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Introduction 

The results on sensitivity analysis of solutions to a class of shape optimiza

tion problems for the systems governed by elliptic partial differential equations 

are presented in the paper. In [12] the differential stability of solutions for a 

class of the non-convex parametric optimization problems is established using 

the Hadamard derivative of a metric projection onto the set of admissible pa

rameters. The analysis is based on the observation that any local minimizer 
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of the regularized parametric optimization problem is given in the form of a 

fixed point of the metric projection onto the set of admissible parameters. In 

the present paper we use the method of sensitivity analysis proposed in [14] for 

convex problems, see also [1 5], [16]. 

The shape optimization problem considered in the present paper is non - convex. 

Let us consider an example of such problem in R2 • 

We denot~ by 0( v) the following domain 

where v is an element of the following set of admissible graphs (parameters) 

where a 1 , a 2 , aa are positive constants such that the set U is nonempty. 

Denote by y(v) E HJ(O(v)) the solution of the following state equation 

-b.y(v) = f, in O(v) 

y( V) = 0, on f = af2 
where f E H 1 (0) is given. 

Let a~ 0 be the regularization parameter and denote by :la(.) the following 

cost functional 

. 11 2 a 2 :la(.)= 2 (y(v) - Zd) dx + 211viiH'(0,1) 
O(v) 

where zd E H 1 (R2 ) is given. 

Let us consider the following shape optimization problem 

min:la(v) 
vEU 

and denote by Ua E U an optimal solution which exists for any a > 0. 

For a = 0 to solve the optimization problem means to find the metric pro

jection in L 2 of Zd onto the set 

{ y(v) E H 1(0(v)) I v E U} 

On the other hand for any a > 0 the necessary optimality conditions read 

1 
Ua = Pu( --!Ja(ua)) 

a 
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where 9a(.) denotes the gradient of ..1a( .). 
In the present paper we show that if the following condition is satisfied: 

there exists (3 > 0 such that d2 ..1a( u"'; v, v) ~ fJIIvllhl(O,l)' \lv E {S-S}, where 
S is a given cone in H 1(0, 1) associated to Ua, furthermore the set U satisfies an 

auxiliary condition at Ua E U, then the local solution u"' is stable with respect to 

the perturbation of the data.of the optimization problem under considerations. 

The method of sensitivity analysis proposed here is general and can be used 

for the linear parabolic, hyperbolic, as well as some nonlinear partial differential 

equations. We shall consider a model problem with the set of admissible graphs 

which satisfy local inequality constraints. We refer the reader to [11] for related 
results on the differential stability of metric projection and some applica:-tions. 

The results on the shape sensitivity analysis of convex optimization problems 

for the distributed parameter systems are presented in [14], [15], [16] and on 

the shape sensitivity analysis of variational inequalities in [18]. The material 

derivative method in the shape optimization of the distributed parameter sys

tems as well as the shape calculus for partial differential equations are described 

in [19]. The results on the shape sensitivity of Min- Max are provided in [3]. 

A shape estimation problem is considered in [2]. The second order optimality 

conditions are obtained in [6] for a shape optimization problem for an elliptic 

equation. The form of a distribution associated to the Hessian of a general in

tegral shape functional is derived, using the material derivative method, by M. 

Delfour and J.-P. Zolesio [4]. The results and applications of the shape opti

mization in the structural mechanics are presented e.g. in [5], [8], [12]. We use 
standard notation throughout the paper [1],[15]. 

The outline of the paper is the following. In section 1 the method of sen

sitivity analysis is presented in an abstract setting. In section 2 the stability 

result for a shape optimization problem for the Laplace equation is obtained. 

In section 3 the shape sensitivity analysis for the wave equation is performed. 

Finally, section 4 is concerned with the directional differentiability of the metric 

projection in Sobolev spaces onto convex, closed subsets. We refer the reader 

to [17] for the proofs of results presented in the paper. 

1. Sensitivity analysis 

We briefly desribe, in an abstact setting, the method of sensitivity analysis 
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proposed in [17]. Let K be a closed, convex subset ofHilbert space H, Ja,e(u) = 
Je(u) + %11ullh a C2 functional, a> 0, € E [0, c5) are parameters. Set K denotes 

the set of admissible graphs for a shape optimization problem. 

Denote by 9c(u) the gradient, and by 1{-c(u) the Hessian, of Jc(u). Consider 
the following optimization problem 

Minimize J a ,c ( u) over the set K C H 

The first order necessary optimality conditions takes the form of the following 

variational inequality: 

(1.1) 

hence 

(1.2) 

i.e. Uc is the fixed point, PK is the metric projection in H onto K . We shall 

consider the stablity of a local solution to (1.2) with respect to the parameter 

v. Denote Fe(v) = -~9e(v) whence 

(1.3) 

If for a fixed a > 0 the nonlinear C 1 mapping :Fa is a contraction 

IFo(v)- Fo(u)l ~ Lllv- ulln (1.4) 

for some 0 < L < 1, and the mapping € ~ :Fe ( v) is locally Lipschitz continuous 

(1.5) 

it follows that the local solution to (1.1) is unique, and Lipschitz continuous 

with respect to € 

(1.6) 

since the norm lluclln is bounded provided e.g. Jc(v) ~ 0 for all v E K . 
lt is clear that in order to obtain the differentiability of Ue with respect to € at o+, 
we should first establish the differentiability with respect to € of fc = 9e(uc) · It 
follows [14] by the Lipschitz continuity (1.6) that there exists an element q EH, 
in general non-unique, such that 

Ue=uo+€q+r(€) (1.7) 
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assuming compactness of 9e(.), £ ~ 0, it follows 

9e(ue) = 9o(uo) + €[1io(uo)q + a9(uo)] + o(c) (1.8) 

where ()g denotes directional derivative of 9e( 0) with respect to € at € = o+ 0 

We can use (1.8) and differentiate (1.2) provided the metric projection PK is 

directionally differentiable in the sense of Hadamard at -~90 (u0 ). Suppose 

that there exists a mapping Q : H -. H such that for all hE H and r > 0, r 
small enough 

1 1 
PK( --9o(uo) +rh)= PK( --9o(uo)) + rQ(h) + o(r), in H {1.9) a a · 

where llo(r)lln/r -. 0 with r ! 0 uniformly, with respect to h, on compact 

subsets of H. Then 

1 1 
q = Q( --1to(uo)q- -a9(uo)) 

a a 
{1.10) 

which means that the directional derivative q in (1.7) is given by the fixed point 

(1.10). 

In references [11],[14],[17] we provide formula (1.9) for some specific convex 

sets in the Sobolev spaces. In particular (1.9) holds for any ball in Hilbert space, 

see e.g. [17]. For the sets with local constraints in the Sobolev spaces, see ( 4.2) 

for an example, under additional assumptions [11],[14],[17], Q = Ps where S is 
the convex cone in H of the following form 

S = TK(uo) n [.!_9o(uo) + uo].L 
a 

here TK(uo) is the closure of the tangent cone: 

TK(uo) =cl{ v EH l3r > 0, such that uo + rv E K} 

(1.11) 

to K at uo E K. It turns out that if Q = Ps then the following condition leads 

to Lipschitz continuity and directional differentiability of Ue, the local solution 
to ( 1.1), with respect to £ at o+ 

3/3 > 0: d2 Ja(uo; v, v) ~ f311vllh, 'Vv E {S-S} (1.12) 

- see PROPOSITION 1 in [17]. It can be shown that (1.12) implies that the 

fixed point q defined by (1.10) is unique. In order to apply the abstract scheme 

it is required [17] that the metric projection PK in H onto K is directionally 

differentiable in the sense of Hadamard at -~9(u0 ). 
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2. Shape optimization problem for Laplace 

equation 

Let Q C Rn- 1 , n ~ 2, be a given domain with smooth boundary fJQ. We 

denote by Q = 0 1 c Rn the domain of the following form 

n = {(x', Xn)l 0 < Xn < f(x'), x' E Q} 

where x' = (x1, ... ,Xn-1), and/(.) is a given function which belongs to the set 

K = {/ E H0(Q) I 0 < 1/J1(x')::; f(x')::; 1/J2(x'), Vx' E Q} 

here 1/;; (.) E H ~ ( Q) , i = 1, 2 are given elements such that the set K is nonempty, 
s > n - 1. We denote by D the following domain in Rn 

D = {(x',xn) I 0 < Xn < 1/J2(x'), x' E Q} 

therefore n, CD, V/ E K. 

We provide the results on the shape sensitivity analysis of an elliptic state 

equation and of an associated shape functional in the variable domain setting 

i.e. using the so - called shape derivative of a solution to the elliptic equation. 

Such approach is, in some sense, straightforward compared to the fixed domain 

formulation [17],[18],[19]. We refer the reader to [19] for the detailed description 
of the material derivative method in the shape sensitivity analysis of partial 

differential equations. Let us consider the following elliptic equation 

-dy = F, inn, 

y = 0' on an, 

Denote 

Ot = {(x',x) I 0 < x < f(x') +th(x'), x' E Q} , 

where h(.) E H0(Q) is given, t is small, furthermore we denote by 

h ( ') h(x') 
v x = (1 + IV' /(x')l 2) ~ 

(2.1) 

(2.2) 

(2.3) 

the normal component of the vector field (0, ... , 0, h(x')) E Rn on f(/). Let 
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-flyt = F, in Ot 

Yt = 0, on 80t 

Define the domain derivative [19] y' = y'(hv) 

, aY( ) 
y = Tt x,t lt=O 

where 

Y(x, t) = { ~t(x) for x E Ot, t ~ 0 

for x f/. Ot, t ~ 0 

277 

(2.4) 

(2.5) 

(2.6) 

The domain derivative is given by a unique solution of the following elliptic 

equation [19] 

-fly' = 0 ' in n, 

, ay ( ) 
y = -hv on ' on r f 

y
1 = 0 ' on 80 \ r(f) 

Let us consider the following shape functional 

) 
1 { 2 a 2 

Ja(f = 2 Jn, (y(f; .) - z(.)) dx + 211/IIH~(Q) 

where z(.) E H 1(D) is a given element. 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

The directional derivative for shape functional (2.10) in a direction h takes 

the form [17] 

dJa(f; h)= ((]o(f), h)H~(Q) +a(!, h)H~(Q) 

here we assume z = 0 on r(f) 

= f (y(f;.)-z(.))y'(hv)dx+a(f,h)H•(Q) Jn, a 

In standard way we introduce the adjoint state [17] 

-!lp = y- z ' inn, 

p = 0' on an, 

then 

(2.11) 

(2.12) 

(2.13) 
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1 8p8y 
dJa(f;h)= hv-

0 
-
0 

df+a(f,h)H•(Q) 
r(f) n n o 

(2.14) 

Finally we evaluate [17] the second derivative 

d2 la(!; h, v) = 

= lim ~(dJa(f + tv; h)- dla(f; h)) 
t!O t 

(1to(f)h, v)H~(Q) + a(h, v)H~(Q) = 

_ { (h (V/(z'), Vv(z')) (V/(z'), Vh(z'))) 8p 8y df 
lr(J) V (1 +IV /(z')l 2 ) + Vv (1 +IV /(z')l 2 ) on on 

1 8p 8y 1 8 ( 8y 8p) -2 K-mVvhv-
0 

-
0 

df + hvvv-
0 

-
0 

-
0 

df 
r(J) n n r(J) n n n 

1 (op' oy op ay') + hv -
0 

-
0 

+ -
0 

-
0 

df + a(h, v)H•(Q) 
r(J) n n n n o 

(2.15) 

where Km is the mean curvature on f(f), and the domain derivatives y'( v, ), 
p'( Vv) satisfy the following elliptic equation 

and 

-Ay' = 0 , in n 1 

y' = - Vv ~~ ' on r(f) 

y' = 0 ' on an \ r(f) 

- Ap' = y' - z' , in n J 

1 0y ( ) p = -vv on , on r 1 

p' = 0 ' on an \ r(f) 

(2.16) 

(2.17) 

(2 .18) 

(2.19) 

(2.20) 

(2.21) 

here z' is the domain derivative of the observation z(.), we can assume z' = 0. 

REMARK 2.1 Since on f(f) we have y'(hv) = -hv~,p'(hv) = -hv*' it fol
lows that 

f h (op' ay op ay') dr 
lr(j) V On On+ On On 

1 8p' 8y' 
= - (y'(hv)-

8 
(vv) + p'(hv)-

8 
(vv))dr 

r(J) n n 
(2.22) 
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We suppose that the element z(.) in the cost functional (2.10) depends on 

the parameter c: E [0, 8) 

z, = z + c:{} (2.23) 

In the sequel we consider the sensitivity of a local solution to the shape 

optimization problem with respect to c:. It can be shown [17] that the derivative 

1J of the adjoint state p with respect to c: is a unique solution of the following 

elliptic equation 

-Ll1J = -iJ, in nf 
1J = 0, on an! 

(2.24) 

Furthermore [17] for any a > 0 there exists an element J: which minimizes 
the perturbed cost functional 

(2.25) 

over the set KC H0(Q), for fixed s > n- 1; we assume that z = 0 on r(ft). 
Let f; E K be a local solution to the first order necessary optimality conditions 

for the shape optimization problem under consideration. 

THEOREM 2.2 Assume that there exists f3 > 0 such that 

d2 Jo:(ft; v, v) ~ f311vii~,;(Q) , Vv E {S-S} 

and suppose that the following condition {17] is satisfied 

TK (f) n [f- g]l. = cl( CK(/) n [f- g]l.) 

for f = ft = PK( -~go(ft)), g = -~go(ft). 
Then for c: > 0, c: small enough 

t:=ft+c:q+o(c:), inH0(Q) 

(2.26) 

(2.27) 

where llo(c:)lln,;(Q)/t: ! 0 with c: ! 0 and the element q is given by a unique 

solution of the following optimality system, here we denote f = ro. 

Find (y', p', q) such that the following system is satisfied 

State equation : 
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- D.y' = 0, in nf 

y' = -qv ~~ , on f(f) 

y' = 0 ' on an\ r(f) 

Adjoint state equation : 

-D.p' = y', in nf 

p
1 = -qv~~ ' on r(f) ' p' = 0 ' on an j \ f(f) 

Optimality conditions : 

q E S = Tx (ft) n [ft + ~9o(ft)].L , ft = f , 
a 

J . SOKOLOWS KI 

(2.28) 

(2.29) 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

- f ((h- ) (\lf(x'),\lq(x')) (\lf(x'),\l(h-q)(x'))) opoydr 
lrcn qV (1 + l\lf(x')i2) +qV (1 + l\lf(x')i2) On On 

l opoy 
-2 Kmqv(h- q)v~~df 

r(j) vn vn 

+ { (h- q)vqv! (~Y ~p) df 
Jr(f) vn vn vn 

+ f (h- q)v (op' oy + op oy') dr 
lr(j) on on on on 

1 oryoy 
+a((h - q), q)H•(Q) + (h- q)v ~~dr ~ 0, Vh E S 

a r(f) vn vn 
(2.34) 

Here Tx ( v) denotes the tangent cone to I< at v E I<, [/- v ].L is the hyperplane 

orthogona/ in H0(Q) to f- v. ConeS takes the following form 

where 

s = {<p E H~(Q) I <p ~ 0 on sl' <p::; 0 on 32' 

1 
(ft + -9o(ft), <p)H~(Q) = 0} , 

a 

S; = {x E Q I /t(x) = 1jl;(x)}, i = 1, 2 

PROOF OF THEOREM 2.2 is given in (17]. 
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3. Shape optimization problem for wave equa

tion 

Let us consider the shape estimation problem for the wave equation 

Ytt- !:J.y = F, inn, x (0, T) 

y = 0 ' on an, X (0, T) 

y(O) = Yo, Yt(O) = Y1 , inn, 

(3.1) 

(3.2) 

(3.3) 

we use here notation of section 2. We assume that F, z are defined in D x 

(0, T) , Yo, Y1 are defined in D, the data are supposed to be smooth enough. For 

the shape functional 

1 ( { 2 a l2 
Ja(f) = 2 Jo Jn, (y(f; ., .) - z(., .)) dxdt + 211/ ln~(Q) (3.4) 

the directional derivative is given by 

1Tl ap ay 
dJa(f; h)= hv-a -a drdt +a(!, h)n•(Q) 

o r(J) n n o 
(3.5) 

here we assume z = 0 on r(f) x (0, T). The adjoint state p satisfies the following 
equation 

Ptt - !:J.p = y- z , in n, x (0, T) 

p = 0' on an, X (0, T) 

p(T) = 0, Pt(T) = 0, inn, 

(3.6) 

(3.7) 

(3.8) 

We can evaluate the shape derivative y'(hv) (19), which satisfies the following 

wave equation 

Y~t- !:J.y' = 0, inn, x (0, T) 

y' = -hv :~' on an, X (O,T) 

y' ( 0) = 0 , Yt ( 0) = 0 , in n J 

(3.9) 

(3.10) 

(3.11) 

In the same way as before we can evaluate the second derivative of the cost 
functional 

(3.12) 
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1T { ('\lf(x'), \lv(x')) (\lf(x'), \lh(x')) Op Oy 
- O Jr(f) (hv (1 + l\1 f(x')l2) + Vv (1 + l\1 f(:z:')l 2) + 2KmVvhv) On On dfdt 

+ {T 1 hvVv ~ (~Y ~p) dfdt lo r(f) vn un un 

+ {T 1 hv (?' ~y + ~p ~y') dfdt + a(h, v)H•(Q) 
} 0 r(/) un vn un un ° 

where Km is the mean curvature on I' {f), and the domain derivative y' ( Vv) 
satisfies to (3.9)- (3.11) with hv replaced by Vv, the domain derivative p'(vv) 
satisfies the following wave equation 

P~t- Ap' = y' - z' ' in n, X (0, T) 

p' = -Vv ;~' on an, X (O,T) 

p'(T) = 0, p~(T) = 0, inn, 

(3.13) 

(3.14) 

(3.15) 

here z' ( Vv) denotes the shape derivative of the observation z. We can obtain the 

same stability results for the shape optimization problems for the wave equation 

as in section 3 for the Laplace equation. We refer the reader to [9] for the results 

on the sensitivity analysis of the convex control problems for the wave equation. 

4. APPENDIX 

Finally we provide some results on the directional differentiability of the 

metric projection onto the set K. We assume for simplicity that the set of 

admissible graphs takes the following form 

K = {f E H~(Q) I f(x) ~ 1/;(x), x E Q} (4.1) 

here we denote x for x', V;(.)= 1/;1 (.) E H~(Q), and m~ n -1 is an integer. 
Exactly the same results can be derived [17) in the case of convex set 

K = {! E H~(Q) I 1/J2(x) ~ f(x) ~ 1/J1(:z:), x E Q} (4.2) 

where 1/J2(:z:) ~ 1/J1(:z:) ~ c > 0 are given in H~(Q). Tangent cone TK(f) is 

the closure in H~(Q) of the convex cone 

CK(f) = {v E H~(Q) J3t > 0 f(x) +tv(x) ~ 1/;(x), in rl} (4.3) 
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For g E H[{'(Q), such that f = Px(g) let us define in H[{'(Q) the following 

convex cone · 

( 4.4) 

LEMMA 4.1 Assume that for f = Pxg, g E H[{'(Q) the following condition is 

satisfied 

S = cl( Cx(f) n [/- g].L) (4.5) 

here cl stands for the closure. Then for any h E H[{'(Q) and r > 0, r small 

enough 

Px(g +rh)= Px(g) + rPsh + o(r) 

where l!o(r)iiH.;"(Q)/r -+ 0 with r ! 0 uniformly with respect to h on compact 
subsets of H[{'(Q). 

PROOF OF LEMMA 4.1 is given in [7),(10). 

REMARK 4.2 It can be shown [11] that in general 

(4.6) 

in the Sobolev spaces H[{'(O), m= 2, 3, ... 

Denote 

3 ={a: E Q I /(a:)= l/l(a:)} (4.7) 

hence 3 is compact, and let the non- negative Radon measure J1. be defined by 

(g- f, IP)H;:'(Q) = J tpdJJ, 0 ~ tp E Cgo(Q) (4.8) 

We denote by sptJJ the support of measure JJ, sptJJ is compact. It can be 

shown [17], that J1. integrates all elements of the Sobolev space H[f(Q). 

DEFINITION 4.3 Compact F = sptJJ is admissible provided condition (3.5) is 
satisfied. 

THEOREM 4.4 Assume that the compact F = sptJJ satisfies the following con

dition: 

tp E H[f(Q), tp = 0 on F implies tp E H[f(Q \F), 

then sptJJ is admissible. 



284 J. SOKOLOWSKI 

CoROLLARY 4.5 Assume that condition (4.5) is satisfied for f = PK(g), g = 
g(O) and g(.) : [0, 8)- H[f(Q) , 2m > n, is given mapping strongly differen

tiable at o+' then for € > 0 , € small enough 

(4.9) 

where we denote 

S = TK(f) n (g(O)- /]1. (4.10) 

= {<p E H[f(Q) I <p(x) ~ 0, on S, j <pdJ.t = 0} (4.11) 

Finally we have the following remarks 

For the observation z E H 1(D'), where D' C D, we replace n, in (2.10) by 

0.1 n D' and we can proceed in the same way. 

The form of second derivative (2.15) can be obtained using the classical 

formula for the time derivative of the surface integral over a moving manifold. 

We refer the reader to [17] for the details. 
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