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by 
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Linearly elastic fiber reinforced composite discs and laminates 
in plane stress with variable local orientation and concentration of 
one or two fiber fields embedded in the matrix material, are consid
ered. The thickness and the domain of the discs or laminates are 
assumed to be given, together with prescribed boundary conditions 
and inplane loading along the edge. 

The problem under study consists in determining throughout the 
structural domain the optimum orientations and concentrations of 
the fiber fields in such a way as to maximize the integral stiffness of 
the composite disc or laminate under the given loading. Minimiza
tion of the integral stiffness can also be carried out. The optimiza
tion is performed subject to a prescribed bound on the total cost or 
weight of the composite that for given unit cost factors or specific 
weights determines the amounts of fib er and matrix materials in the 
structure. Examples are presented by the end of the paper. 

1. Introduction 

This paper gives a brief account of recent research reported by the first author in 
[1) on optimization of fiber orientation and concentration in composite discs and 
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laminates. The research is inspired by the initial work in the field by Rasmussen 
[2] (reported in Danish, account in English available in Niordson and Olhoff [3]) 

and by important recent developments of Pedersen [4- r]. Problems concerning 

optimization of fiber orientation have earlier been considered by Banichuk [8], 

and we refer to Sacchi Landriani and Rovati [9] for other current research activ

ities in the area. Since the present research also comprises optimization of fib er 

concentration, and allows for more than one field of fibers, our development can 

be easily augmented with appropriate constitutive material models applicable 

for topology optimization, cf. Bends0e [10-11], and results for problems of this 

type have already been obtained. 

The motivation for the work described in this paper is that fiber reinforced 

composite materials are ideal for structural applications, where high stiffness 

and strength are required at low weight. Aircraft and spacecraft are typical 

weight sensitive structures, in which composite materials are cost effective. To 

obtain the full advantage of the fiber reinforcement, fibers must be distributed 

and oriented optimally with respect to the actual strain field. Hence, transfer 
of fiber material from initially lowly stressed parts of the body in order to 

strengthen the parts and directions that are subjected to large internal forces is 

the general idea of optimization of composite structures. 

Thus, relative to refs. [4-9], we in this paper both use fib er orientations and

concentrations as design variables. Based on the strain field determined by finite 

element analysis we construct an iterative two-level optimization procedure that 

consists of an optimality criterion approach as described by Pedersen [4,5,7], and 

a mathematical programming technique. Here, 

- in the first level, the local fiber orientations corresponding to a global 

optimum are determined using an optimality criterion for these design 

variables, and 

- in the second level, the local distribution of the amounts of fiber and 

matrix materials available within a bound on total cost or weight, are de

termined on the basis of analytically derived design sensitivities. In this 

level, the optimization is carried out by means of a dual mathematical pro
gramming technique as implemented in the optimizer CONLIN by Fleury 

and Braibant [12]. 
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Figure 1. Definition of the angles .,P, (} and 1J for mutual rotations of the finite 

element coordinate system X 1, X 2, the principal strain coordinate system xI, 

xI I and the material coordinate system Yl, Y2 

2. Objective function 

The integral stiffness of the composite structure will be selected as the objective 

function for optimization, and we will be primarily interested in maximization. 

The structure of maximum integral stiffness will be defined as the structure that 

has minimum total elastic strain energy subject to a given loading. 

We shall assume that our composite disc or laminate can be locally con

sidered as a macroscopically homogeneous, orthotropic material. The strain 

energy density u will then be given by the following formula for an orthotropic 

laminate, see e.g. Jones [13), 

1 { }T[ ]{ } 1 2 1 2 2 u = 2 f A f = 2Anf11 + 2A22f 22 + A12f11f22 + 2A66f 12 (2.1) 

where { f} = { fn; f22; 2f12 } is the strain vector, and [A] the stiffness matrix. 

We now use well-known formulas to express the strain components in (2.1) 

by the principal strains, fi and fH, and the angle .,P from the direction cor

responding to the numerically largest principal strain fi (I£ II ~ kn I) to the 

direction associated with the largest stiffness An (An ~ A22 ), see Fig. 1. 
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Figure 2. Design variables of an element consisting of 3 orthogonal plies 

Since in the finite element analysis the structure is discretized into n elements 

with individual, constant laminate stiffness matrices [A]i, the total elastic strain 

energy U for the structure is given by 

u = 
n 1 
~.)( 8 Au(( EJ + fii) + (EI- En) cos 21/J)2 

i=l 

1 )2 +BA22((E1 + fii)- (EI- fii) cos 21/J 

1 ( 2 2 2 ) +4A12 (EI + fii) - (EI- fii) cos 2'1/; 

(2.2) 

+~A66(fJ- Eu)2 sin2 2'1/;)S)i 

where si is the area of the i-th finite element. 

3. Design model and cost function 

The fiber orientation and concentration within each element of the discretized 
structure are adopted as design variables. 

Our design model is made up of elements that consist of 3 fiber plies with 

the fiber orientations B, () + 90° and(), and the volumetric fiber concentrations 
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v, I, VJ II and v, I, see Fig. 2. Introducing the variable ratio {3 between the 
thickness of fiber ply 2 (in the middle) and the total thickness h of the element, 

we get the symmetric and orthotropic laminate shown in Fig. 2, which can have 

both unidirectional ({3 = 0 V {3 = 1) and cross ply (0 < {3 < 1) character. 

We have now defined 4 design variables for each element: VJ I, v, II, () and 

{3. For these design variables, we prescribe lower and upper constraint values as 

follows: 

0$ (VJI)i $if,, 0$ (VJII)i $if,, 0$ ()i $ 180°, 0$ /3i $ 1, (
3

.
1
) 

i = 1, ... ,n 

Here the given upper constraint value v, for the fiber con~entrations depends 

on how densely the fibers can be packed in the matrix material in view of their 

cross-sectional shape. 

We finally formulate a constraint that enforces the total cost or weight C 
of the structure to be less than or equal to a given upper bound R if stiffness 

maximization is considered, 

n 

C = :~:)c,{(VJI)ihf3i + (VJII)ih(1- f3i)} 
- i=l (3.2) 

+cm {(1- (VJ I )i)hf3i + (1- (VJ II )i)h(1- f3i)} )Si < R 

Here CJ and Cm are given so-called "unit cost factors" . They denote the cost per 

unit volume of the fib er and matrix materials, respectively, for a cost constrained 

problem, whereas CJ and Cm denote the specific weights of the fiber and matrix 

materials, respectively, if the total weight is constrained. 

4. Stiffness matrix in terms of design variables 

The fiber and matrix materials will be assumed to be linearly elastic with given 

Young's moduli Ej and Em and Poisson's ratios VJ and Vm· We now adopt the 

"rule of mixtures", see e.g. Jones [13], for determining the components of the 

tensor of elasticity for a lamina in our design model 
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Here indexes L and T refer to the longitudinal and transverse directions of the 
fibers, respectively, and the index j will here and in the following take on the 

"values" I and I I that refer to the fiber layers 1 and 2, respectively. 

For a composite element as shown in Fig. 2 that consists of 3 lamina with 

the thicknesses 0.5h/3, h(l - /3) and 0.5hf3 and the fib er orientations (), () + 90° 

and B, we can easily obtain the laminate stiffness matrix [A] by means of a 

formula given in Tsai & Pagano [14]. We get 

sin28/2] 
sin 28/2 

-1/2 

[

cos48 -1 -cos48 

cos48- 1 

s 
~~:::e l + CX4I [ o ~ ~ l ) 

-cos48-1/2 s -1/2 

+ ELCrh(l-/3) ( [S ~ ~] + CX2JI 
8oorr 

s 4 
[

cos21/J -1 0 

s -cos 21/J- 1 
sin 21/J/2] 
sin 2,P/2 

-1/2 

+ cxan [cos41/J- 1 c~s:~~1 ~~:::1/J l + CX4II [0 ~ ~ l) 
s -cos41/J-l/2 s -1/2 

(4.2) 

where () denotes the angle defining the fiber orientation, see Fig. 1, and the 

angle <P = () + 90° defines the orthogonal direction. 

The parameters aoj, a 2i, . .. , a4i, in ( 4.2) can all be expressed explicitly in 

terms of the fiber concentrations Vjj, j = I, II, and the given elastic constants 

of the fiber and matrix materials, i.e., 

ami= ami(Vtr, Vtu , Et,Em,llf,vm) m= 0,2,3,4 j = I,II (4.3) 

For reasons of brevity, the reader is referred to [1] for the specific expressions. 

5. Optimization technique 

The optimization problem is solved iteratively via a two-level procedure of re

design. The stress/strain field is initially determined by finite element analysis 

using MODULEF [15] in each loop of redesign, and improved orientations ofthe 

fibers are subsequently determined by means of an optimality criterion in the · 

first level of redesign. In the second level of redesign the distributions of fibers 
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are improved via a method of sensitivity analysis and mathematical program

ming. 

A notable feature of the present problem is that a usual gradient method may 

fail in determining the optimal orientation of the fibers, because local optima 

normally exist, see e.g. Fig. 4.4 in [7]. To circumvent this inherent difficulty 

in the first level of redesign we follow Pedersen [4,7] and perform an analytical 

investigation of the first and second derivative in order to determine the global 

optimum of the total strain energy with respect to fib er orientation. From (2 .. 2) 

and ( 4.2) we get the following expression for first order sensitivities, cf. Pedersen 

[4,7], 

~~ = :~ =(4Aa3(ti-tii)2 sin2~('y+cos2~)S);, i=1, ... ,n (5.1) 

where A is a constant, and the parameter /i is defined by 

( 
1+fu.) Q2 f[ 

li = 4a 1 - fLL ' 
3 f[ i 

i = 1, . .. ,n (5.2) 

The material parameters a 2 and a 3 are those appearing in ( 4.2) and they are 

dubbed as C2 and C3 in [7]. The results of a complete investigation of the 

extrema of U with respect to the key parameters ~' a3 and 1 are summarized 
in a table in refs. [1], [4] and [7] (Table 3.1 in [7]). 

As described in [1], [4] and [7], the fiber orientation 8; for each element can 

be determined by means of this table and the formula 

8; = ~i + 1Ji, i = 1, ... , n (5.3) 

where 1}; is the angle of rotation of the principal strain or stress direction of the 

i-th element relative to the X 1 axis of the finite element coordinate system, see 
Fig. 1. 

In the above solution procedure for the first level of redesign it was found 

that the fibers should be oriented along the principal stress directions if stiffness 

maximization is performed, and along the principal strain directions in problems 

of stiffness minimization. 

The second" stage in the loop of redesign consists in determining an improved 

distribution of the amount of fiber material, i.e., to obtain improved values of 

the design variables {3;, (VJI)i and (VJII)i, (i = l, ... ,n). This is done by a 
dual method of mathematical programming using mixed variables as developed 

by Fleury and Braibant [12] and implemented in the computer code CONLIN. 
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To this end we need the sensitivities of the objective function and constraints 
with respect to the aforementioned design variables. 

Now, it is shown by Pedersen in (4,7] that by tneans of Clayperon's theorem 

and the principle of virtual displacements for structures with design independent 

loads, the gradient of the total strain energy can be determined from the gradient 

of the strain energy density u for a given element, whose strain field is considered 

to be fixed, 

dU __ au; S· . 
1 - n ., z= , ... ,n 

da, ua; 
(5.4) 

Here a; denotes any of the design variables /3;, (VI 1 ); , or (VI 11 )i, i = 1, ... , n. 

The sensitivities of the total strain energy U with respect to /3;, (VI 1 )i and 

(VJII)i, can thus be determined by (2.2) and (5.4), assuming the strain field to 

be fixed, and restricting variation to the laminate stiffness matrix [A]. For the 

i-th element of the discretized geometry we then obtain the following expression 

for sensitivities w.r.t. the design variables a; 

-((~Ait((fi + fii) + {fi- fii)cos2t/;)2 

+~A;2 (( fi + fii)- {fi- fii) cos 21/;) 2 

+~ Ai2(( fi + fll ) 2 - (fi- fll )
2 cos2 21/;) 

+~ A~6 ( fi - fll )
2 sin2 21/;)S)i 

(5.5) 

where a; denotes any of the design variables /3;, (VJ 1 )i or (VJ 11 )i, and A~1 is a 

shorthand notation for the derivatives 8~~· of a component A1:1 of the stiffness 
matrix [A]. 

The derivatives of [A] with respect to /3; are easily obtained from (4.2), with 

(J taken to be equal to zero to give the material orthotropic characteristics. 

Since [A] depends on a, EL and V1, i.e., 

(A~:,) = (A~:,)( aoi(VJ I), au(VJ I), a31(V1 I), a41(V1 I), 

ELI(VJ 1 ), ao11(V1 11 ), aui(V, 11 ), a3u(VJII), 

a4u(V111 ), ELII(v, 11)) 

(5.6) 

the sensitivities of [A] with respect to Vjj are found by means of the chain rule, 
and we get 
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a[Akr] 
8V1r 
a[Akr] 
aVJII 

Figure 3. Example problem for optimization 

L (a[Akr] OCXm[) + a[Ak,] aELI 
m=0,2,3,4 OCXm[ 8Vjr aELI av,r 

= L ( a[Ak,] OCXm[[) + a[Ak,] aELir 
m=0,2,3,4 OCXm[[ av,II aELir av,II 

335 

(5.7) 

These sensitivities are derived analytically in [1], and the results are available 
therein . The sensitivities of the cost function (3.2) are readily derived analyti

cally, and we thus have all the necessary sensitivity information that is required 

for the optimization in the second level of redesign. 

6 . Examples 

We first consider three example problems of optimization of the rectangular 

composite disc shown in Fig. 3. The disc has one of its sides fixed against 

displacements in the X and Y directions, while the opposite side is subjected 
to a parabolically distributed shear loading. The upper constraint value v1 for 

fiber concentration in (3 .1) is taken to be v, = 80 pet, and we only consider 

cases of Cm = 0 and CJ = 1, which means that the fibers are dominating in the 

cost or weight function C in (3.2). 

In the first example we consider maximization of the stiffness of the disc 

under the condition that only one fiber field is allowed in each element. This 

corresponds to the special case of {3 = 0 V {3 = 1, see Chapter 3. The structure is 

discretized into 20 x 40 4-node elements (type QUAD 2Q1D, see [15]). The re

sult of the optimization is shown in Fig. 4, where the dit:ection and density of the 



:::::= -
::-- ::::::: t::--
::::,: 2 2 
:::=: ::;: 8 
2: s: s: 

""-- :::::--: 

/ 8 
~ :;:::: ;;:::: 
:::::::: :::::::: E:: 
::::: =:::::: E:: 
;.__.- ;.__.- !::::-

:::::: 

336 JAN THOMSEN & NIELS OLHOFF 

-
-:::-- t--

t::::: ::-- b= 1::::: ::::: s t=::: :::=: ---- ----8 r-- ::::::-
8 ::::: 2 1::::: 1::---' ::-- =-- 1::---' ::-- ::--1::---' 1::---' =-- =-- :-= 1::::: ::::::= ::::: s r::: :::=: ---- t:=:: --- t:=:: :----- 8::: 

-------
~ ""' I 

f? 8 :::::: 8 8 ::::::= s 8 :::=: s 8 8 ::::= ::::: :::::: t-- --- :=::::: '--.._ 12: ----s: ~ ---~ 8::: ::::::: ~ !"-- "' 1/ 
~ ~ 8 s: 12: :::::: s: :=::::: ~ ::::--: 8 1:::-12: ::---- -:::::-~ ::-...: t::::: ~ r:::::: ~ r:::::: ~ ~ ~ 

""' 
"/ I 

"~'- :::--:: f:S r:::-.: :::-::: ' ~ :----s:: ~ r-- ::::::: :::::: 
..____ 

:::::: ::::::: ~ ::::; :::::: ~ ~ :::::: ~ ~ f'.... /~j 
1'---. !::'- " 8::: 

..____ 
i:?: 

-------
::::::: I'--~ ""' ~ ~ ~ ~ :::::: :::::: ""' :::::: ~ 8: ~ ~ "~ ~ VI 

" ""' ~ :::::: "'--.. ~ ~ :::::: ""-- 1'---- :::::: 8:3 ~ 8:3 ~ 8:3" ~ ~ 8:3 8:3 ~ ~ ~ (I 

""' 1'---. :s: ""' ~ ~ :s: ""' :::::: ~ :s: 
""' 
~ 1'---. :s: 8:3 " 8:: IS:: s::: ~ ~ ~ ~ ~ ~ ~ 

/ V ~ / ~ f% ~ / ~ f% ::;:::; V F.% F.% ?::::: ~ / / ~ /1:::8 1:::8 ~ 8:::: 8:::: ~ ~ 
/ E:;:::; ~ / E:;:::; ?::::: ?::::: / V ?::::: F.% V ~ \F.% \ / F.% ?::::: / F.% F.% ~ ~ ~ ,\ 

/V 1/':: / ~ / :;;::.: / ~ V ?::::: / ~ ~ F.% f:% :;:::::: \/ /~ ~ / ~ 8::: /~ ~ f\\ 
/ 1/':: 1:::.:::: V:: ::::::: 

_....... r::: ;:::::. :;::: / F;::: / :;::: ;:::::: V :;:::::: 8::: F;::: ;:;:::: ;....--:;:::::: 8::: ::::::: ~ 8::: ::;;;:; V \:/%1\ 
~ :;::::: ;;:::: 8::: F;::: :::::::: :::::: r:::::: :::::::: ::::: :::::: f::::. =::::: :.-- :.--: F;::: :.--: F;::: :::::: / F;::: ;:;:::: t::;:: ::::::: 8::: ~ / V 
>;:;:: :;:::: 8::: :::::: E:: :::::::: ::::::::: E:: :::::::: :::::: 2 E:: =-: :::::: :::-:: r-- !----' E:: ~ E:: / ;:;:::: ::::::::: F;::: ~ ;:;:::: ~ V 

E:: :::::::: 2 2 t::: =:::::: ::::::: f:::: ::::: :::::: ::::::: ~ ::::: :::::: ::::::: =:::::: F::::: 1---P-I-- :::::: ~ I=::: --- ;;::::: :.--- ;::::: 8 / 
!===-: :::::. !::::- t:::: ~ = = 1-::: 1-::: 1-::: f-: I-:: :::::. F::::: ~ ~ -------

Figure 4. Optimal distribution and orientation of fibers in first example: One 

fiber field, n=800, maximization of stiffness 

hatching within each element illustrate the fiber orientation and concentration, 

respectively. We see that the lowly stressed elements do not contain any fibers. 

It is also noteworthy that the design contains "holes" in the fiber reinforcement 

in the mid part of the structure, where shear forces are dominating. 

No doubt this is due to the fact that only one fiber field is allowed to exist in 

each element. This is not favourable in shear dominated areas with almost equal 
principal stresses, and the pattern obtained in the mid part may be conceived as 

the best possible attempt of the structure to increase its "shear force stiffness" 

under the given design conditions. The design shown in Fig. 4 is associated 

with a reduction of the total elastic energy U by 51% relative to the initial 

design, where all the fibers were uniformly distributed and given the orientation 
()i = oo 0 

However, the convergence is very slow, and different designs may be obtained 

as a result of the optimization. In particular, the designs depend on the size of 
the applied FE-mesh, and it is not possible to obtain a limiting, numerically 
stable design by consecutively decreasing the mesh size. These features, along 

with the generation of "holes" in the design, indicate the necessity of a regular

ization of the formulation of the optimization problem (see, e.g., the survey by 

\ \ 

\ 
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Figure 5. Optimal distribution and orientation offibers in second example: Two 

fiber fields, n=800, maximization of stiffness 

Olhoff and Taylor (16]). 

This leads to our second example: Regularization of the formulation of the 

type of problem just considered is simply obtained by extending the design 

space such as to allow for formation of two orthogonal fiber fields everywhere 

in the disc (which is actually covered in the preceding chapters). Introducing 

two fiber fields, the design in Fig. 4 is replaced by the solution shown in Fig. 

5, where the "shear force reinforcement" appears along the horizontal center 

line in agreement with the boundary and symmetry conditions. Optimizing the 

structure, U is reduced by 55%. Now the convergence is rapid and the design is 

found to be independent of the discretization, which confirms that regularization 

has been· achieved. 

In our third example, we consider the somewhat abnormal, but theoretically 

interesting problem of minimization of the integral stiffness, assuming two fib er 

fields and the total amount of fiber material to be larger than a given lower 
bound. The result of this problem is shown in Fig. 6, where we see that the 
design only uses one of the fiber fields, and clearly distributes and orientates 

this field in such a way as to avoid its properties as stiffness reinforcement. In 

this example U is increased by 270%, compared with an initial design where the . 

>( 0 
>< 0 
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/ 
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Figure 6. Optimal fiber "reinforcement" in third example: Two fiber fields, 

n=392, minimization of stiffness 

fibers are uniformly distributed in two fiber fields with the orientations () = 0° 

and()= 90° . 

In a final example, we wish to demonstrate that the method and software de

veloped here for optimization of composites has been extended to cover topology 

optimization as well. In the latter type of problem the structure is considered as 
a domain of space with a high concentration of material, see Bends0e [10-11]. 

The present extension is made by introducing relationships between stiffness 

components and concentration of layered, second rank microstructures that re

place the two fiber fields, and assigning the matrix material vanishing stiffness. 

The reader is referred to Bends0e [10-11]. Fig. 7 shows the result of optimizing 

the topology of a structure for which the left hand side of the rectangular do

main in Fig. 7 offers full fixation, and where the structure is required to carry 

a vertical force at the lower right hand corner. The result is clearly seen to 

become a truss- like structure. 
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Figure 7. Example of topology optimization (see text) 
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