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The paper raises and solves the problem of reaching the given terminal state 

or damping oscillations of the wing by means of an actively controlled surface. 

It is assumed that constraints imposed on the norm of control are to be met in 

the minimal time. 

1 Introduction 

A contemporary aircraft is a complex mechanical system, comprised of in­

teracting rigid and elastic elements. Its individual parts, e.g. a wing, tail of a 

plain, missile body, have the form of thin elongated bodies and during the flight 

they are subjected to large deformations and vibrations . The interaction of air­

craft deformations with aerodynamic and control forces can result in undesired 

phenomena, such as oscillations, loss in the flight stability, flutter. To overcome 

these unwanted phenomena some precautions, in the main of passive nature, are 

undertaken. They are as follows: improving the construction rigidity or forward 

shift of the line of wing center of mass by means of dispos ing additional loads 



264 T.K. SERAZETDINOV 

close to the leading edge. However, these measures are not always effective. 

Hence at the present time the problem of active damping of elastic vibrations of 

a wing or other parts of au aircraft becomes the subject of study. Of particular 

interest is the problem of increasing the critical speed of wing flutter by active 

damping of elastic vibrations of a wing. 

Consideration presented gives rise to the following problem: given the shape 

and the speed of construction under examination and its equations of motion, 

one has to determine the desired control signal, i.e. such that vibrations are 

damped. 

The problem of active control of elastic constructions is very complicated 

and to solve it fundamental theoretic and experimental investigations are to be 

carried on. The paper is concerned only with theoretic time-optimal problems 

of active damping or critical damping of elastic vibrations of a wing. 

Elastic vibrations of a construction are described by partial differential or 

integro-differential equations and refer to distributed parameter systems. Prob­

lems of control of distributed-parameter systems as well as those related to a 

number of applications are generalized in the monography (1]. In this monogra­

phy the problem of analytic construction of an optimal controller for damping 

vibrations of the elastic axis of a ballistic missile or elastic wing is discussed. 

In particular, it is shown that: (i) there exists a possibility of the significant 

increase in the critical speed of flutter by the use of the control surface of an 

aileron type (ii) the fluid vibrations occurring in the tank of a mother-missile 

can be optimally damped (iii) the elastic vibrations of a wing under random 

disturbances can be time-optimally damped. 

In the book (2] and in other publications one can find the analysis of the 

following problems: (i) the mathematical description of an elastic spacecraft 

considered as a distributed-parameter plant (ii) the optimal synthesis of control 

in deterministic and stochastic systems (iii) the adaptive optimal control (iv) the 

estimation of system state ( v) the question of filtration in distributed-parameter 

systems and elastic spacecrafts. 

The paper deals with a generalization of the time~optimal control problem 

formulated for distributed-parameter systems as well as the application of this 

approach to the optimal damping of elastic vibrations of a wing. 
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2 Formulation of the problem and a method of 

solving it 

The coupled flexural vibrations of a wing arising from the action of forces: 

elastic, aerodynamic and those brought about by actuators are described, in the 

non-dimensional form, by the following system of differential equations [3] 

~~a(~) -mat, - mo- at2 +at, El ax, - Y- F18- 0, 

!f..:e ~ a ( ?:£..) -I at, -mo-at, - at Gip ax -M- F28- 0, (1) 

t>O, xE(0,1), 

where t - time; x, y - the coordinates of points of the elastic axis of the wing; 

'P - the angle of rotation of the wing cross-section about the elastic axis; m 

-the distributed mass of wing cross-section; a- - the distance of the center of 

mass of the wing cross-section to the wing elastic axis; El, G lp - the flexural 

and torsional wing rigidity, respectively; Y, M - the distributed lift force and 

aerodynamic moment about the wing elastic axis, respectively; 8 - the control 

angle. 

at the points, where there is the movable surface. 

at the points, where there is no the movable surface. 

Given a controllable system described by the integral equation 

IJI;(x,t) = 1t 11 

K;(x,t,~,t')u((,t')d~dt', i = r,n, (2) 

where: IJI;(x, t) - the functions representing the state of process at the time 

instant t > 0 and at the point x E [0, 1], (IJI; E Lq, q ~ 1); u = u(~, t)- the 

control function (u E LP, p ~ 1, ~ + ~ = 1); K; = K;(x,t,~,t')- the kernel of 

the equation (K; E Lq, q ~ 1). 

Having the Green function constructed for the equations (1), they can be 

reduced to the integral equation (2). Under such a transformation the functions 

IJI; = IJI; ( x, t) can be expressed as linear functions depending upon y = y( x, t), 
'P = 'P( x, t) and their time derivatives. 

Let us assume that a:; = a:( x, t) E A C Lq are given functions and at some 
time instant t = T > 0 the following condition has to be satisfied 

[IJI;(x, t)lt=T = o:;(x, T) (3) 
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It is assumed that if there is no constraints imposed on the norm of control 

lluiiLp, then any element of the set A can be reached at an arbitrary time 

instant T ~ 0. 

The problem 1. For a system described by the equation (2) one has to 

determine such a control rule u = u( x, t) that at the time instant t = T > 0 the 

given conditions (3) and constraints imposed on the norm of control llui!Lp ::; 1, 
where 1 some positive number, are satisfied. 

The problem 2. For a system described by the equation (2) one has to 

determine such a control rule u = u(x, t) that the given conditions (3) and 

constraints imposed on the norm of control lluiiLp ::; 1, where 1 some positive 
number, are met in the minimal timet= T > 0. 

3 Necessary and sufficient conditions for solv­

ing the problems stated 

Let us assume that the functions a;(x,t) and KL,(x,T,e,t') are such that 

the equations (2) and (3) can be solved with respect to W;(x) E Lp for every 

T E (0, +oo) . 

Theorem 3.1 [1] The necessary and sufficient condition for the existence of a 

solution u = u(x, t) E Lp to the equations (1) and (2) subject to the constraint 

llu liLp ::; 1 (/ = const > 0} at some T E (0, oo) is that for all possible choices 

of the vector function >.(x) = {>.1(x), · · · ,>.n(x)}, >.;(x) E Lp the following in­
equality holds 

(4) 

where 

{ 

T 1 1 n q }; 

F(>.) = la la la ~>.;(x)K;(x,r,e,t')dx dedt' (5) 

A control rule, for which the assumptions of the theorem hold true, is of the 

form 

(6) 
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where 

K(e,t') = 11 

t>.;(x)K;(x,T,e,t')dx. 
0 i =1 

(7) 

The Lagrange multipliers >.; satisfy the following equations 

q for fo 1

1K(e, t')iq- 1 Kj(y,T,e, t')sign [K(e, t')J dedt'- .-\oaj(Y) = o, (8) 

11 

~.-\;(x)a;(x,T)dx = 1, 

1 1 
-+-=1 
q p 

and 

where lluiiL. = FC>.) :::; 1. 

p 2: 1, 

(9) 

q 2: 1, 

To make use of the control rule (6), one has to solve the equations (7) to 

(9) with respect to >.; (i = 0, 1, · · ·, n) or the Lagrange multipliers are to be 

directly determined from the condition that F(.-\) is to be minimized subject to 

the constraint (9), where F(>.) is defined by the expression (5). The multipliers 

>.; derived in such a way are substituted into the formula (7) . The formulae (6) 

and (7) allow to construct a control rule providing a solution to the Problem 1. 

The equations (7) to (9) are nonlinear; in order to solve them a modified Newton 

method of tangents is applied. It should be emphasized that the relations (6) 

hold for q = 1 too. 

Theorem 3.2 [1] The smallest positive root T of the equation 

1 
I = F(>., t) 

yields a solution to the time optimal problem. 

(10) 

To determine control providing a solution to the time optimal problem one has 

to solve the equations (7) to (9) and construct a control rule such that the 

condition (10) of Theorem 2 holds. 

4 Approximate method of solving the time op­

timal problem for an elastic wing 

When examining elastic vibrations of a wing, the system of equations (1) 

and the boundary conditions are usually transformed into an infinite system of 
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ordinary differential equations. Further this system is approximated by a finite 

one. 

The constraint on the deflection angle of movable surface can be reduced to 

the assumption that q = 1 and lul :::; l. Under these conditions the system of 

equations (7) to (9) can be approximately written in the form 

J: K;(T, t)sign 2.:::1 >.;K;(T, t)dt- >.oaT; = 0, 
"\'2N 
wj=t >.iaii = 1, i = 1, 2, · · ., 2N, 

(11) 

where N - the number of wing vibration frequencies taken into account. 

To construct the optimal control rule, one has to solve the system of equa­

tions (11) with respect to >.; (i = 0, · · · , 2N) first . However, this system is 

nonlinear due to the fact that >.; enter into the sign expression. It is suggested 

to solve the system under consideration by a linearization method at the vicinity 

of>.; = >.~k), where >.~k) -the value of the k-th approximation of>.;. As a result 

the following system to be solved is obtained: 

where 

a~k) ->.oaT;+ 2.:~~1 K;i8>.i = 0, i = 1, · · ·, 2N 

a~k) + L~~1 aTjDAj = 0, 

a~k) = 1T K;(T,t)signK(k)(t)dt 

2N 

K(k)(t) = L Kj(T, t)>.)k ) 
i=1 
2N 

a~k) = LaTi>.)k)- 1 
i=l 

K(k) _ ~ [ . K(k )] 2K;(T, t)Ki (T, t) 
ij --L...J szgn -s [dK(k)] 

•=1 dt t, 

[
dK(k)] =~[dK;(T,t)] >.(k) 

dt L...J dt ~ 
t . ;=1 t=t. 

(12) 

where ts - the time instant of control switching; [signK(k)]_
8 

-the sign of the 

function J((k)(T, t) at points t < t 8 belonging to the left-hand side neighbour­

hood of the point t 8 , s = 1, 2, · · · , So; So - the total number of switching points 
in the time interval (0, T) . The switching points t. correspond to values oft 
such that K(k)(t) equals to zero. 
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5 Solution procedure 

To accomplish the time-optimal control, one has to make at every time 

instant measurements of: (i) the initial deflection of the elastic axis y( t); (ii) the 

precession angle of this axis tp(t) as well as their velocities y(t) and <f(t). On 

the basis of these measurements the coefficients fXTi are determined. 

The kernel of equation K;(T, t) depends upon the wing parameters and is 

computed in advance. This kernel is given in the form of an analytic function 

or a table. 

When solving the system of equations (11) with respect to A; for distinct 

values ofT, one can find the smallest value ofT among solutions to the equa­

tion (10). This is a solution to the time-optimal problem and A; is the value 

of Lagrange multiplier corresponding to the time-optimal control. Substitution 

of the obtained value of A; into the control rule results in the optimal value of 

control angle. 

If external disturbances were absent, then the control rule derived in such a 

way would be optimal with respect to ideal damping of measured disturbances 

of the initial state. However, in the course of flight disturbances of different 

character, e.g. gust of wind, non-uniformity of the atmosphere etc., exert their 

influence. For this reason the initial deviations should be measured continuously 

and use to solve Problems I and 11 . 

Numerical experiments carried out have shown that the optimal value ofT is 

a fraction of a second. However, the possibility of solving the problem discussed 

in on-line mode, i.e. during the aircraft flight, requires a considerable effort to 

work out computation procedures effective enough to accomplish this objective. 
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