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An approach to estimation of system parameters is described 
based on consideration of an input error which results from ensuring 
the same output of the system and its corresponding model previ
ously exposed to the same excitation. The approach is found ad
vantageous in removing the existing restriction to the persistently 
exciting signal to be used for the estimation purpose. The unbi
ased parameter estimation obtained by adopting this approach in 
the case where the measurement vectors are disturbed by additive 
noise is also discussed and the recursive solution for the on-line com
putation of the parameter vector is also obtained. 

1. Introduction 

Whenever the model of a dynamical system is described in a parametric form, 

the methods of system parameter estimation may in general be seen to consist 

of two stages [1, 2]. In the first stage, the number of equations of the sytem to 

be set up for the estimation purpose should be equal to the number of model 



36 N.G . NATH, NGUYEN N . SAN 

parameters being sought [3). In the second stage, the parameters of the model 

are estimated following an estimation method based on the consideration of 

some defined errors (output error, output prediction error and equation error 

[1, 2, 4]) and suitable criteria imposed on these errors used in defining proper cost 

functions to be minimized. 'The estimation process requires the measurement 

of both the input and output vectors for formulation of the estimation problem 

and hence it becomes necessary to introduce the persistently exciting property 

[2, 5), putting a restriction as to the form of input signal to be used for the 

estimation purpose. The Pseudo Random Binary Sequence Input (PRBSI) can, 

of course, be used to meet the requirement of the persistently exciting property. 

This finds limited applicability in practice because the parameter estimation in 

cases of a system like a bio-system or an industrial process- system may demand 

the use of an actual form of the exciting signal which may not be persistent one 

making thus the estimation process difficult. 

An alternative approach to estimation of the system parameters is presented 

in this paper. In this approach, the knowledge of the form of the exciting 

signal to be used for the estimation purpose may be ignored. The approach is 

based on the use of an error defined as the difference between the system input 

and a signal which is required to be present at the model input (Requested 

Input - RI) such that outputs of the sytem and the model are matched. This 

error may be called an Input Error (IE) which is suitably used in a defined 

cost function to be minimized for estimating the systems parameters. In the 

proposed approach, since the lE is defined on the input side of the system, 

the restriction as to the system input in mathematical manipulation of the 

estimation problem disappears and thus the approach is applicable to the c~e 

of a nonpersistent input too. This approach to the system parameter estimation 

along with the determination of the IE is described. The influence of the noise 

in the proposed estimation technique considering the presence of the noise on 

both the input and output sides of the system is discussed and then an unbiased 

estimate of the system parameters is found. A recursive solution needed for the 

purpose of on- line computation of the system parameters is also obtained. 

2. Basic approach 

The idea of the input error approach to parameter estimation for a continuous

time model of a linear time invariant single input single output (SISO) system is 
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illustrated in Figure 1. Assume that there is no noise involved in the process of 

estimation. The model-inverse is incorporated in the figure to replace a chosen 

model whose parameters are usually different from those of the system. When 

such a model is chosen, it becomes necessary to include a signal at the model 

input which acts in addition to the system input for ensuring the outputs of 

the system and the model to be the same. This additional actuating signal 

(AAS) accounts for the difference between the parameters of the system and 

the model. By trimming the model parameters, the system parameters can, 

however, be estimated through minimization of the AAS. The concept of the 

model-inverse is introduced in the figure to indicate the need of knowledge about 

the AAS which represents e*(t) in the sense of the IE. 

Some suitable linear dynamical (LD) operators are used on the output side 

of the system to generate the time derivatives of the output signal [1). This 

LD operator may be any of linear filtering operations or spectral chracteriza

tions of signals or method/modulating functions [1]. There, the LD operation 

means a multiplication of each term of the SISO model with known functions 

(the number ofthe known functions is equal to the number of the parameters to 

be estimated) and integration of the products over the period of available data 

with a repetition of the process for all modulation functions to yield a system of 

independent equations for the estimation purpose [10, 11, 12). The method func

tion technique, however, suggests a means of avoiding the direct time derivative 

measurment problem. In a disrete-time mode approach, the LD operator may 

be seen as an A/D converter which facilitates the appropriate measurements re

quired for formulation of the parameter estimation equations. One LD operator 

is also used at the input side of the system to convert the input signal to the 

respective domain present at the model-inverse output. 

A gen~ral form of the continuous-time model is considered as: 

~a · diy'M(t) = ~ b· diu'M(t) 
L.,; J dti L.,; J dti 
j=O j=O 

(1) 

where the measurement values of the j-th derivatives of the output and input 

h d l d d b diy• (t) ( ) diu• (t) ( ) . t e mo e are enote y -J&- = YMj t and -J&- = uMj t respectively 
with an assumption of the availability of the data for the parameter estimation. 

If the model-inverse exists, (1) may be rewritten for the k-th stage of the 

LD in absence of noise with b0 = 1 as: 
n n 

(2) 
j=O j=l 
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Figure 1. Block diagram of the input error approach. 

where the measurement values of the j-th derivatives of the system is denoted 

by Y'k/t) =~at the k-th stage of the LD. 

For ensuring the output of the model to be the same as delivered by the 

system, the chosen inodel would ask for a RI as given in (2), which can be 

written in the standard matrix form as: 

uJ.n(t) = mf P (3) 

where p = [ao . ..... an I b1 .. . . . . bnJT is the parameter· vector to be estimated 
and mk is the vector 

(4) 

It is seen form ( 4) that yl, 0 (t) ... Y'kn (t) is the set ofsystem output data which 

are supplied by the LD operators and the set uM-kl(t) ... uMkn(t) is directly 
supplied by the model-inverse. 
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Since the parameters of the model-inverse differ from those of the system, 

the RI is not the same as the system input. Thus an input error results at the 

k-th stage as given by: 

(5) 

where ui; is supplied by the LD operator at the input ofthe system. 

From (3), a set of equations for k = 1, 2, . . . , N stages is formed and written 

in the matrix form as: 

(6) 

where UMN = [uXn u;\12 ...... u:\mY and MN = [mf I mi I ..... . I m~.JT. 
A set of input error equations is also formed for (5) with k = 1, 2, ... , N. 

Referring to (6), this set of the input error equations is written in the matrix 

form as: 

(7) 

h • - ( • • • JT d U - ( • • • JT weref.N-e1 e2 ...... eN an N-u1 u 2 ...... uN. 

A cost function is defined as: 

n 

J(p) = l:)ek)2 = (f.jyf · (f.jy) =(UN- MNPf(UN- MNP) (8) 
k=l 

The parameters are to be estimated in such a way that the cost function 

is minimized. The necessary condition for minimization of the cost function is 

a~(p) 1. = 0, where p stands for estimated value of p. With reference to J(p) 
p p=p 

in (8), the normal equation of the problem in this case is obtained as: 

(9) 

The solution of the above equation is the Least Square (LS) estimate PLS 

which is obtained as: 

(10) 

It is seen form ( 4), (6) and (10) that the necessary data, required to be 

supplied by LD operators for the estimation purpose, are the set of system 

output data and the measured value of the system input. It is also seen that 

PLS may be obtained if the inverse of the (2n + 1) x (2n + 1) matrix M'JrMN 
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exists. Recalling the structure of the matrix MN of (6) and referring to m~e of 

(4), one may write: 

Yio · · · · · · · · · Yivo 

: (n+1)xN : 

Yin · · · · · · · · · YNn X (11) 
-uM-n · · · · · · · · · -uMN1 

nxN 

-uM1n · · · · · · · · · -uMNn 

l Yi~ · · ······· ~in -uA.n~ · · · · · · · · · ~uMln l 
X : Nx(n+l) : : Nxn : 

Yivo · · · · · ·· · · YNn -uMNl' · ·· · · · · .-uMNn 

For a sufficiently large number of stages ( N -+ oo), ( 11) can be rewritten, 
with introduction of the corresponding correlation functions [6], as: 

M'JrMN = Nx 

R 11 • 11 ·(0) 

X 

(n+l)x(n+l) 

(12) 

0 ... . .. . . . 0 

-R11 ·u~ (1} .. . . . . ... -Ry•u~ (n} 

: (n+l)xn : 

-Ry•u• (n} . . ..... . . -Ry•u• (1} 

0 -Ru~y•(1} .. . ... -Ru~y•(n} Ru~u~(1} ......... Ru~u~(n} 

nx(n+l) nxn 

0 -Ru~y• (n} ... .. . -Ru~y• (1} Ru~u~(n} ........ . Ru~u~ (1} 

From (10), it is seen that the LS estimates obtained in this case has the same 

form as that obtained in the case where the errors are not defined on the input 

side of the system [1]. The parameter estimation method demand, however, 

the existence of the matrix (M'JrMN )-1 in all the cases. In the case where the 

errors are not defined on the input side of the system, the same matrix contains 

the elements obtained from auto and cross eo-relations of the input and ouput 

data of the system and the input signal must therefore be persistently existed 

so that (M'JrMN )- 1 exists. It is now seen from (12) that the input data of the 

system are replaced by those of the model in the newly formed matrix. Even 

though the system input is not persistently existed, the output of the system 

is always persistently existed. Since the system output acts as the input of 

the model-inverse, its output is also persistently existed and hence (M'JrMN )- 1 
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always exists. Thus the proposed IE approach is found to be applicable to the 

use of any form of the input signal for the estimation purpose. The advantage 

of the proposed approach over the existing ones (where the defined error is not 

on the input side of the system) is that in the nonpersistently exciting signal 

case, a unique solution to the estimation problem can be found by adopting the 

present approach while the use of the generalized inverse of the matrix due to 

nonexistence of (M'{,MN )- 1 in the known approaches does not provide a unique 

solution. 
It may be mentioned that only one LD operator is required at the input side 

of the system to convert the system input signal to the respective domain of 

the model-inverse output while in the existing methods, the number of the LD 

operators is greater than one and usually equal to the system order excepting 

the case of discrete-time model approach. Further, the LD at the input of the 

system may be removed if (LD)- 1 is used on the output side of the model-inverse 

to retransfer the RI signal from its measured value. The use of (LD)- 1 would, 

however, result in a creation of some extra noise due to the nonhomogeneity of 

the operators. 

3. Determination of the Input Error (IE) 

The scheme for parameter estimation with error defined on the input side of 

linear time invariant SISO model is shown in Figure 2. It is presently assumed 

that the noise signals rs(t) and rM(t) are absent in the scheme. 

In this scheme, the error measure is given by: 

e*(t) = u*(t)- ult(t) (13) 

The measure u*(t) of the input signal is obtained from the LD with noise 

r1(t) at its input. Thus 

u*(t) = LD [u(t) + r1(t)] (14) 

General form of the model-inverse with b0 = 1 can be written from (1) as: 

• ( ) _ ~ . diy*(t) _ ~ b· diu'M(t) 
uMt-~aJ dti ~ 1 dti 

j=O j=1 

(15) 

Thus, the transfer function of the model-inverse becomes: 

F ( ) = Uk(s) = 2:j=o aj . si 
MS Y•(s) l+LJ=lbi·si 

(16) 
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Figure 2. Parameter estimation scheme - definition of the input error and 

influence of noise. 

If the model-inverse includes a stochastic noise, the stochastic part of the 

model-inverse has a transfer function of the form: 

G ( ) = R1(s) 
n s W(s) (17) 

The noise r1(t) = L-1 [RI(s)] in the model-inverse is assumed to be present 

due to the white noise w(t) = L- 1 [W(s)] and the transfer function Gn(s) which 

can take different forms depending upon the model structure (1, 4]. 

In a complete matching condition, one can obtain: 

U*(s) = UM(s) + Gn(s) · W*(s) (18) 

where W*(s) is the measured value of the white noise signal w(t) in Laplace 

domain and can be interpreted as: 

W*(s) = G;;- 1 (s) · [U*(s)- UM(s)] (19) 
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The Laplace transform of the white noise can be obtained by taking the 

inverse linear operation of W*(s) as: 

W(s) = (LD)- 1 
{ G~ 1 (s) · [U*(s)- UM(s)]} (20) 

The white noise w(t) in time domain can be obtained by taking the inverse 

Laplace transform of W(s) given in (20) and hence the measured value of the 

white noise in time domain w*(t) is supposed to be obtained from the LD as: 

w*(t) = LD { L - 1 [CLD)- 1 [G~(s) · (U*(s) - UM(s))J] } (21) 

UM(s) 

E*(s) 

ACTUAL 
SYSTEM 

Y(s) 

Y*(s) 

Figure 3. Block diagram for determination of the input error. 

The definition of the input error can be illustrated using (19)-(21) and is 

diagramatically shown in Figure 3, where the transfer function of the model

inverse FM(s) is expressed by the ratio of A(s) to B(s). The equation (21) 

implies that the deviation (U*(s) - U'M(s)) of the system input U*(s) from its 

deterministic behaviour UM(s) may be seen due to operation of white noise 

w*(t) on a system consisting of LD and · G~(s). 
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4. The noise treatment 

The scheme of parameter estimation in presence of noise for a SISO continuous

time model is discussed with reference to Figure 2, where the noise signals rs(t) 
and rM(t) are considered in the absence of the noise signal rr(t). The error 

measure in such a scheme is given by 

e*(t) = u*(t)- uM-(t) (22) 

The measure of the output signal Ys(t) of the actual system or the input 

signal of the model-inverse is usually contaminated with the noise rs(t). Thus 

vM-(t) = LD {ys(t) + rs(t)} = yS(t) + rS(t) (23) 

where r:S(t) arises out of application of white noise to a system consisting of 

LD. When LD operator stands for a linear filter, the LD operation may be 

characterized by an appropriate transfer function [1]. In the method using or

thogonal functions, an approximate and algebraical relation between the output 

and input of the system may be obtained utilizing the one-shot operation ma

trix for repeated integration [13]. It is not possible to describe the LD operator 

in the usual form of transfer function in S-domain since the LD in this case 

corresponds to a chain of integrators in the LS approximation sense. 

rS(t) can generally be expressed in terms of the white noise w*(t) having a 

certain variance u;. in the following dynamical equation: 

* ( ) _ ~ . diw•(t) _ ~ f· dirS(t) *( ) 
r s t - ~ e, dti ~ ' dti + w t 

i =l i =l 

(24) 
~ 

where, in the case of orthogonal functions expansion system, the i-th derivatives 

of w• (t) and rS(t) are the products of the i-th order of the operational matrix 

for single stage integration with w*(t) and rS(t) respectively. The forms of the 

operational matrix for single stage integration with respect standard systems of 

orthogonal functions are given in detail in [1]. In the case of Poisson moment 

functional method, the i-th derivatives of w*(t) and rS(t) are the output of the 

i-th stage of a chain of filters driven •by w*(t) and rS(t), respectively. It is, 

however, mentioned in [14) that both the methods of the orthogonal functions 

expansion and the Poisson moment function are considerably immune to the 

zero mean additive noise and that the noise accentuating direct time derivative 

operation is elegantly avoided in both these methods. 
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The noise rM(t) at the output of the model-inverse may be assumed to 

be present due to application of the white noise signal to the LD operator 

at the input of the actual system and a part of the inherent model-inverse 

noise (stochastic noise). This noise rM(t) is considered to be a random process 

appearing at the output of the general filter driven by a white noise source. The 

measured value of rM(t) can be expressed in time domain as: 

* () _ ~ d· diw*(t) _ ~ dir'M(t) *() 
rM t - ~ J dti ~ c, dti + w t 

j=l j=l . 

(25) 

where w*(t) is assumed to be the same as the white noise used in (24). 

The expected value of the system parameters are to be determined from noise 

free measurement. Assume that there exists a model-inverse whose parameters 

are the expected system parameters. This model-inverse can be represented as: 

* () _ ~ . diyS(t) _ ~ bdiu'M1(t) 
u Ml t - ~ aJ dti ~ J dti 

j=O · j=l 

(26) 

In the case of a perfect matching (e*(t) = 0), one can write 

u*(t) = u'M(t) = u'M 1(t) + r'M(t) (27) . 

where r'M(t) is affecting only u'M1 (t) but not the derivatives of u'M1 (t) since the 

latter are directly supplied by the model-inverse which is now noise-free. 

· Referring to (23)-(26), equation (27) can be written as: 

~ () _ ~ . diy'M(t) _ ~ b· diu'M(t) 
u M t - ~ a 3 dti ~ 3 dti 

j=O . j=l 

~ diw*(t) ~ diw*(t) ~ ~ di+iw*(t) 
- ~aj dti + ~dj dti - ~aj ~e; dti+j 

j=O j=l j=O i=l 

(28) 

n dir'M(t) n n ai+irS(t) * -:L>j dti + Lai Lh dti+i +w (t) 
j=l j=O i=l 

If low pass filters are used at the output side of the model-inverse so that 
dkw•(t) dkr•(t) 
~ = 0 and ----;ff.- = 0 for k > n, the fifth and the seventh term of (28) 

can be expressed as: 

(29) 

(30) 
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The matrices Ll, E and F, each of the dimension ( n + 1) X ( n + 1), are defined 

as: 

Ll 

E 

F 

[-%#-]· 
e1 0 

e2 e1 

en en-1 

0 0 

h 0 

h h 

fn fn-1 

0 0 

0 ......... 0 

0 .. . ... ... 0 

......... e1 0 

......... 0 0 

0 0 •• • 0 •••• 0 

0 • 0 00 • •••• 0 

.. . . h 0 

.. . . 0 0 

and an ( n + 1) vector w is defined at the k-th stage as: 

[ * * * )T w = Wko wk1 · · · · · · wkn 

(31) 

(32) 

The noise vector, w = [wA; 1 wA; 2 ... : .. wkn I O]T involved in (28) can be 

expressed in term of w andll as: w = Llw. 

Using (29)- (32), equation (28) can be written for the k- th stage of the LD 

operation in the matrix form as: 

(33) 

h _ [ * * * JT _ [ * * * ]T W ere YMk - YMkO YMk1 · · ··· · · YMkn 'UMJk- uMk1 UMk2 UMkn , 

- ( * * * ]T d - [ * * * ]T rMk - rMk1 rMk2 · • · · · · rMkn an rsk - rSk1 rSk2 · · · · · · rskn · 

The system parameter p and the noise parameter () are given through: 

(34) 

where a = [ao a1 ...... an], b = [b1 ·b2 ...... bnJ, c = [c-1 c2 ...... en], and 

d = [d1 d2 . . . . . . dn] and the measurement vector in general is: [Yin I -
uin I - wT I - rin I rikJ. ·· 

In the case where the model-inverse- error- measurement (MIEM) w*(t) is 

uncorrellated with the measures of the input yM-'(t) and output uM-(t) of the 
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model-inverse and both the noise rS(t) and rM(t) are absent, equation (33) can 

be rewritten in the standard matrix form as: 

(35) 

where pis given in (4), mk is given in (3). 

From(35), a set of equations for k = 1, 2, ... , N stages is formed and written 

as: 

(36) 

where MN and· UN are the same as given in (6) and (7) respectively and WN = 
[ • • •JT wl w2 .. .... wn . 

In presence of noise, equation (36) is required to be solved under the con

dition that the sum of squares of the MIEM is minimized. For this purpose, a 

cost function which depends on parameter vector p is defined as: 

N 

J(p) = 2:wA;2 = W~ · WN (37) 
k=l 

In other words, the parameter vecto:r p is required to be found in such a way 

that J(p) is minimized. Substituting the vector of the MIEM from (36) into 

(37) and setting partial derivative 8~~) = 0, one gets the LS estimate of the 

parameter vector PN as: 

(38) 

where the subscript N of p indicates that the estimated value is calculated on 

the basis of the measurements up to N stages. 

Assume that MIEM is a white noise of zero mean with standard deviation 

0'"~, so that the expected value of the estimated vector PN becomes: 

(39) 

Referring to (36), the above equation can be rewritten as: 

( 40) 

Under the assumptions mentioned above, the second term on the right hand 

side of ( 40) becomes zero, that is, for a very large number of stages N, the 

estimated value of the parameter vector is negligibely biased. Thus 

lim c;[P] = p 
N-+oo 

( 41) 
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For a large value of N, the parameter vector has a deviation given by: 

( 42) 

The variance is then obtained as: 

(43) 

where u~. is a measure of the standard deviation u~. 

It is seen that with the use of proper low pass filters at the output side of the 

model-inverse, the noise figure in the LS estimate obtained by the lE approach 

remains the same as obtained by adopting the existing error approaches [1, 7]. 

In the present case, i.e. when the components of the measurement vector are 

corrupted by additive noise as expressed in (23) and (24), the LS estimate given 

in (38) becomes biased even for N ---> oo. The reason for the presence of the 

bias can, however, readily be found and removed by following the same ways 

as followed in building the algorithms given in [15-17] for a known value of the 

noise statistics. Three well known methods for obtaining an unbiased estimate 

of the system parameter are: Instrumental Variable (IV) [17-20], Maximum 

Likelihood (ML) [2, 19, 21] and Generalized Least Squares (GLS) [7, 19, 22]. 

The GLS method considered in this paper is briefly given below. 

Rewritting (33) as: 

(44) 

where vk(t) is the noise at the output of the model-inverse and represents the 

bias part of the LS estimate of p. It can readily be shown that the bias is given 

by the expected value of [(Mk'MN )- 1 Mk'VN] where VN is a set values of vk(t) 
fork = 1, 2, ... , N . To reduce the bias term to zero, it is necessary to reduce VN 
to an uncorrelated noise so that the elements of MN be independent of vk(t). 
Presence of vk(t) in the value of uk(t) can always be fitted as closely as desired 

to an ARMA model by taking the reqt,(jsite number of terms. Thus, at the k- th 

stage vk(t) may be expressed in terms of a white noise ~Z(t) other than that 

used in (24) and (25) as: 

v•(t) =~a dl~Z(t) _:. ~(J dlvk(t) + c•(t) 
le ~ I dtl ~ I dtl <.,k 

1=1 1=1 

where q > n (45) 

which can be written in the standard matrix form as: 

( 46) 
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where Xk = [~,i; 1 ~,i; 2 . . • . . • ~kq I - v,i; 1 - vi; 2 . . . . • . - vi;q]T, and J-1 = 
[a1 a2 .. : . .. aq . I.B1 .82 ...... ,Bq]T -- which may be named process noise 

parameter (this parameter vector is involved in the process of eliminating the 

bias given by noise). 

The relation between parameters of 8 and J-1 can be expressed through the 

transfer function matrix [1], whose elements are: 

FvrM 

Fvrs 

Fer M 

Fers 

L(C) 
L(w•) 

L(v•) 
L(w•) 

L(v•) 
L(r'M) 

L(v•) 
L(r$) 

L(C) 
L(r'M) 

L(C) 
L(r5) 

(47.a) 

(47.b) 

Ln . j=lCjSJ 

Lf=l .81
81 

(47.c) 

L:n (l::j-1 I ·) i j=l i=O a, J-• 8 

- Lf=l f31
81 

(47.d) 

Ln . - j=l CjSJ 

1 + Lf=l alsl 
(47.e) 

L:n (l::j-1 I ·) i i=l i=O a, J-• 8 

1 + Lf=l alsl 
(47.f) 

A set of equations from ( 46) for k = 1, 2, ... , N is formed and written as: 

(48) 

[ 
xi l where VN= [vi v; ... vivJT, XN = ; T 

. XN 
The LS estimate of J-1 is given by: 

( 49) 

This LS .estimate of the process noise parameter is found to be unbiased and 

allows a transformation of the corrupted data leading to an unbiased estimate of 

the system .parameter vector p. At the k-th stage, the transformation is made 
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by replacing the measured value of the system input uk(t) and the measured 

input set of the model- inverse YM-(t) by: 

(50 .a) 

(50. b) 

The set of equations ( 44) written for k = 1, .. . , N reduces then to: 

UF- MF p+';:;' N- N. ~N (51) 

where 3 is given in ( 48), Uk = [uf(t) uf(t) .. . u:K:-(t)JT and Mk = [mfT I ... I 
m:K:-TJT with mf = [yf0(t) ... yfn(t) I - uM-kl(t) . . . - uMkn(t)]T. 

The unbiased estimate of the parameter vactor PNu is then given as the LS 

estimate of (51), which is 

P, _ (MFTMF)-lMFTuF 
Nu- N N N N (52) 

where subscript "u" of PN stands for the unbiased estimate of up to N stages of 

k. Thus, after obtaining an LS estimate of p from (38), the process of mutual 

improvement between the estimation of the system parameters and the distur

bances can be performed by iterating ( 48), (49) and (52). An unbiased estimate 

of the system parameters can be obtained when V.N reaches a minimum. Know

ing the LS estimate PN and the GLS estimate PNu from (38) and the iteration 

mentioned earlier, respectively, the proper noise parameters ( c;, d;, e;, /;) can 

also be estimated. 

It may be mensioned that a transformation in the GLS procedure is made 

in (50) which has the meaning of a filter process. It can then be stated that if 

some suitable filters are used at the outputs of the system and the model-inverse 

as well as at the input of the system, the unbiased parameter can be obtained 

as its LS estimate. The GLS procedure is, however, a quasilinear formulation 

of a nonlinear estimation problem, the convergence insolution is therefore not 

asured unless very restrictive assumptions are made regarding the closeness of 

the original estimate of the parameters to their actual values [20]. 

It is noted that the unbiased parameter estimate could also be obtained in 

different ways. First, by employing the parameter estimation for a multiple 
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input single output ARMAX model [18], described in (33), the system param

eter p and the noise parameter () could be obtained. Knowing p and B, the 

proper noise parameters could also be obtained. Second, a cost function J(p) 
defined in (37) would be minimized subject to the constraint in (33). For this, 

the standard Lagrangian or Hamiltonian method could be used in which the 

unbiased estimate as well as the proper noise parameters could be obtained 

simultaneously. 

5. Recursive solution 

The estimated value of the parameter vector at the k-th stage is obtained from 

(52) by replacing N by k. 

When a new measurements are available, at the (k + 1)-st stage, after the 

filtering via (50), using the present estimate of process noise parameter /-lk so 

that: 

and the matrix M[ and the input vector U[ become M[+l and Uf+1 respec

tively, which can be expressed as: 

F [ M{ ] M(k+l) = FT ' 
m(k+l) 

(54) 

where m~+l) = [yf.,(k+l)O ... yfr(k+l)n I - UM(k+l)l . . . - UM(k+l)nY and 

u~+l) is given in (53). 
At the (k + 1)-st stage, the parameter vector is established as: 

• (MFT MF )-lMFT uF 
P(k+l) = (k+l) (k+l) (k+l) (k+l) (55) 

The Kalman gain vector is defined in this case as: 

_ (MFT MF )-1 F 
q(k+l)- (k+l) (k+l) · m(k+l) (56) 
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Since (M&~ 1)M&+l))- 1 is a symmetric matrix which is invertible, employing 

the matrix inversion lemma (A+ BC)- 1 = A- 1 - A-1 B(I + CA- 1 B)-1CA- 1 

and using the partition form of the M&+l) matrixin (54), the Kalman gain 

vector can be expressed in the terms of the available quantities as: 

(MFTMF)-1 F 
k k · m(k+l) 

q(k+1) = 1 FT (MFTMF)-1 F + m(k+1) k k · m(k+1) 
(57) 

The predicted input is chosen for the (k + 1) stage as: 

(58) 

Based on the parameter estimation up to the k-th stage, a prediction error 

on the input side of the system for the (k + 1)-st stage is obtained as: 

(59) 

The estimated value of the parameter vector at the ( k + 1 )-st stage given in 

(55) can be written in terms of the available quantities at the k-th stage as: 

(60) 

The update of the matrix consisting of the transformed auto and cross cor

relation becomes: 

(MFT MF )-1 _ (MFTMF)-1 FT (MFTMF)-1 
(k+l) (k+l) - k k - q(k+1)m(k+1) 1; k (61) 

It remains to update the value of J.L(k+l) on the basis of new observation. 

Since the process noise parameter J.L is an unbiased LS estimate, as mentioned 

earlier, the update is given by the LS recursion: 

(62) 

where J.Lk = [ak1 O'k2 . . . O'kq I - f3k1 - f3k2 . . . -:--- ,Bkq]T and X(k+1) = 
[~(k+1)1 ~Ck+1)2 · · .qk+1)q I - v(k+1)1 - v(k+1)2 · · · - v(k+1)q JT · 

The equations (57)-(62) along with the equations (53) represent the general- · 

ized recursive solution in the input error approach to the parameter estimation 

problem. This solution is found suitable to develop an algorithm for on-line 

computation of the parameters. The available algorithms to compute the re

cursive GLS estimate [7, 18, 19] obtained ,bY following the approaches where 

the error equations are not formed on the input side of the system may also be 

applied in this case. Suitable interfaces are required to facilitate the mea.Sure

ments of the input and output data of the system. The index k in the recursive 
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equations directly indicates the number of sampling instants or the order of 

an orthogonal function or the Poisson moment functional transformation, etc., 

depending on the method used in the primary stage to generate the vector mk, 

the input and the output measures. 

6. Numerical example 

The use of a discrete technique in adopting the proposed lE method to estimate 

the parameter for a continuous-time model under a nonpersistently exciting 

condition is described in the following example. 

A linear, time invariant first order SISO system is considered as: 

0.4 d~~t) + 3y(t) = u(t) 

with an initial condition y(O) = 0. 

The response of the system to the unit step input is: 

1 -3< 
y(t) = - (1 - e"if.T) 

3 

A linear, time invariant SISO first order model is chosen as: 

a1 · dy(t) + ao · y(t) = b0 · RI(t) + b1 . dRI(t) 
dt dt 

having the initial condition as: y(O) = RI(O) = 0. 

For this particular model, RI(t) can also be found as: 

RI( ) 
ao 1( ) (a1bo + aob!) ~ 3al- 0.4a0 .=2.'.. t = - · t + e b, + e o.• 
3bl bo(3bl - 0.4bo) 3(0.4bo- 3bl) 

(63) 

(64) 

(65) 

(66) 

From (65) , the transfer function of the model- inverse in S-domain is ob

tained as: 

F(s) = RI(s) = ao + a1s 
Y(s) bo + b1s 

(67) 

which can be written in Z-domain using the Tustin transformation as: 

f(z) = RI(z) = (aoT + 2a1) + (a 0 T + 2a!)z-1 

Y(z) (boT+ 2bl) +(boT+ 2b1)z- 1 (68) 

where T is the sampling time. 

At any sampling instant n, the value of RI can be expressed: 

RI(n) = a~y(n) + aiy(n- 1)- biRI(n- 1) (69) 
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where a0 
ai 

bi 

(a 0T + 2al)/(b0T + 2b1) , which is written in the matrix form 

(aoT- 2al)/(boT + 2bl) 

(boT- 2bl)/(~oT + 2bl) 
as: 

RI(n) = m~p• (70) 

where mn = [y(n) y(n- 1) - RI(n- 1)]T and p* = [a0 ai biJT. 
The IE is given by: 

IE(n) = u(n)- RI(n) (71) 

The LS estimate of the system parameter vector p• is obtained through 

minimization of a cost function J = L;;=k IE 2 (n) as: 

* - (MTM )·-lMTU PLS- N N N N (72) 

where MN = [mk mk+1 . .. mNJT and UN= [u(k) u(k + 1) . . . u(N)]T. 
The transfer function in S-domain can be obtained from its Z-domain ver-

ston as: 

F(s) = RI(s) = (a0- ai) + st(a0 + aiJ 
y(s) (1 + bi) + st(l- bi) 

The model parameters become then the system parameters which are: 

aos = (aoL +aiL), a1s = ~(aoL- aiL), b15 = ~(1- biL), 

and 

(73) 

where a0L, ai£ and biL are the components of P:is and subscript S of ao, a1, bo 
and b1 stands for the system parameters. The above expressions are valid for 

the parameter transformations from Z to S domain only. 

Three different models each with b0 = 1 are considered. The output response 

y(t) is computed using (64) and the Rls for the said models are computed by the 

use of (66). Using the computed data for y(t) and RI, the parameter vector p£5 

is computed for each model with the help of (72) referring to (70) in a recursive 

algorithm (1000 sampling data and sampling time T = 0.1 sec.) and then the 

system parameters are computed using (73) . The results are shown below. 
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Model parameters Elements of p£5 System parameters 

ao = 6.5 aOL = 41.50817 
aos = 3.000351 

a1s = 0.4000799 
a1 = 2.4 aiL = -38.50782 

bos = 1.000189 
bl = 2.5 biL = 1.89091E- 04 

b1s = 4.99055E- 03 

ao = 4.5 a0L = 41.49649 
aos = 3.008602 

a1s = 0.3999219 
a1 = 4.2 aiL = -38.48789 

bos = 1.000029 
bl = 4.5 bi£ = 2.94428E- 05 

b1s = 4.999853E- 03 

ao = 2.5 aoL = 41.45624 
aos = 3.033222 

a1s = 0.3993963 
a1 = 8.2 aiL = -38.42302 

bos = 0.9999759 
bl = 0.5 biL = -2.40637 E- 05 

b1s = 5.000012E- 03 

It is seen that although the widely different models are chosen, values of the 

system parameters obtained from this computation agree well. 

7. Conclusion 

The proposed IE approach to estimate the system parameter is found to be 

applicable to any form of input signal and to overcome the restriction to the 

persistently exciting signal to be used for the estimation purpose existing in 

the approaches to date where the order of the persistency of the input should 

be twice the order of the system whose parameters are to be estimated [19]. 

This approach hence satisfies the demand of practical cases where the system 

parameters are asked to be uniquely estimated with the use of the actual form 

of the input signal which may not be persistent. The approach can thus be 

successfully applied in the cases where the system does not permit the use of any 

test signal including even PRBSI for estimation of its parameters. The influence 

of noise considering its presence on both sides of the model-inverse is discussed 

and it is shown that an unbiased system the GLS estimation as obtained in the 

known approaches considering the noise present only on the output side of the 

model. The true value of the system parameters can, therefore, be determined in 

the same way as used in the existing approaches by the use of proper filters. The 

form of the generalized recursive solution for facilitating the on-line computation 

of the system parameters in the case of corrupted data is also found to be the 

same in both existing and the proposed approaches if some suitable interfaces are 



56 N.G . NATH, N G UY E N N . SAN 

used to supply the necessary data. Thus, the algorithms developed, applicable 

to the existing approaches, may also be used for computations in the present 

approach. 

The IE approach can atso be extended to estimation of parameters of a 

reduced-order system with two advantages over the existing techniques. First, 

any form of the input signal can be used and second, the outputs of the system 

to be reduced and of the reduced-order system are totally matched which is of 

great significance in the case of a regulator and a projective control. 
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0 pewnym podejsciu do estymacji parametr6w 

systemu 

Opisano metod~ estymacji parametrow opart& na uwzgl~dnieniu bl~du na wejs

ciu wynikaj<j,cego z zapewnienia tego samego wyjscia ukladu i jego modelu przy 

tym samym pobudzeniu. Metoda ta nie wymaga stosowania na wejsciu sygnalow 

pobudzajqcych odpowiednio wysokicl). rz~d6w. Rozwaiono takZe nieobci&zon& 

estymacj~ parametrow przy pomocy tej metody w przypadku, gdy wektory po

miarow s& zakl6cone przez szum addytywny,jak rowniei otrzymano rozwi&zanie 

rekurencyjne dla wyliczania wektora parametrow na biezqco. 

0 HCKOTOpOM DOAXOAC K O~CHKe napaMeTpOB CHC

TCMbl 

0nHC&H MeTO,ll. on;eHKH napaMeTpOB, OCHOB&HHLI:A: H& y'leTe OWH6KH Ha BXO,ll.e, 

BLITet<&JOW.e:A: H3 o6ecne'leHH.II O,li.HH&KOBOrO BLIXO,ll.& CHCTeMLI H ee MO,ll.e11H 

npH TOM :>Ke B036Y:>KJI.eHHH. 3TOT MeTOJI. He Tpe6yeT HCll011L30B&HH.II Ha BXO,ll.e 

B036y:>K,li.&JOW.HX CHrii&110B COOTBeTeTBYJOW.e BLICOKOro nop.ll,ll.t<&. PaccMa

TpHB&eTC.II T&K:>Ke HeCMeW.eHH&.II OD;eHK& napaMeTpOB C llOMOW.LJO STOrO Me

TOJI.& B cny'lae, KOr,ll.a BeKTOpLI H3MepeHH:A: HCK&:>KeHLI &,lJJI.HTHBHLIM WYMOM. 

J1ony'leHO peKyppeHTHOe peweHHe ,IJ,11.11 TeKyW.ero BLI'IHC11eHH.II BeKTOpa na

paMeTpOB. 


