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In the paper a method for finding bifurcation points along solu­
tion curves in free boundary problems is introduced. In this method, 
a point along a solution curve is determined as a bifurcation point 
where the smallest eigenvalue of a linearized problem is equal to zero. 
In order to verify the proposed method, numerical computations are 
carried out. · 

1 The work of H. lmai was supported by University of Tsukuba Project Research. 
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1. Introduction 

Free boundary problems recently received much attention. This is so because 

of their nonlinearity and of frequent appearance of bifurcation phenomena. If 

a solution <;urve is found, it is interesting to find both bifurcation points along 

this curve and the type of bifurcation. This, however, is not an easy task. 

There are mainly two ways . to investigate bifurcation phenomena. One is 

to use methods of global analysis and another is the local one. Let the global 

behavior of solution curves be only partially known . Then, the global analysis 

technique using the invariance of the topological degree by homotopy is use­

ful [13]. Let solution curves be parametrized smoothly and its local behavior be 

known. Then, local analysis enables us to discuss the occurrence and types of 

bifurcation. It also enables us to discuss the number of branches at a bifurca­

tion point [1, 2, 10, 12]. However, these methods are not suitable for numerical 

computations, so they are of no practical use. 

In the present paper a practical method for finding bifurcation points in a free 

boundary problem is introduced. Let the free boundary problem introduce an 

additional boundary condition . Then it can be rewritten in the implicit form 

w(a,.,) = 0 

where 1 is a free boundary, and a is a bifurcation parameter. By the implicit 

theor-em, bifurcation occurs when Jacobian :'Y \]f does not have an inverse . Us­

ing domain dependence technique [6, 7, 8, 11], this Jacobian can be determined. 

Thus, a linearized problem is obtained. The regularity of the J acobian corre­

sponds to the smallest eigenvalue of a problem which is obtained by extending 

the linearized problem. This is the key poi?t of our method. Therefore, in our 

method this smallest eigenvalue is used for specifying bifurcation points. It is 

not so difficult to obtain the smallest eigenvalue numerically, so our method is 

of practical use. 

In order to verify our method, we have applied it to a free boundary problem 

related to two-dimensional plasma equilibrium subject to a surface current. The 

problem isgiven as follows (see Fig . 1). 

Problem 1 Find a closed Jordan curve -y and a function u(x, y) such that 

D.u 

u 

u 

0 m n"(,a> 

0 on /, 

"- on fa, 
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Figure 1. One-component asymmetric plasma 
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Here .6. is the La place operator, · K is a given positive constant , l-y is the 

length of/, 0-y,a is the region between fa and/, 1/ is the unit inward normal 

vector to 'Y · The boundary r a is fixed, parametrized by a (1/2 < a .~ 1), 
piecewise smooth and symmetric with respect to both the x-axis and the y­

axis. 'Y represents a free boundary which is assumed to be located inside r a and 

symmetric with respect to the x- axis . 

Concerning this problem, the following terminology is used. 

(i) If 1 consists of a simple closed Jordan curve, then plasma is called one­

component. If 1 consists of two isolated closed Jordan curves, then plasma 

is called two- component. 

(ii) If 1 is symmetric with respect to the y-axis, then the plasma is called 

symmetric. If 1 is asymmetric, then plasma is called asymmetric. 

Demidov obtained bifurcation diagram of both one- and two-component sym­

metric plasma [3, 4, 5]. Imai and Kawarada obtained bifurcation diagrams of 

both one-component symmetric and asymmetric plasmas [9]. Recently these 

authors have also obtained the whole bifurcation diagram of both one- and 

two-component plasmas. Under the limitations of the development of domain 

.dependence techniques, our method is applicable to one-component plasma. So, 
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numerical computations of the smallest eigenvalue are carried out along solution 

curves of one-component plasma. 

2. A method for finding bifurcation points 

Our method for finding bifurcation points consists of the following steps. The 

free boundary problem is transformed into a problem in the implicit form . Using 

domain dependence techniques, the linearization concerning a free boundary is 

carried out . The linearized problem is extended to an eigenvalue problem. A 

point on (l, solution curve is determined as a bifurcation point if the smallest 

eigenvalue is equal to zero at this point . 

In order to show the concrete implementation of our method and to verify 

it, let us refer to Problem 1. According to the algorithm mentioned above, 

Problem 1 is transformed into the following: 

P roblem 2 Let 11: be fixed. Then for given a find 1 such that 

oun I 4 
'lli(a,'Y) = ov I - fl = 0, 

where a function un(x, y) is a solution of the following Dirichlet problem: 

0 m nl,a> 

11: on fa, 

0 on 'Y · 

(5) 

(6) 

(7) 

(8) 

Using domain dependence techniques [6, 7, 8, 11), the linearization of 'lli 
concerning 1 is calculated formally as follows. For given perturbation 61( 0) 

(0 ~ 0 ~ 271'), 

o'lli ozi H 41 ?lb'Y = !l + 4 < v, r > Th - 2 H < v, r > bfd£, 
U/ uV I {.1 f 1 1 

(9) 

where r = (cos 0, sin 0), < ·, · > denotes the inner product and H is the curvature 

of 1 (positive if the inner domain of 1 is convex) . Let z = 8;
1
°bf . Then, it 

satisfies 

-~z 0 m nl,a> (10) 

z K on fa, ( 11) 
4 

(12) z+ < v,r > £61 0 on 'Y· 
I 
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In order to investigate the regularity of ~~ , it is necessary to solve 

8'1! 
81 

51 = o. 

Then, from (9)-(13), the following linearized problem is obtained: 

Problem 3 Find a function z(x, y) such that 

-~z 0 Ill n,,a, 

z 0 on fa, / 

- -Hz +- Hzdf 8z 1 1 
8v £, 1' 

0 on 'Y· 

11 

(13) 

(14) 

(15) 

(16) 

Remark 1 Let a point of the solution curve be a bifurcation point. Then, from 

{13), 81 f; 0. This means that a solution z(x, y) of Problem 3 is not identically 

equal to zero. Conversely, let a point of the solution curve be a regular point. 

Then 81 = 0. This means that a solution z(x, y) of Problem 3 is identically 

zero. 

From Remark 1 it is convenient to consider the following eigenvalue problem 

along a solution curve for finding bifurcation points. 

Problem 4 Find the smallest eigenvalue .Ao such that 

-~z .Az m n,,a, 

z 0 on fa, 

-- Hz+- Hzdf az 1 1 
av £, 1' 

0 on 'Y· 

(17) 

(18) 

(19) 

Remark 2 It follows from Remark 1, that if the smallest eigenvalue is zero at 

a point of the solution curve, then this point is a bifurcation point. It is not so 

difficult to obtain the smallest eigenvalue of the above problem numerically. So, 

this method is of practical use for finding bifurcation points. 

Remark 3 As follows from the above procedure, our method is also applicable . 

to other free boundary problems. 

3. A modification 

In order to carry out more precise numerical computations, a modification is 

necessary. Note that we are only interested in knowing a solution z(x, y) of 
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Problem 3 is identically equal to zero or not. Hence Problem 3 is transformed 

into Problem 3' using the following hodograph transformation [3, 4, 5, 9]. This 

technique is well-known in engineering as a grid generation using a body-fitted 

curvilinear coordinate system [14-17]. Then an eigenvalue problem is considered 

(Problem 4') . 

Let v(x, y) be harmonically adjoint to a solution u(x , y) of Problem 1. 

Choose it in such a way that v = 0 on the segment AB in Fig. 1. Then A(u, v) 
and B(u,v) are introduced as 

oz = eA(u,v)+iB(u,v>, w(z) = u(x, y) + iv(x, y), z = x + iy. (20) 
OW 

Functions A(u, v) and B(u, v) have already been obtained [9]. Using these 

representations, Problem 3 is transformed into the following problem in the 

rectangular domain. 

Problem 3' Find a. function z( u, v) such that 

-Az 0 m G, (21) 
oz 

0 r1 and r3, (22) 
8v 

on 

z 0 on r2, (23) 

oz oB 1 12 
(oB ) -+ -z-- -z (O,v)dz 

ou ov eAo 0 ov 
0 on fo. (24) 

Here Ao = A(O, v) (= constant), G = {(u, v)IO < u < K , 0 < v < 2}, f 0 = 
{(0, v)IO < V < 2}, rl = {(u, O)IO < u < K}, r2 = {(K, v)IO < V < 2} and 

f3 = {(u, 2)10 < U < K}. 

Then an eigenvalue problem corresponding to the above problem is given as 

• follows. 

Problem 4' Find the smallest eigenvalue Ao such that 

-Az AZ Ill G, (25) 
oz 

0 r1 and r3, (26) 
OV 

on 

z 0 on r2, (27) 

oz 8B 1 12 
( 8B ) -+ -z-- -z (O,v)dz ou ov eAo 0 ov 0 on fo. (28) 
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Figure 2. Bifurcation diagram for K = 0.2. 
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Figure 3. Bifurcation diagram for. "'= 0.5. 
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4. Numerical results 

Numerical computations are carried out by discretizing Problem 4' and using 

the finite difference method. The 20 x 20 grid points are used here. The power 

method is used to obtain the smallest eigenvalue. Numerical results are shown 

at Tables 1 and 2. The mark"-" in Tables means that the iteration does not end 

in finite time. However, to see behaviour of the smallest eigenvalue in iterations, 

maximum and minimum values are shown when iteration does not converge. 

Bifurcation diagrams show that bifurcation occurs near the points P5 for 

K = 0.2, P19 and Q9 for K = 0.5 (Figs. 2 and 3, [9]). Tables 1 and 2 show that 

near these points the smallest eigenvalue Ao becomes close to zero. This means 

that our method is of practical value. 

5 . Conclusions 

Asymm. (K = 0.2) Symm. (K = 0.2) 

a Ao Max. Min. a Ao 
pl 0.546 43 .36 Ql 0.564 65.43 

0.565 43.49 0.591 57.30 

0.577 - 92.43 41.75 0.619 56.66 

0.583 34.06 0.648 55.95 

Ps 0.585 24.76 0.677 76.17 
0.583 15.49 0.708 76.49 
0.579 7.76 0.739 76.18 

0.573 1.96 0.771 75.59 

0.566 -2.11 0.804 75.13 
0.558 -4.82 0.838 75.06 

Pn 0.549 -6.55 0.873 75.48 

Q12 0.913 72.54 

Table 1. The smallest eigenvalue for K = 0.2. 

A method for finding bifurcation points in a class of free boundary problems is 

introduced. In our method bifurcation points are found according to the zero · 
eigenvalue of a problem which is obtained by linearizing the problem. In order 

to verify our method, it has been applied to a two-dimensional free boundary 
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Asymm. (~~: = 0.5) Symm. (~~: = 0.5) 
a >-o a >-o Max. Min. 

pl 0.550 3.86 Ql 0.540 - 35.96 14.58 
0.573 3.87 0.559 - 31.55 14.33 
0.591 3.79 0.575 - 29.36 13.89 

0.606 3.63 0.591 - 27.47 13.95 
0.619 3.36 0.606 25.08 
0.630 2.98 0.622 - 24.16 14.13 
0.639 2.50 0.638 - 22.83 14.00 
0.647 1.96 0.655 - 21.71 -3.01 
0.653 1.39 Q9 0.672 -1.83 
0.658 0.83 0.690 -0.68 
0.663 0.30 0.709 0.34 
0.666 -0.17 0.728 1.25 

0.668 -0.58 0.749 2.04 
0.670 -0.92 0.770 2.73 
0.671 -1.19 0.792 13.26 
0.672 -1.40 0.816 12.52 
0.673 -1.55 ' 0.842 18.11 

0.673 -1.66 0.871 18.09 

p19 0.673 -1.72 0.909 18.01 

Table 2. The smallest eigenvalue for ~~: = 0.5. 
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problem. Numerical results show that our method is of practical use. Under the 

limit of the present developement in the linearization techniques, our method 

is applied to two-dimensional free boundary problem. However, due to its 

generality, the method may be applied to higher-dimensional problems in the 

near future. 

Acknowledgements 

This paper was written in memory of the sixtieth birthday of Professor Niro 

Yanagihara. Numerical computations were performed on HITAC M-682H and 

S810/20 at the Computer Centre of the University of Tokyo. 

References 

(1] CRANDALL M. G., RABINOWITZ P. H., Bifurcation from Simple Eigen­

values, J. Funct. Anal. 8 (1971), 312-340. 

(2] CRANDALL M. G., RABINOWITZ P. H., Bifurcation, Perturbation of Sim­

ple Eigenvalues, and Linearized Stability, Arch. Rational Mech . Anal., 52 
(1973), 16.1-180. 

[3] DEMIDOV A. S., The form of a steady plasma subject to the skin effect in a 

tokamak with non-circular cross- section. Nucl. Fusion, 15 (1975), 765-768. 

[4] DEMIDOV A. S., Sur la perturbation "singuliere" dans un probleme a 
frontiere lib re. Lectures Notes in Mathematics, 594 ( eds. A. Dold and 

B. Eckmann), Springer-Verlag, New York, (1977), 123-130. 

[5] DEMIDOV A. S., Equilibrium form of a steady plasma, Phys. Fluids, 21 

(6) (1978), 902-904. 

[6] DERVIEUX A., A perturbation study of the obstacle problem by means. 

of Generalized Implicit Function Theorem, INRIA-LABORIA, Rapport de 

Recherche, 16 (1980). 

[7] DERVIEUX A., Perturbation des equations d'equilibre d'un plasma confine, 

comportement de la frontiere libre, etude des branches de solution, INRIA­

LABORIA, Rapport de Recherche, 18 (1980). 



18 H. IMAI, H. KAWARADA 

[8] DERVIEUX A., A perturbation study of a jet-like annular Free Bound­

ary Problem and an application to an optimal control problem, INRIA­

LABORIA, Rapport de Recherche, 21 (1980). 

[9] IMAI H., KAWARADA H., One-component asymmetric plasmas in a sym­

metric vessel, Japan J. Appl. Math., 5 (2) (1988), 173-186. 

[10] KELLER H. B., Two New Bifurcation Phenomena, INRIA-LABORIA, 

Rapport de Recherche, 396 (1979). 

[11] MURAT F., SIMON J., Sur le controle par un domaine geometrique, Lab. 

d'Analyse Numerique, Univ.· Paris VI, (1976). 

[12] OKAMOTO H., Bifurcation Phenomena in a Free Boundary Problsm for a 

Circulating Flow with Surface Tension, Math. Mech. in the Appl. Sci., 6 

(1984), 215-233. 

[13] SERMANGE M., Bifurcation of Free Plasma Equilibria, INRIA-LABORIA, 

Rapport de Recherche, 365 (1979). 

[14] THAMES F. C., THOMPSON J. F., MASTIN C . W., WALKER R.L., Nu­

merical Solution for Viscous and Potential Flow about Arbitrary Two­

Dimensional Bodies Using Body-Fitted Coordinate Systems, J . Comput. 

Phys., 24 (1977), 245-273. 

(15] THOMPSON J. F., THAMES F. C., MASTIN C. W ., Automatic Numerical 

Generation of Body-Fitted Curvilinear Coordinate System for Field Con­

taining Any Number of Arbitrary Two-Dimensional Bodies, J. Comput. 

Phys., 15 (1974), 299-319. 

(16] THOMPSON J. F., THAMES F. C., MASTIN C. W ., Boundary-fitted curvi­

linear coordinate system for solution of partial differential equations of fields 

containing any number of arbitrary two-dimensional bodies, NASA CR-

2729, (1977). 

(17] THOMPSON J . F ., WARSI Z. U. A ., MASTIN C . W., Boundary-Fitted 

Coord~nate System for Numerical Solution of Partial Differential Equations 

-A Review, J. Comput. Phys., 47 (1982), 1-108. 



FindinA" bifurcc&tio n points 19 

Metoda znajdowania punktow bifurkacji 

W artukule wprowadzono metod~ znajdowania punkt6w bifurkacji dla zadan 

ze swobodnq, granicq,. W metodzie tej punkt na krzywej rozwiq,zan jest trak­

towany jak punkt bifurkacji je8li najmniejsza warto8c wlasna zagadnienia zli­

nearyzowanego jest r6wna zeru. W celu weryfikacji zaproponowanej metody 

przeprowadzono odpowiednie obliczenia numeryczne. 

B cTaTJ.e npe,ll.cTaBJieH MeTo,ll. H&XO:>K,ll.eHH.II TO'IeK 6H«l!YPK&D;HH ,ll.JI.II 3&,ll.a'l eo 

cBo6o,ll.HJ.IM npe.u.enoM. B 3TOM MeTo.u.e TO'IKa Ha KpHBO:R peweHH:R BocnpH­

HHMaeTC.II K&K TO'IK& 6HcllypKaD;HH, ecJIH Ha:RMeHJ.lliee C06CTBeHHOe 3H&'IeHHe 

JIHHeapH3oBaHHO:R 3a,ll.a'IH paBHO Hynro. C n;enJ.ro npoBepKH npe.u.no:>KeHHoro 

MeTO,ll.8 npoBe,ll.eHJ.I COOTBeTCTBYIOUJ,He 'IHCJieHHJ.Ie 3KCnepHMeHTJ.I. 




