 

is bounded domain with Lipschitz continuous boundary r 
is the space of square integrable functions with 
inner product given by : 
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(y,z) = fo y( x )z( x )dx 

is a Sobolev space of order 1 [1) 

is the space of traces of functions from the space 

H 1 (0) on the boundary r (1] 

is the space dual to H 112(r) [1) 

n = ( n1, n2) is the unit outward versor to the boundary r 
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X= (xl,x2) E R2, Yk,l = aykfaxr, Yk,lj = a2ykfaxraXj, k,l,j = 1,2. y = 
(Yl,Y2), 'VY = (y1 ,i?), yi = cbl(Yi,l,Yi,2) i = 1,2 is a gradient of function y 
with respect to x, div y = y1,1 +y2,2 , *u (*A) is a transpose of a vector u (matrix 

A) . We shall use the summation convention over repeated indices [3,4,8). 

2. Contact problem formulation 

Consider deformations of an elastic body occupying domain n = O(v) c R2 

depending on a function V. Domain n( v) has the following geometrical structure 

wh7re a and b are given positive constants. The boundary r of domain n 
is Lipschitz continuous. The body is subjected to body forces f = (fl, /2). 
Moreover, surface tractions p = (Pl> P2) are applied to a portion f1 of the 

boundary r. We assume that the contact conditions are prescribed on the 

portion r2 = r2( V) of the boundary r. Moreover r, n rj = 0, i # j, i, j = 0, 1, 2, 

r = ro u r1 u r2. 
We denote by u = ( u1 , u2) the displacement of the body and by U' = 

{U';j(u(x))},i,j = 1,2, the stress field in the body. We shall consider elastic 

bodies obeying Hook's law [3,8,13] : 

(2.2) 

i, j, k, I = 1, 2. We use here the summation convention over repeated indices [8] . 

The strain ekl = ekr(u), k,l = 1,2, is defined by: 

1 
ekl = 2( Uk,l + Uf,k) (2.3) 

Cijkr(x), i , j,k,l = 1,2 are components of Hook's tensor. It is assumed that 

elasticity coefficients Cijkl satisfy usual symmetry and ellipticity conditions (3,8] . 

In an equlibrium state a stress field U' satisfies the system [3,6,8,13) : 
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<J'ij(x),j = -/i(x), X En i,j = 1, 2 (2.4) 

where <J';j(x),i = a<J';j(x)jaxi, i,j = 1,2. The following boundary conditions 

are given : 

U; (X) = 0 on f 0 i = 1, 2 (2.5) 

i.e.,the body is clamped along the boundary fo. The surface traction p applied 

on rl produces on rl the stress satisfying : 

(2.6) 

We shall consider deformation of an elastic body in contact with a rigid foun

dation along the boundary r2 : 

(2.7) 

We assume that unknown apriori contact region is inside a prescribed area. We 

shall consider contact problem on f 2 with a prescribed friction, i.e.[8,12] : 

Here we denote : 

(2.8) 

(2.9) 

(2.10) 

Taking into account (2.2)-(2.4) we obtain that for given body forces f = 
(!1, h) and surface tractions p = (Pl, P2) the displacement u = ( u1, u2) satisfies 

in n the system of equations [9,12] : 

[cijkl(x)ekl(u(x)],j = -fi X E 0 (2.11) 

Moreover, the displacement u and its derivatives satisfy boundary conditions 

(2.5)-(2.8). 

We shall consider problem (2.11) with boundary conditions (2.5)-(2.8) in 

variational form. Let f E [£2(0)]2 and p E [H- 112(f1)F. Let us introduce : 

F = {z E [H1(0)] 2 
: zi = 0 on f 0 ,i = 1,2} 

K = { z E F : zm; ~ 0 on f 2 , i = 1, 2} 

By a(.,.) : F x F---+ R we denote the bilinear form given by : 

(2.12) 

(2.13) 
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By /(.) : F-+ R we denote the linear form: 

l(v) = r Jvix + r pvds 
ln lrl 

By j (.) : F -. R we denote the nondifferentiable functional : 

j( V) = r I VT I ds lr, 
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(2.14) 

(2.15) 

(2.16) 

The system (2.13) with boundary conditions (2.5)-(2.8) can be written in an 

equivalent variational form [3,4,8,13] : 

Find an element u E K such that : 

a(u,v- u) + j(v)- j(u) 2: l(v- u) \fv E K (2.17) 

It was shown in [4,8] that problem (2.17) has a unique solution. Moreover, 

problem (2.17) is equivalent to the following optimization problem [3,8] : 

Find an element u E K minimizing the cost functional : 

J(v) = ~a(v, v) -l(v) + j(v) (2.18) 

over the set K. 

Our goal is to consider problem (2.17) or (2.18) in the mixed formulation, 

convenient for numerical computation [9,10). In order to do it we introduce the 

derivative of the function u as new independent variable. We use this variable to 

formulate a dual optimization problem to the problem (2.18). Let us introduce 

the following spaces : 

S = S(O) = {u;j E [£2(0)]4 
: u;j = Uji i,j = 1, 2} 

Z = Z(O) = { u E Q divu =fin 0, U;jnj = p; on r1 
I ITT I~ 1 ITN ~ 0 on r2} 

(2.19) 
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Note , that (J' N E H-112(f2) as well as (J'T E H-112(f2) [5,13]. (J'N ~ 0 denotes 

that ((J'N, v) ~ 0 for all v ;::: 0, v E H-112(f2). I (J'T I~ 1 on f 2 denotes that 

restriction of (J'T on r2 belongs to (L00 (f2)) 2 and I (J'T I~ 1, a.e. on r2 [4 ,12]. 

Recall from [9] that the dual optimization problem to the problem (2.18) 

has the following form : 

Find (J' E Z minimizing the cost functional : 

I(r) = ~ l bijkiTijTkldx (2.20) 

over the set Z given by (2.19) . 

where bijkl, i, j, k, l = 1, 2 are the compliance coefficients satisfying usual sym

metry and ellipticity conditions [4,5,13]. In order to formulate necessary op

timality condition for problem (2.20) we introduce Lagrange multiplier q E K 

corresponding to the constraints (2.19) . The necessary optimality condition 

to the problem (2.20) is equivalent to the conditions for a saddle point of a 

Lagrangian L of this problem [3 ,4,8]. The Lagrangian L is defined by : 

L(., . ) : Q x K --+ R 

L( r, q) = 1/2 In b;jkiTiJ Tk1dx + In T;j ekl( q)dx - In fqdx 

- Ir, pqds - Ir
2 

TrqTds (2.21) 

Note that the Lagrange multiplier q corresponds to the displacement field [3,4,8) . 

The necessary optimality condition for the problem (2.20) can be written in 

the form [9] : 

Find ( (J', q) E Q x K satisfying : 

{ bijki(J'ijTkldx + { T;jekl(q)dx- { TTqTds = 0 Vr;j E Q 
ln ln lr, 

(2.22) 

(2.23) 

Note that since there exists solution, to the primal problem (2.18) it follows 

that the set Z is nonempty convex set in Q [8). Moreover the cost functional 

(2.20) is strongly convex. It implies existence of a unique solution to the dual 

optimization problem (2.20). 
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3. Formulation of the shape optimization prob

lem 

Let n c R2 be a domain such that for all V : n( V) c n. Let M be a set : 

(3.1) 

We shall consider domains n( V) depending on a function V from the set Uad 

defined by: 

Uad = {v E C1
•
1([0, a]) :I d~l I~ Cl, Vxl E [0, a] 

I ~:~ I~ c2 a.e . in (0, a) , fn(v) dx = cs} 

(3 .2) 

where c1 ,c2 and c3 are given positive constants. The set Uad is assumed to be 

nonempty. C 1•1([0, a]) [6] denotes the set of Lipschitz continuous functions on 

[0, a] having also Lipschitz continuous first derivatives. We shall consider the 

following shape optimization problem : 

For given function <P E M, find function V E u ad 

minimizing the cost functional 

(3.3) 

over the set Uad · UN is a normal component of the 

stress field u satisfying (2.22)- (2.23). 

The cost functional (3.3) approximates normal contact stress on the bound

ary r2, i.e., original boundary flux cost functional [6] . Since the shape opti

mization problem with the boundary flux cost functional is difficult to solve 

we modify the original cost functional introducing an auxiliary function <P [6] 

and the form (3.3). The shape optimization problem (3.3) consists in finding 

such boundary r 2 ( v) depending on function v that the normal contact stress 

is minimized. It is assumed that the volume of the body is constant and the 

function v is bounded and has bounded first and second derivatives. 
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4. Necessary optimality condition 

LEMMA 1 The directional derivative dJ<P(v; k) of the cost functional (3.3} for 
given function <P E M with respect to v E Uad at a point v E Uad in a direction 

k E Uad has the form : 

where 

dJ<P(v; k) = fr[lT;jeki(<P + w)- f(<P + w)]k(xl)n2ds

frJC'Vp(</J + w) + p'l(<P + w))k(x1) + p(</J + w)D]ds + 
E1(>., u)- E1(lT, <P + w)- E2(lT, >., u) 

E1( r, q) = fr,(v) {[('lrk(x1))T - (N + N*)rN ]qT + 

( 4.1) 

[('lq(k(xl))T- (N + N*)qN]TT + TTqTD}ds (4.2) 

( 4.3) 

dk - - -
D=-n1n2-d , N=D(l-n1,-n2), N * isatransposeofN {4.4) 

X! 

The stress field >. E Q and the displacement field w E F1 are the solution of the 

following adjoint system : 

(4.6) 

Fl = { z E F : Z2 = V on B}' B = {X E r 2 (V ) : U2 = V} (4.7) 

Proof The material derivative dJ<P(v : k) is defined by : 

(4.8) 

where Vt = v + tk. Taking into account that the cost functional (3 .3) can be 
written in the form [4,8] : 
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J~(v) = { (T;jekl(c/J)dx- { fc/Jdx- { pc/Jds- { (1Tc/Jrds (4.9) 
ln ln lr\ lr,(v) 

as well as applying the material derivative method [7,11,12,14) to transport 

the cost functional J~(vt) into a fixed domain O(v) and taking into account 

the results of·differentiability of solutions to a variational inequality [11,12] to 

calculate the limit (4.8) with t-+ 0 we obtain (4.1). D 

LEMMA 2 There exists a Lagrange multiplier J.L E R3 such that for all func

tions k( x!) E Uad the following condition holds : 

1 dv · dv . d2v d2 k 
dJ~(v; k)+J.L1 k(x!)n2ds+J.L2sgn( -d )-d +J.L3sgn( -d 2 )-d 2 ~ 0(4.10) 

r x1 Xt x1 x 1 

where dJ ~( v; k) is given by ( 4.1) and the function sgn is defined as follows : 

sgn(x) = 1 for x > 0, sgn(x) = 0 for x = 0, sgn(x) = -1 for x < 0. 

Proof of Lemma 2 is standard [2). 

5. Numerical results 

The discretized optimization problem (3.3) was solved numerically. The 

boundary r of the domain (2.1) is divided into parts fo, rl and r2 = r2(v) 
given by : 

fo = {x E R2 

f1 = {x E R2 

f2 = {x E R2 

X1 = O,a x2 E (v(x1), b)} 

X1E(O,a) x2=b} 

x2 = v(xt)} 

(5.1) 

Function v belongs to the set of admissible design parameters Uad given by (3.2) . 

The conforming finite element method [3,8) was used as an discretization 

method of the optimization problem (3.3). The boundary f2( v) was approxi

mated by a piecewise linear function. The domain (5.1) was divided into tri

angles satisfying usual requirements concerning the mutual positions of two 

triangles [8). The sets Q, Z, K were approximated by the sets of piecewise linear 

functions using superelement technique [3,8). Since the considered optimization 

problem (3.3) with (5.1) is symmetric with respect to the line x1 = a/2 in the 

computation one half of the domain 0 was used only. 
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Uzawa's method combined with SOR method [8] were used to solve the dis

cretized systems (2.22), (2.23) and (4.5), (4.6). The conjugate gradient method 

combined with shifted penalty function method [2,5,7] were used to solve the 

discretized optimization problem (3 .3). 

The numerical data are as follows: a= 8 b = 1, f = 0 P1 = 0 P2 = -5.6106
, 

<P = 1, on n :::> O(v) for all V . 

The results are presented in Table 1, where the initial shape Si as well 

optimal shape So of one half of the contact boundary f2 are given. The point 

x1 = 4.0 corresponds to the middle point of the contact boundary. For the 

body with initial shape boundary si the normal contact stress has its peak in 
the middle of the contact boundary. For the body with optimal shape boundary 

So the normal contact stress is almost constant and shows very mild increase 

while approaching the middle point of the contact boundary. 

The speed of the proposed algorithm is very slow. The speed of the algorithm 

depends on a proper choice of parameter values in Uzawa's and SOR algorithms 

as well as on accuracy of calculation of the Lagrange multipliers. 

XI 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 

S; 0.12 0.10 0.08 0.06 0.04 0.02 0.01 0.00 0.00 

So 0.12 0.08 0.04 0.01 0.00 0.00 0.03 0.06 0.08 

Table 1. Initial and optimal shapes of the contact boundary. 
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