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The optimal control problems for systems governed by the second 
order elliptic equations are discussed. The method of the extension 
of extremal problems is proposed in order to overcome the difficulties 
(nonexistence of optimal solutions, nonconvexity of sets of admissible 
controls etc.) which arise in the shape optimisation and other similar 
problems. The extension methods based on "convexification" or G
convergence are described and necessary conditions are given. 

Optimal control problems for elliptic equations have some properties 

which are very different from those of the classical problems for ordinary dif

ferential equations. The essence is that the main part of elliptic operators can 

depend upon parameters - the case which corresponds to the optimal shape 

design and similar problems. In these situations the set Uad of admissible con

trols u often consists of characteristic functions of sets related to materials or 

constructions. 

We can distinguish here two cases. The first is narrow one where controls 

are characteristic functions of smooth domains, say uniformly Lipschitz with 
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parameters from a given bounded closed set . The advantage of this case is that 

controls are easy to perform from the technical point of view and that the set 

Uad is compact in some strong topologies (from the mathematical point of view). 

But such a narrowness of the set Uad makes it very hard to carry out sensitivity 

analysis and practical optimization (we exclude here situations where the set of 

admissible controls depends ultimately only on some finite number of numerical 

parameters) . 

Sometimes such cases can be treated in the framework of the theory of 

potential where the unknown boundary of domain is given parametrically by 

control functions and the kernel of the corresponding integral equation depends 
on these control functions. In the case of piecewise Liapunov surfaces or curves 

it can be shown that the implicit function which gives the dependence of the 

solution of the integral equation on control is Frechet differentiable. Hence, the 

whole apparatus of differential calculus can be applied to it (see O.Lietuvietis 

[2]) 

The other case is the opposite one where the set Uad contains characteristic 

functions of all measurable subsets of a given domain. Here the needle-like 

variations can be applied, but some other difficulties arise. First of all the 
set Uad will not be sequentially compact in strong topologies and will not be 

closed in weak topologies of Lebesgue spaces. Therefore, we cannot assume 

existence of optimal controls (see, for example, F.Murat [4]) . On the other 

hand, for the needle-like variations of controls the corresponding increment of 

the solution of the equation has the norm in H 1 which is equivalent to £ 1/ 2 

wherein £ corresponds to the measure of the set where the control is varied if 

the eldest coefficients of the equation depend on control. Hence, if, for example, 

the cost functional depends nonlinearly on the gradient of the state then we 

have to take into account the second terms in the Taylor series. This results in 

lengthy formulas for the increment of functionals (see, for example, U .Raitums 

[5]). 

And, after all, the set Uad will not be convex. This disadvantage is very 

inconvenient from the point of view of numerical methods. 

Therefore, we have to overcome two kinds of difficulties: nonexistence, in 

general, of optimal solutions (which leads to incorrectness of computional algo

rithms), and inconvenient structure (Uad is not convex) of the set of admissible 
controls. 

One of the possibilities of handling these problems is to use the extensions 
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of original problems. Two approaches can be applied: the "convexification" of 

the origanal problem and the methods of the theory of G-convergence. 

The "convexification" is nearly the same method as used in optimal control 

problems for ordinary differential equations. In other terms it is known as 

passing to the generalized controls (see, for example, G.Gamkrelidze [1], J .Varga 

[8]). The difference for the case of elliptic equations is that "convexification" 

does not ensure in general the existence of optimal controls. But nevertheless 

it gives convex sets of admissible operators and on the way allows to get the 

necessary conditions for optimality under assumptions weaker then in the case 

of using the needle-like variations. 

The methods of the theory of G-convergence ensure as a rule the existence 

of optimal solutions in extended problems. But there is lack of effective (good 

for practical use) description of extended problems. And, additionally, passing 

to the G-closure of original sets of operators does not lead in general to convex 

sets. 

Nevertheless, by combining both methods it is possible for practically im
portant classes of problems to get extensions of original problems where the 

admissible sets of operators will be convex and an optimal solution will exist 

(see U.Raitums [5]). 

To illustrate these rather abstract statements we shall consider the following 
optimal control problem. 

Let 0 be a bounded domain in Euclidean space Rn, n ~ 2, with uniformly 

Lipschitz boundary an and X = (xl' . . . ' Xn) be an arbitrary point inn. 

Let Uad be a set of admissible controls and we have to minimize the functional 

Ia(u,z) = fnua(x,u , z,zx)dx (1) 

over all pairs 

(u,z) E Uq.d x HJ (2) 

which satisfy the state equation 

d 
A(u)z = --d a;j(x, u)zx. + ba(x, u, z, zx) = 0, 

Xi 1 
(3) 

X E n, z lan= 0, 

where the functions go,bo and the matrix-function A(x,u) = (aij(:c,u)),i,j = 
1, ... , n are fixed. 
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Here, and in what follows, repeated indices i, j mean summation from 1 to 

n, equation (3) is understood in the sense of distributions, H~ is the Sobolev 

space of functions whose first derivatives belong to £ 2(!1), and which vanish on 

the boundary an. 
The Dirichlet boundary value problem and the absence of additional con

straints are assumed only for the sake of brevity. The presence of the "youngest" 

term b0 in equation (3) is mainly meant for a better description of the strong 

connection between perturbations which overcome the "youngest" term in equa

tion and the integrand of the functional in the process of extension. 

To begin with we recall a technical result (see U.Raitums [5]) which is very 
useful for the "convexification" approach to the problem (1)-(3). 

LEMMA 1 Let 

n 

be a set of elements t = (h, ... ,/n) such that for every t 1 ,/2 E Q and a 
measurable set E c n the element f, 

t(x) = { t
1
(x), x E E 

J2(x), xEf2\E 

belongs to Q too. 

Then for every element t 0 E co Q there exists a sequence {!K} C Q such 

that 

1. {tK} converges weakly in L~n\n) to t 0 as [{ -+ oo. 

2. The solutions Zk of boundary value problems 

div \1 z = div t, X E !1, z lan= 0 (4) 

with t = tK, [{ = 0, 1, 2, ... , converges strongly in HJ to the z0 as [{-+ oo. 

Let us introduce the following hypotheses and definitions. 

Hl. Functions b0 (x,u,z,p), g0 = g0(x,u,z,p), a;j = a;j(x,u), i , j = 
1, . .. , n, X E n, u E Rm, , z E R, p E Rn, satisfy the Caratheodory con

dition. 

H2. There exist positive constants 0 < V < f..l such that for all X E n, u E 

Rm, ~=(6, .. -,~n)ERn 

vI~ 12::; aij(x, u)~i~j ::; f..l I~ 12 , 
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a;j(x, u) = aj;(x, u), i,j = 1, ... , n. 

H3. The set Uad C L~m)(D) is bounded in L~)(D) and satisfies the condition 

of decomposition, i.e. if Ul' U2 E Uad then for every measurable set E c n the 

function u, 

u(x) = { u1(x), x E E 

u2(x), xED\E 

belongs to Uad too. 
H4. There exists a neighbourhood w of the zero element in L~n)(D) such 

that for every element f E w and u E Uad the equation 

A(u)z = divf, X En 

has a unique solution z = z( u, f) E H6 and this implicit function is continuous 

in f E w uniformly with respect to u E Uad. 

H5. Functions bo and go have the first derivatives with respect to z, p1 , ... , Pn; 

these derivatives are Caratheodory functions and there exist constants r > 
n, p,0 > 0, a positive function h E £ 1 (D) and a continuous bounded function 1 

with !(0) = 0 such that for all arguments 

I bo(x, u, z,p) 1"#2 + I go(x, u, z,p) ~ p,o[l h(x) I~ +I z I~ +I p IF 

0 L 0 L 0 _..z:_ 

1-;-bo(x,u,z,p) I• + 1-;::;-bo(x,u,z,p) 12 + l-;-9o(x,u,z,p) lr+2 + 
uz u~ uz 

{) 
+I -;::;-go(x, u, z,p) I 

UPi 

< P,o[lh(x)l~+lzlr_: 2 +IPI] 

I {) b ( I I) {) b ( 11 11) I L 
OZ 0 x,u,z ,p - OZ 0 ·X,U,Z ,p • + 

I {) b ( I I) {) b ( 11 11) I.!: + -;::;-ox,u,z,p --;::;-ox,u,z,p 2+ 
up; up; 

I {) ( I I) {) ( 11 11) I-"-+ azgo x,u,z ,p - azgo x,u,z ,p r+2 + 

I {) ( I I) {) ( 11 11) I + -;::;-gox,u,z,p --;::;-gox ,u,z ,p ~ 
up; up; 

< J..Lo[l h(x) I~ + I zl I~ +I z11 I~ +I P1 I+ I P11 ll * 
*!(I zl- z11 I + I PI - P11 1), 

i = 1, ... ,n 
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DEFINITION 1 Class N consists of all the Nemitckii operators 

D: X-+ Y, 

n 

n 

such that for f = (fo, !1, .. . , fn) EX 

(Db/)(x) = b(x, fo(x), .. . , fn(x)), x E 0, (5) 

(Dd)(x) = a;j(x)/j(x), i = 1, ... , n, X En, 

where functions a;j, i, j, = 1, ... , n, are measurable and functions b and g are 

Caratheodory functions. 

Class M(v,J.L,J.Lo,r,h,r) (or shortly M) consists of all the operators DE 
N such that functions b, g, a;j, i, j = 1, ... , n, in the representation (5) satisfy 

hypotheses H1, H2, H5 as they stay for b0 , g0 , a;j , i, j = 1, ... , n, respectively. 

DEFINITION 2 A sequence { DK} of operators from the class N converges to the 

operator D 0 
: X -+ Y iff for every f E X the sequence DK f converges strongly 

in Y to D 0 f. 

DEFINITION 3 A sequence DK of operators from the class N SG- converges to 

the operator D 0 
: X -+ Y iff for every sequence ZK convergent weakly in HJ , 

zk _. z0 as K -+ oo, such that 

K=1,2, ... , 

there is 

and 

_dd D?(zo,zox) + D~(zo ,zox) =<pin H- 1 

X; 

(6) 

(7) 



Ma.thema.ti<::e.l a.spech of optima.l control problems for elliptic equa.tions 255 

(8) 

weakly in Y as /{ ---+ oo. 

Here by (z, zx) we denote the element (z, Zx,, ... , zx.J EX. 

DEFINITION 4 By Nad we shall denote the subset of the class N which contains 

all the operators D E N such that 

(Db/)(x) = ba(x, u(x), fo(x), ... , fn(x)), X En, 

(Dd)(x) = aij(X, u(x))fi(x), X En, i = 1, ... , n, 

(D9 f)(x) = go(x, u(x), fo(x), . .. , fn(x)), x E 0, 

for some u E Uad . 

The following properties of these convergences can be demonstrated (see 

U.Raitums [5]): 

LEMMA 2 In every fixed class M convergence in the sense of definition 2 (point

wise convergence) coincides with some metric p0 and in this metric M is a 
complete metric space. 

LEMMA 3 In every class M(v,J.L,J.Lo,/,h,r) convergence in the sense of defini

tion 3 (SG - convergence) coincides with some metric p1 , in this metric class 

M is precompact metric space and the clousure of the M in the metric p1 be

longs to some other class M(v,J.L,J.L'o,!',h',r) where J.L'o,!',h' depends only on 

f2,n,r,V,J.L,J.lo,/,h. 

For a given set Mo C M in what follows we shall denote by co M the closed 

convex hull of the set M in the metric po and by G Mo the closure of the set M0 

in the metric Pl· By virtue of Lemmas 2,3 the set co M belongs to M but the 
set GM0 belongs to some other class M and GM0 is compact in metric p1 . 

LEMMA 4 Every operator D E M is continuously Frechet differentiable. 

Let Mo be a subset of a given class M and let us denote by (M a) the following 

optimal control problem: 

l D9(z,zx)da::---+ min (9) 
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d 
--d D;(z, z.,) + Db(z, z.,) = 0 inn 

X; 

DEMo, z E H6 

U. RAITUMS 

(10) 

(11) 

It is obvious that the original problem (1) - (3) is equivalent to the problem 

(Nad) if the set Nad belongs to some class M. In this case all terms in (1)- (3) 

or in (9) - (11) are well defined. 

For a given subset Mo C M let us denote by Z(Mo) the set of all pairs 

(z, c) E HJ x R such that there exists an operator DE M 0 for which 

and 

d 
--d D;(z, z.,) + Db(z, z.,) = 0 in 0 

X; 

c = l Dg(z, z.,)dx 

On the basis of Lemma 1 the following theorem can be proved. 

(12) 

(13) 

THEOREM 1 Let the hypotheses Hl, H3-H5 be fulfilled. Then the set Z( co Nad) 
coincides with the closure of the set Z(Nad) in the strong topology in HJ X R, i.e. 

if the element zo is a solution of the equation {12} with some D = D0 E co Nad 

then there exists a sequence of operators DK C Nad such that solutions zx E HJ 

of equation {12} with D == Dx, K = 1, 2, ... , converges strongly in HJ to z0 

and 

l Df(zx,zx.,)dx--+ l D~(zo,zo.,)dx asK--+ oo. 

This theorem shows that passage from the set Nad to eo Nad is an extension 

of the original optimal control problem (1)- (3) and this extension preserves 

the price of the problem. 

Here and further on the notion of the price of an optimal control problem 

will refer to the infimum of the cost functional over all pairs ( u, z) (or( D, z)) 

which satisfy all constraints of the problem. 

The extended problem corresponding to the set eo Nad has in general no 

optimal solution. Only in the case where functions a;j, i, j = 1, ... , n, do not 

depend on control (in the original statment of problem) and all solutions of the 

equation (10) with D E eo Nad belong to a bounded set in HJ the extended 

problem (eo Nad) has an optimal solution (under hypotheses H1, H2, H5). 

If the original problem has an optimal solution then the extended problem 

(eo Nad) has the same solution (under hypotheses Hl, H3-H5). Hence, the 
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necessary conditions for optimality in the extended problem for this solution 

are valid for the original problem. Since the set co Nad is convex, derivation 

of these conditions is easier for the extended problem than for the original one. 

One of the first who used such a method for optimal control problems for elliptic 

equations was L.Tartar [6] in the case when the methods of the G- convergence 

were applied. 

In this way we obtain for our original problem (1)- (3) the following result 

(see U .Raitums (5]). 

THEOREM 2 Let the hypotheses H1-H5 be fulfilled, the pair ( ua, zo) be an opti

mal solution of the problem {1} - (3} and the Frechet derivative of the operator 

A( u0 ) at the element z0 be invertible as linear operator from HJ to H- 1 . 

Then the function 

F(x, u) go( x, u, zo(x ), zox(x))-

a;j(x, u)zoxi(x)'lfx,(x)- bo(x, u, zo(x), Zox(x))'lf(x) (14) 

attains its minimum with respect to u E Uad at the element uo for a.e. X En. 

Here the function 'lT E HJ is the solution of the adjoint state equation 

d 
- dx; [aj;(x, ua)'lrxj + bop,(x, ua, zo, Zox)'lf ] + boz(x, uo, zo, Zox) = 

- d~/Op; (x, ua, zo, Zox) + Yuz (x, ua, zo, Zox) in n (15) 

REMARK 1 Analogous result with standard Lagrangian instead ofF in (14) is 

valid for the case of systems of equations 

d I 
--d a;(x, u, Zt, . .. , Z/ 0 , Ztx, .. . , Z! 0 x)+ 

X; 

+ b1(x, U, Z1, ... , Z! 0 ,Zlx> ... , Z! 0 x) = Q, (16) 

where /0 is less then n with additional constraints in the form of equalities and 

inequalities for integral functionals . 

For Theorem 2 and for the case of system (16) it is essential that the set Uad 

satisfy the condition of decomposition. 

REMARK 2 As was mentioned above, using of the needle-like variations de

mands stronger assumptions. Up to this time the necessary conditions for op

timality for the problem (1) - (3) are proved with this approach only under 
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assumptions that the derivatives g0 p,, bop; of the functions go and bo satisfy the 
Lipschitz condition with respect to p (see, for example, U .Raitums [5]). Of 

course, the situation with convex set can be easily treated on the basis of the 

implicit function theorem if the functions al, b1 in the system (16) and integrands 

offunctionals are smooth enough with respect to (u,z,p). 

Although the "convexification" approach allows us to obtain the necessary 

conditions for optimality and "improve" properties of the admissible set of op

erators the question of the existence of optimal solutions remains open. Here 

the extension on the basis of G - convergence can be applied. 

By virtue of Lemma 3 we have the following result (see U.Raitums [5]). 

THEOREM 3 Let the hypotheses H1,H2,H5 be fulfilled, at least one of the equa

tions {12} with D E Naa have a solution and all solutions of the equation {12} 

with D E G Naa belong to a bounded set in HJ. 

Then the extended optimal control problem (GNaa) has an optimal solution. 

If, additionally every equation {12} with DE GNaa has exactly one solution then 
the price of the extended problem is equal to the price of the original problem. 

In this approach it remains unsolved how effectively (for example- in ana
lytical formulas) the set GNaa can be described. Only for some special cases the 

effective description is known (see, for example, K.A.Lurie and A.V.Cherkhaev 

[3], L.Tartar [7]). 

Another shortcoming is that the set G Naa can be, in general, non convex. 

Here are two possibilities of proceeding. The first one is to pass at first from Naa 
to co Naa and after that to Gco Nad· If functions bo and g0 have the following 
representation: 

bo(x, u, z,p) = bo;(x, u)p; + b0o(x, u)bo.(x, z), 

go(x, u, z,p) = go;(x, u)p; + goo(x, u)go.(x, z) 

then it can be shown that the set Gco Naa is convex and closed (in the metrics 

Po and pl). In this case the set Gco Naa can be fully described in terms of 

(n + 3) X (n + 3) symmetric matrix functions whose elements correspond to 

coefficients a;j, bo;, go;, boo, goo· 

The other approach can be used in the case when the functions b0 and g0 are 

affine with respect to p and do not depend on u. Such situation often appears 

in the optimal shape design problems. 
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In such cases the original problem and the extended problem can both be 

fully described by the sets Q0 and Q., respectively, of the coefficient matrices 

A= (a;i(x)),i,j = 1, ... ,n of the equation (12). Let us illustrate it by the 

following simple example. 

Let us have the problem 

1n go(x, z)dx-+ min 

divA(x)Y'z = bo, X En 

A E Qo, z E HJ 

(17) 

(18) 

(19) 

where the set Q0 satisfies the condition of decomposition, consists of mea

surable symmetric matrix-functions A with eigenvalues A1(A)(x), .. . ,An(A)(x) 
from some fixed interval [v, J.t] with v > 0 and if the matrix Ao E Q0 then 

the set Qo contains all measurable symmetric matrix-functions A such that 

A;(A)(x) = A;(Ao)(x), x E 0, i = 1, .. . , n. Of course the set Q0 does in general 
not contain all symmetric matrix-functions with eigenvalues from the interval 

[v, J.t]. For example, the set Q0 consists from all measurable symmetric matrix

functions A with A;(A)(x) = ll or j.t, X En, i = 1, . .. 'n. 
The set Q. is constructed in the following way. 

At the first step we construct the sets 

K1(x) =:eo {(AI, An) E R2 : (AI, An)= (Al(A)(x),An(A)(x)),A E Qo}, 

K2(x) =: {(a,,B) E R2 : A1 ~a~ ,8 ~An, (Al. An) E K1(x)}, 

K3(x) =: {(t,r) E R2 : (t- 1,r) E K2(x)}, 

K4(x) =: {(e,() E R2
: (C1

,() E eo K3(x)} . 

After that the set Q. consists of all measurable symmetric matrix-functions A = 

(a;i(x)), i, j = 1, ... , n, such that (A1(A)(x), An(A)(x)) E K4 (x) for a.e.x E 0. 
Then, the extended problem is formulated via (17) - (19) where the set Q0 

is replaced by the set Q •. 

The main property of this extension (see U.Raitums [5]) is that the set Z(Q,.) 
of all solutions of the equation (18) with A E Q,. coincides with the set of all 

weak limit elements in HJ of sequences of solutions of the eqJlation (18) with 

A E Q0 . Hence, the extended problem has an optimal solution and the prices of 

both problems are equal. 
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All these constructions are local, and therefore, if in the original problem 

(17) - (19) matrices A from Q0 are fixed in some subset 0 0 c n then in the 

extended problem matrices from Q* are fixed too. 

Of course, other boundary value problems can be treated analogously. 

The case with additional constraints has some specific features. When we 

pass to the wider sets of controls (or operators) then in general there can appear 

new components of the set of pairs ( u, z) which satisfy all constraints of the 

problem. Therefore, the question of maintaining the price of the problem is 

open. In this connection we can point out one condition which allows us to 

handle this question. 

Let us denote by I(Z) the price of the problem (1) - (3) with additional 
constraints 

Ii(u, z) = 1 Yi(x, u, z, z.,)dx, i = 1, ... , mo, "f =(eo, f1, ... , fm 1 ). 
n . 

If there does not exist a pair (u, z) E Uad x HJ which satisfies all constraints of 

this problem then, by definition, I(Z) = oo. 

DEFINITION 5 The optimal control problem (1)- (3), (20) satisfies at "f = 0 the 

first condition of approximation if the function I= I(€) is continuous at "f = 0. 

If functions Yi in (20) satisfy the same Hl, H5 as formulated for function g0 

then we can in a natural way extend the definitions of classes N and M and 

the corresponding definition of the problem (Mo) (relationships (9) - (11) - by 

means of additional components of operators D responsible for constraints (20). 
Then it can be shown that if 

1. The first condition of approximation at "f = 0 is satisfied, then with 

transition from Nad to co Nad or GNad the price of the problem is maintained. 

Finally, we shall point out that the first condition of approximation charac

terizes in some way the well-posedness of the original problem. That is because 

in practical problems the values of right hand sides in constraints (20) are not 

strictly defined (exceptions ocour when these constants coincide with some phys

ical constants, for example, the melting temperature). Hence, the discontinuity 

of I(Z) at ( = 0 shows that the possible optimal solutions are not stable and 

small perturbations in the statement of the problem can lead to a very different 
situation, for example, another price of the problem. 
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