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An approach to estimation of system parameters is described
based on consideration of an input error which results from ensuring
the same output of the system and its corresponding model previ-
ously exposed to the same excitation. The approach is found ad-
vantageous in removing the existing restriction to the persistently
exciting signal to be used for the estimation purpose. The unbi-
ased parameter estimation obtained by adopting this approach in
the case where the measurement vectors are disturbed by additive
noise is also discussed and the recursive solution for the on-line com-
putation of the parameter vector is also obtained.

1. Introduction

Whenever the model of a dynamical system is described in a parametric form,
the methods of system parameter estimation may in general be seen to consist
of two stages [1, 2]. In the first stage, the number of equations of the sytem to
be set up for the estimation purpose should be equal to the number of model
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parameters being sought [3]. In the second stage, the parameters of the model
are estimated following an estimation method based on the consideration of
some defined errors (output error, output prediction error and equation error
[1, 2, 4]) and suitable criteria imposed on these errors used in defining proper cost
functions to be minimized. The estimation process requires the measurement
of both the input and output vectors for formulation of the estimation problem
and hence it becomes necessary to introduce the persistently exciting property
[2, 5], putting a restriction as to the form of input signal to be used for the
estimation purpose. The Pseudo Random Binary Sequence Input (PRBSI) can,
of course, be used to meet the requirement of the persistently exciting property.
This finds limited applicability in practice because the parameter estimation in
cases of a system like a bio—-system or an industrial process-system may demand
the use of an actual form of the exciting signal which may not be persistent one
making thus the estimation process difficult.

An alternative approach to estimation of the system parameters is presented
in this paper. In this approach, the knowledge of the form of the exciting
signal to be used for the estimation purpose may be ignored. The approach is
based on the use of an error defined as the difference between the system input
and a signal which is required to be present at the model input (Requested
Input — RI) such that outputs of the sytem and the model are matched. This
error may be called an Input Error (IE) which is suitably used in a defined
cost function to be minimized for estimating the systems parameters. In the
proposed approach, since the IE is defined on the input side of the system,
the restriction as to the system input in mathematical manipulation of the
estimation problem disappears and thus the approach is applicable to the cgse
of a nonpersistent input too. This approach to the system parameter estimation
along with the determination of the IE is described. The influence of the noise
in the proposed estimation technique considering the presence of the noise on
both the input and output sides of the system is discussed and then an unbiased
estimate of the system parameters is found. A recursive solution needed for the
purpose of on-line computation of the system parameters is also obtained.

2. Basic approach

The idea of the input error approach to parameter estimation for a continuous—
time model of a linear time invariant single input single output (SISO) system is
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illustrated in Figure 1. Assume that there is no noise involved in the process of
estimation. The model-inverse is incorporated in the figure to replace a chosen
model whose parameters are usually different from those of the system. When
such a model is chosen, it becomes necessary to include a signal at the model
input which acts in addition to the system input for ensuring the outputs of
the system and the model to be the same. This additional actuating signal
(AAS) accounts for the difference between the parameters of the system and
the model. By trimming the model parameters, the system parameters can,
however, be estimated through minimization of the AAS. The concept of the
model-inverse is introduced in the figure to indicate the need of knowledge about
the AAS which represents e*(¢) in the sense of the IE.

Some suitable linear dynamical (LD) operators are used on the output side
of the system to generate the time derivatives of the output signal [1]. This
LD operator may be any of linear filtering operations or spectral chracteriza-
tions of signals or method/modulating functions [1]. There, the LD operation
means a multiplication of each term of the SISO model with known functions
(the number of the known functions is equal to the number of the parameters to
be estimated) and integration of the products over the period of available data
with a repetition of the process for all modulation functions to yield a system of
independent equations for the estimation purpose [10, 11, 12]. The method funec-
tion technique, however, suggests a means of avoiding the direct time derivative
measurment problem. In a disrete-time mode approach, the LD operator may
be seen as an A/D converter which facilitates the appropriate measurements re-
quired for formulation of the parameter estimation equations. One LD operator
is also used at the input side of the system to convert the input signal to the
respective domain present at the model-inverse output.

A general form of the continuous-time model is considered as:

e & 0

where the measurement values of the j~th derivatives of the output and input
the model are denoted by fi?&%(—tl = Yjr;(t) and %ﬁ—l = ujy;(t) respectively
with an assumption of the availability of the data for the parameter estimation.

If the model-inverse exists, (1) may be rewritten for the k-th stage of the

LD in absence of noise with by = 1 as:

wher(t) = 3 aji; (1) = D bjuhee; (1) (2)
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Figure 1. Block diagram of the input error approach.

where the measurement values of the j~th derivatives of the system is denoted
by y3,;(t) = L4 a¢ the k-th stage of the LD.

For ensuring the output of the model to be the same as delivered by the
system, the chosen model would ask for a RI as given in (2), which can be

written in the standard matrix form as:

uin(t) = mip ®3)

where p = [ap...... an |by...... bn]T is the parameter vector to be estimated
and m; is the vector

me = (o) - Yin ()| = Uhma (D) = Upin (D)7 (4)

It is seen form (4) that yo() . .. y§,(t) is the set of system output data which
are supplied by the LD operators and the set uj,p,(t)...uj}s ., (2) is directly
supplied by the model-inverse.
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Since the parameters of the model-inverse differ from those of the system,
the RI is not the same as the system input. Thus an input error results at the
k—th stage as given by:

ek = Up — Uk (6)

where u} is supplied by the LD operator at the input of the system.
From (3), a set of equations for k = 1,2,..., N stages is formed and written
in the matrix form as:

Uun = MNP (6)
where Uy = [ulyy Uhgo-o---- uyn]T and My =[mf |mT | ...... | m&]T.

A set of input error equations is also formed for (5) with k = 1,2,..., N.
Referring to (6), this set of the input error equations is written in the matrix
form as:

ey = Un — MyP (7)
where ¢fy = [e] €5...... en)T and Uy = [uf u3...... uy]T.

A cost function is defined as:

() = 3(eb)? = ()7 - () = (Un — MyP)'(Uy — MyP)  (8)
k=1 i

The parameters are to be estimated in such a way that the cost function
is minimized. The necessary condition for minimization of the cost function is
?—g{,ﬂ | =0, where p stands for estimated value of p. With reference to J(p)

P=p

in (8), the normal equation of the problem in this case is obtained as:
(M{MN)b = MY - Un )

The solution of the above equation is the Least Square (LS) estimate prg
which is obtained as:

prs = (MyMn) *M{jUn (10)

It is seen form (4), (6) and (10) that the necessary data, required to be
supplied by LD operators for the estimation purpose, are the set of system
output data and the measured value of the system input. It is also seen that
prs may be obtained if the inverse of the (2n + 1) x (2n + 1) matrix M My
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exists. Recalling the structure of the matrix My of (6) and referring to m; of
(4), one may write:

*
Yigereveenns ch
(n4+1)xN
vi YA
MEMy = . —- X (11)
TUMLL s —UMN1
nxN
* -
gt o R AR E “UMNn |
*®
ylo ......... yln uMu ......... uMln
X P Nx(n+1) ¢ Nxn
» *
yNU ......... y?\rn 'UMNI ......... "‘“uMNn

For a sufficiently large number of stages (N — o0), (11) can be rewritten,
with introduction of the corresponding correlation functions [6], as:

MEMy = Nx (12)
PR« s Ryey+(n) e 0 ]
z : L Ben () urcamusica —Ryeys (n)
(n41)x(n41) : fadioen ;
X | Ryeye(n)  cvvrrnnn. Ryy»(0) |-Ryeus (n)......... —Ryeus (1)
0 —Ruz ye(1)...... —Rus yo(n)| Rug ag, (1):neenne Rus us (n)
L ax(ndl) Y S &
0—Rus yo(n)...... ~Rus, g+ (1)| Rug ug, (1) ..o Rus uz (1) ]

From (10), it is seen that the LS estimates obtained in this case has the same
form as that obtained in the case where the errors are not defined on the input
side of the system [1]. The parameter estimation method demand, however,
the existence of the matrix (M§ My)~! in all the cases. In the case where the
errors are not defined on the input side of the system, the same matrix contains
the elements obtained from auto and cross co-relations of the input and ouput
data of the system and the input signal must therefore be persistently existed
so that (M# My)~! exists. It is now seen from (12) that the input data of the
system are replaced by those of the model in the newly formed matrix. Even
though the system input is not persistently existed, the output of the system
is always persistently existed. Since the system output acts as the input of
the model-inverse, its output is also persistently existed and hence (MFMy)~!
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always exists. Thus the proposed IE approach is found to be applicable to the
use of any form of the input signal for the estimation purpose. The advantage
of the proposed approach over the existing ones (where the defined error is not
on the input side of the system) is that in the nonpersistently exciting signal
case, a unique solution to the estimation problem can be found by adopting the
present approach while the use of the generalized inverse of the matrix due to
nonexistence of (.i'VIﬁMFI\r)“1 in the known approaches does not provide a unique
solution.

It may be mentioned that only one LD operator is required at the input side
of the system to convert the system input signal to the respective domain of
the model-inverse output while in the existing methods, the number of the LD
operators is greater than one and usually equal to the system order excepting
the case of discrete-time model approach. Further, the LD at the input of the
system may be removed if (LD)~! is used on the output side of the model-inverse
to retransfer the RI signal from its measured value. The use of (LD)~! would,
however, result in a creation of some extra noise due to the nonhomogeneity of
the operators.

3. Determination of the Input Error (IE)

The scheme for parameter estimation with error defined on the input side of
linear time invariant SISO model is shown in Figure 2. It is presently assumed
that the noise signals rg(t) and rps(t) are absent in the scheme.

In this scheme, the error measure is given by:

e"(t) = u(t) — ujy(?) (13)

The mieasure u*(t) of the input signal is obtained from the LD with noise
rr(t) at its input. Thus

u*(t) = LD [u(t) + rz(2)) (14)
General form of the model-inverse with by = 1 can be written from (1) as:
* - - djy.(t) d ’b‘.
() =) _a—s Z j d‘;‘; (15)
§=0

Thus, the transfer function of the model-inverse becomes:

Upe(s) _ 2j=0%i -8

Fu(s) = Y*(s)  1+Y.b-8

(16)
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Figure 2. Parameter estimation scheme — definition of the input error and
influence of noise.

If the model-inverse includes a stochastic noise, the stochastic part of the
model-inverse has a transfer function of the form:

Gule) = s ar)

The noise rz(t) = L=![R;(s)] in the model-inverse is assumed to be present
due to the white noise w(t) = L~[W(s)] and the transfer function G,(s) which
can take different forms depending upon the model structure [1, 4].

In a complete matching condition, one can obtain:

U™ (s) = Upr(s) + Gn(s) - W*(s) (18)

where W*(s) is the measured value of the white noise signal w(t) in Laplace
domain and can be interpreted as:

W*(s) = G5 (s) - [U™(5) = Uiy (s)] (19)
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The Laplace transform of the white noise can be obtained by taking the
inverse linear operation of W*(s) as:

W(s) = (LD)™ {G;(s) - [U*(5) — Upr ()]} (20)

The white noise w(t) in time domain can be obtained by taking the inverse
Laplace transform of W(s) given in (20) and hence the measured value of the
white noise in time domain w*(t) is supposed to be obtained from the LD as:

w*(®) = LD {L7* [(LD)[G3(s) - (U*(s) - Use ()] } (21)
Us(s) ACTUAL g
SYSTEM
R:(S)
U(s)
LD LD
U*(s)
(s s Y4
Uidd) [ = g (¢)
E*(s)
— E(s) —— W (s) L w(t) s w*(1)

Figure 3. Block diagram for determination of the input error.

The definition of the input error can be illustrated using (19)-(21) and is
diagramatically shown in Figure 3, where the transfer function of the model-
inverse Fir(s) is expressed by the ratio of A(s) to B(s). The equation (21)
implies that the deviation (U*(s) — Ujs(s)) of the system input U*(s) from its
deterministic behaviour Uy,(s) may be seen due to operation of white noise
w* (1) on a system consisting of LD and G}, (s).
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4., The noise treatment

The scheme of parameter estimation in presence of noise for a SISO continuous-
time model is discussed with reference to Figure 2, where the noise signals rg(t)
and rpr(t) are considered in the absence of the noise signal r7(t). The error
measure in such a scheme is given by

e" (1) = u(t) — up(t) (22)

The measure of the output signal ys(f) of the actual system or the input
signal of the model-inverse is usually contaminated with the noise rg(t). Thus

Yar(t) = LD {ys(t) + rs()} = y5(t) + r5(2) (23)

where r§(t) arises out of application of white noise to a system consisting of
LD. When LD operator stands for a linear filter, the LD operation may be
characterized by an appropriate transfer function [1]. In the method using or-
thogonal functions, an approximate and algebraical relation between the output
and input of the system may be obtained utilizing the one—shot operation ma-
trix for repeated integration [13]. It is not possible to describe the LD operator
in the usual form of transfer function in S—domain since the LD in this case
corresponds to a chain of integrators in the LS approximation sense.

r%(t) can generally be expressed in terms of the white noise w*(t) having a
certain variance ¢2. in the following dynamical equation:

re(t) Z e, dt' Z fi d!;j‘ + w*(t) (24’1)

where, in the case of orthogonal functions expansion system, the i—th derivatives
of w*(t) and r§(t) are the products of the i-th order of the operational matrix
for single stage integration with w*(t) and r%(t) respectively. The forms of the
operational matrix for single stage integration with respect standard systems of
orthogonal functions are given in detail in [1]. In the case of Poisson moment
functional method, the i~th derivatives of w*(¢) and rg(t) are the output of the
i~th stage of a chain of filters driven*by w*(t) and r§(t), respectively. It is,
however, mentioned in [14] that both the methods of the orthogonal functions
expansion and the Poisson moment function are considerably immune to the
zero mean additive noise and that the noise accentuating direct time derivative
operation is elegantly avoided in both these methods.
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The noise rar(t) at the output of the model-inverse may be assumed to
be present due to application of the white noise signal to the LD operator
at the input of the actual system and a part of the inherent model-inverse
noise (stochastic noise). This noise rps(t) is considered to be a random process
appearing at the output of the general filter driven by a white noise source. The
measured value of () can be expressed in time domain as:

n

dw(t) dirh(t) 3
t)_):d — X;c,-—dtj—+w t) (25)
where w*(t) is assumed to be the same as the white noise used in (24).

The expected value of the system parameters are to be determined from noise
free mieasurement. Assume that there exists a model-inverse whose parameters
are the expected system parameters. This model-inverse can be represented as:

n .
Fys(t) iy (t)
uis () = Z o — Z s (26)
In the case of a perfect ma.t.chmg (e*(t) = 0), one can write
u*(t) = ujy(t) = wina(8) + rae(?) (27)

where r},() is affecting only u}, (t) but not the derivatives of u},(t) since the
latter are directly supplied by the model-inverse which is now noise—free.

"Referring to (23)—(26) equation (27) can be written as:
w(t) = Z Y dtJ z 4 dt:

d w*( dw(t) < ditiw*(t)
_.g ? dt: Z LT Ea’ze‘ dti+i (28)

j=0 i=1
O\ dirg(2) ditiry( t)
_-z;" “dti +E Zf' errea A
j=

If low pass filters are used at the output side of the model-inverse so that

Ful®) = 0 and 550 = 0 for k > n, the fifth and the seventh term of (28)
can be expressed as:

n it =i d
P ot OIS oy @)

J=0 =1 j=1i=0

n

2. ditiry r
Zajzf'_d}:.%@ = ZZaf', 1d(ﬁs‘JI (30)

=0 =1 j=14=0
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The matrices A, E and F, each of the dimension (n+1) x (n+1), are defined

N
L
[ ey R e 0
gy By 0 seweness 0
E = |: s (31)
B Bped  seesumas ep 0
L 0 0 ... 0 0
[ f1 0 O eevesenn 0
for Jr U ceummou 0
Fo=|: 2 s
Fae el wmwmovens i O
| 0 0 i 0 0 |

w = [wip Wey --eee win]” (32)

The noise vector, W = [wf; Wiy ...... w},, | 0]T involved in (28) can be
expressed in term of w and A as: w = Aw.

Using (29)-(32), equation (28) can be written for the k—th stage of the LD
operation in the matrix form as:

up = [Yaee | — whrnlp+ [0 | —rip | r5e] -0+ wi (33)
where yar = [Yhreo Yark1 -+ YhrralTs Umre = [Uipy Wapen oo Udgkn) s
ik = [Phery Thrg oo Thenl” and rsg = [rhp rhey oo TSk -

The system parameter p and the noise parameter ¢ are given through:

p=[a|bT, 0=[a+ATEa—ATd|c|Fa® . (34)
where a = [ag a1 -..... ay), b=1[by by ...... bal,e=[e1 €2 counsn ¢n], and
d=1[dydy ...... d,] and the measurement vector in general is: [yh, | —
uige | —wT | —=rig | r§l. -

In the case where the model-inverse—error-measurement (MIEM) w*(t) is
uncorrellated with the measures of the input y3,(¢) and output u},(t) of the
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model-inverse and both the noise r§(t) and rj,(t) are absent, equation (33) can
be rewritten in the standard matrix form as:

uj =m} -p+wj (35)
where p is given in (4), m; is given in (3).
From(35), a set of equations for k = 1,2,..., N stages is formed and written
as:
UN=MN-p+WN (36)

where My and Uy are the same as given in (6) and (7) respectively and Wy =
7 . wi]”.

In presence of noise, equation (36) is required to be solved under the con-
dition that the sum of squares of the MIEM is minimized. For this purpose, a
cost function which depends on parameter vector p is defined as:

N
I(p) =) wi*=W§ Wn (37)
k=1

In other words, the parameter vector p is required to be found in such a way
that J(p) is minimized. Substituting the vector of the MIEM from (36) into
(37) and setting partial derivative %ﬁl = 0, one gets the LS estimate of the

parameter vector py as:
Py = (MEMN)* MEUN (38)

where the subscript N of p indicates that the estimated value is calculated on
the basis of the measurements up to N stages.

Assume that MIEM is a white noise of zero mean with standard deviation
o2, so that the expected value of the estimated vector py becomes:

Jim e[p] = lim e[(MEMN) *MEUN] (39)
Referring to (36), the above equation can be rewritten as:
s 2 2 7 4 =147
A}l_rgo s_[p]—e[pl-{-j\}l_t.l;ln e[(MyMy)~* My Wi] (40)

Under the assumptions mentioned above, the second term on the right hand
side of (40) becomes zero, that is, for a very large number of stages N, the
estimated value of the parameter vector is negligibely biased. Thus

Jim eff] = p (41)
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For a large value of N, the parameter vector has a deviation given by:
Py —p = (MyMy) "' ME Wy (42)
The variance is then obtained as:

el(d—p)T(p—p) = 0l - (MEMy)™! (43)

where 2. is a measure of the standard deviation o2.

It is seen that with the use of proper low pass filters at the output side of the
model-inverse, the noise figure in the LS estimate obtained by the IE approach
remains the same as obtained by adopting the existing error approaches [1, 7).

In the present case, i.e. when the components of the measurement vector are
corrupted by additive noise as expressed in (23) and (24), the LS estimate given
in (38) becomes biased even for N — co. The reason for the presence of the
bias can, however, readily be found and removed by following the same ways
as followed in building the algorithms given in [15-17] for a known value of the
noise statistics. Three well known methods for obtaining an unbiased estimate
of the system parameter are: Instrumental Variable (IV) [17-20], Maximum
Likelihood (ML) [2, 19, 21] and Generalized Least Squares (GLS) [7, 19, 22].
The GLS method considered in this paper is briefly given below.

Rewritting (33) as:

uf = [are | — uhenlp + vi(t) (44)

where v;(t) is the noise at the output of the model-inverse and represents the
bias part of the LS estimate of p. It can readily be shown that the bias is given
by the expected value of [(M% My)~1M% Vx| where Vi is a set values of v}(t)
fork=1,2,...,N. Toreduce the bias term to zero, it is necessary to reduce Vy
to an uncorrelated noise so that the elements of My be independent of v} (¢).
Presence of v (t) in the value of u}(t) can always be fitted as closely as desired
to an ARMA model by taking the requ'isite number of terms. Thus, at the k-th
stage v;(t) may be expressed in terms of a white noise £ () other than that
used in (24) and (25) as:

9 df *(t q di (1
vi(t) = Z o 3’;1( ) - ZB;%() +&;(t) where ¢>n (45)
I=1 =1

which can be written in the standard matrix form as:

v =xTp+¢ (46)
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where Xt = [€y &5y vovae o T T — v}, ], and p =
[ 50 wopns ag |BL B2 -..... By)¥ — which may be named process noise
parameter (this parameter. vector is involved in the process of eliminating the
bias given by noise).

The relation between parameters of § and p can be expressed through the
transfer function matrix [1], whose elements are:

L(£)
Few =
> L(w*)
(1= a0)+ i (—aj +dj — I aiej-i)sf
= 7 - (47.a)
. 1+ Z‘-=1 oS
_ L) .
Fvw [ L(w_)
(- a0)+ Yjoa(—aj +dj — TiZg aiej—i)s? 4
= 7 : (47.b)
=2 i=1 b8 .
- L(‘U‘} =3 Z?:.:l stj
Fuf‘M - L("Tu) - 2?21 B!s; (47.0)
po W) | DT e ()
== L(rs) =Yl Bis!
. P
ey = ZE) _ Z2inG (47.)
L(r3s) 1+ 30, aust
h - e Xia(Tisafi-)d )
SRR 7Y 1+ 30 ars! '
A set of equétions from (46) for k =1,2,..., N is formed and written as:
Vv =Xnpu+EN . (48)
, xT
where Vy = [v] v3 ... o}]%, Xn= | ¢ and Ey =[£1 & ... EN]T
. Xk
The LS estimate of y is given by:
b= (XEXn) " XE Vi > (49)

This LS estimate of the process noise parameter is found to be unbiased and
allows a transformation of the corrupted data leading to an unbiased estimate of

the system parameter vector p. At the k—th stage, the transformation is made
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by replacing the measured value of the system input uj(f) and the measured
input set of the model-inverse yj,(t) by:

S dug(t) Y4 dup(t) . ut (t) (50.2)
=1

F
uk (1) dtl atl

q L q 1,F
y{ffkj(t) — Za;M_Eﬁldth(t)_l_
=1

Yark;(t) J=0,1,...,n (50.b)

The set of equations (44) written for k = 1,..., N reduces then to:
U = M -p+En (51)

where Z is givenin (48), UF = [uf (1) uf'(?) ... uf(®))T and M =[m{7T | ... |
mETTT with mf = [gfo(t) - ¥Eu(t) | = uhesa(®) - — Uhpa(OIT-

The unbiased estimate of the parameter vactor pyy is then given as the LS
estimate of (51), which is

e = (METME) 1 METUE (52)

where subscript “u” of py stands for the unbiased estimate of up to N stages of
k. Thus, after obtaining an LS estimate of p from (38), the process of mutual
improvement between the estimation of the system parameters and the distur-
bances can be performed by iterating (48), (49) and (52). An unbiased estimate
of the system parameters can be obtained when Vj reaches a minimum. Know-
ing the LS estimate gy and the GLS estimate pp, from (38) and the iteration
mentioned earlier, respectively, the proper noise parameters (c;, d;, e;, fi) can
also be estimated.

It may be mensioned that a transformation in the GLS procedure is made
in (50) which has the meaning of a filter process. It can then be stated that if
some suitable filters are used at the outputs of the system and the model-inverse
as well as at the input of the system, the unbiased parameter can be obtained
as its LS estimate. The GLS procedure is, however, a quasilinear formulation
of a nonlinear estimation problem, the convergence in solution is therefore not
asured unless very restrictive assumptions are made regarding the closeness of
the original estimate of the parameters to their actual values [20].

It is noted that the unbiased parameter estimate could also be obtained in

different ways. First, by employing the parameter estimation for a multiple
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input single output ARMAX model [18], described in (33), the system param-
eter p and the noise parameter @ could be obtained. Knowing p and 6, the
proper noise parameters could also be obtained. Second, a cost function J(p)
defined in (37) would be minimized subject to the constraint in (33). For this,
the standard Lagrangian or Hamiltonian method could be used in which the
unbiased estimate as well as the proper noise parameters could be obtained
simultaneously.

5. Recursive solution

The estimated value of the parameter vector at the k—th stage is obtained from
(52) by replacing N by k.

When a new measurements are available, at the (k + 1)-st stage, after the
filtering via (50), using the present estimate of process noise parameter u; so
that:

ulerny(t) = ia fﬁ%}i)_._ zq: du(:;)()+
=1
+ufi41)(t) (53.)
Yk = imkdyM(;;”’(t iﬁ dyM(;;U:(t)_i_
1=1
FYhr(ryn); (1) for 3—0,..., (53.b)

and the matrix M{" and the input vector U{ become M{,; and UF,, respec-
tively, which can be expressed as:

F M P FT r 17
Misy = |—m—| UG+ = [U(k+1) | “(k+1)] (54)
M(k+1)
where ma“) = [yj{':((k+1)0 o yff(kH)n | —ume4yr -0 — UM(k+1)n]T and

ufy 41y is given in (53).
At the (k + 1)-st stage, the parameter vector is established as:

Poe+1) = (MEE M) T MES Ul (55)
The Kalman gain vector is defined in this case as:

ge+1) = (METHyME41) ™Mby (56)
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Since (M%) M{; ;1)) is a symmetric matrix which is invertible, employing
the matrix inversion lemma (A + BC)~! = A~ — A~'B(I + CA~'B)~"1CA™!
and using the partition form of the M(F,; +1) Matrix in (54), the Kalman gain
vector can be expressed in the terms of the available quantities as:

(METME)™ -mf )

(57)
1+ mfﬁn(MfTMf)" - mﬁﬂ)

dk+1) =

The predicted input is chosen for the (k + 1) stage as:
Ulk i) = Mizyn)Pr (58)

Based on the parameter estimation up to the k—th stage, a prediction error
on the input side of the system for the (k + 1)-st stage is obtained as:

Nk+1) = ”{;:+1) = u{;rﬂ.),k (59)

The estimated value of the parameter vector at the (k+ 1)-st stage given in
(55) can be written in terms of the available quantities at the k-th stage as:

P(e+1) = Pr + Q(r+1) - M(k+1) - ‘ (60)

The update of the matrix consisting of the transformed auto and cross cor-

relation becomes:
{Mngl)M£+l))_l = (M{TME) ™ = q(k+1)mﬂ11)(M{TMf)#l (61)

It remains to update the value of p(i41) on the basis of new observation.
Since the process noise parameter y is an unbiased LS estimate, as mentioned
earlier, the update is given by the LS recursion:

Bk41) = pE — peX k411 + xa+1)#kX(k+1)]_1xa+i)#k (62)
where pr = [ag1 or2 ... arg | = fr1 = Bz ... — Prg]” and x4y =
[ffk+1)1 €l 41)2 ---Efk+1)g| = Vgt ~V(k41)2 0 T Yk+)e IF.

The equations (57)-(62) along with the equations (53) represent the general-
ized recursive solution in the input error approach to the parameter estimation
problem. This solution is found suitable to develop an algorithm for on-line
computation of the parameters. The available algorithms to compute the re-
cursive GLS estimate [7, 18, 19] obtained by following the approaches where
the error equations are not formed on the input side of the system may also be
applied in this case. Suitable interfaces are required to facilitate the measure-
ments of the input and output data of the system. The index k in the recursive
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equations directly indicates the number of sampling instants or the order of
an orthogonal function or the Poisson moment functional transformation, etc.,
depending on the method used in the primary stage to generate the vector my,
the input and the output measures.

6. Numerical example

The use of a discrete technique in adopting the proposed IE method to estimate
the parameter for a continuous-time model under a nonpersistently exciting
condition is described in the following example.

A linear, time invariant first order SISO system is considered as:

0. 4dy(‘) ) =ld) (63)

with an initial condition y(0) =
The response of the system to the unit step input is:

l - 31
o) = 3(1-e¥) (64)
A linear, time invariant SISO first order model is chosen as:
d dRI(¢
ar- B 4 o y(t) = b - RIE) + 5, - B (65)

having the initial condition as: y(0) = RI(0) = 0.
For this particular model, RI(¢) can also be found as:

ag

( )+ (fllbg + a0b1] e:!f_'lﬂ_‘ 3a; — 0.4qag —u_-:!
36, '

Blgy= Bo(3b; — 0.450) 300405 — 361

(66)

From (65), the transfer function of the model-inverse in S-domain is ob-
tained as:

RI(s) _ao+ais

Fir)= Y(s)  bo+bis (67)
which can be written in Z-domain using the Tustin transformation as:
- RI(Z) _ (GGT+2‘11)+(GQT+ 231)2—1 (68)

1) = ¥y = BT +251) + (boT + 201) 21

where T' is the sampling time.
At any sampling instant n, the value of RI can be expressed:

RI(n) = ajy(n) + ajy(n — 1) - i Ri(n — 1) (69)
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where af = (aoT + 2a1)/(boT + 2b;) , which is written in the matrix form
a; = (aoT —2a1)/(boT + 2b,)
by = (boT —2b1)/(boT + 2by)
as:
RI(n) = mTp’ | (70)

where m, = [y(n) y(n — 1) = RI(n —1)]7 and p* = [a} a} b{]7.
The IE is given by:

IE(n) = u(n) — RI(n) (71)

The LS estimate of the system parameter vector P* is obtained through
minimization of a cost function J = Erl.Nzk IE?(n) as:

pis = (MyMy)"*M{UN (72)

where My = [mg miy1 ... my]T and Un = [u(k) u(k +1) ... w(N)]T.
The transfer function in S—~domain can be obtained from its Z—domain ver-
sion as:

_ RI(s) _ (ag —ai) + 5% (a5 +a})

FEO =30 = aem L5 (73)

The model parameters become then the system parameters which are:

- * T L] L] T -
aos = (agg +aiL), a1s = ‘,;(%L —ajL), his = 5(1 - biz),

and
bos = (1 +b7z)

where af;, a}; and b} are the components of p} ¢ and subscript S of ag, a1, by
and by stands for the system parameters. The above expressions are valid for
the parameter transformations from Z to S domain only.

Three different models each with by = 1 are considered. The output response
y(t) is computed using (64) and the Rls for the said models are computed by the
use of (66). Using the computed data for y(t) and RI, the parameter vector pj ¢
is computed for each model with the help of (72) referring to (70) in a recursive
algorithm (1000 sampling data and sampling time T' = 0.1 sec.) and then the

system parameters are computed using (73). The results are shown below.
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Model parameters Elements of pj ¢ System parameters
= 3.000351
ao = 6.5 aty, = 41.50817 s et
a =
a; = 2.4 at, = —38.50782 b” o 1 T
by =9 bt =1.89091E—04 | 577
ek iz bis = 4.99055E — 03
= 3.008602
p S at, = 41.49649 e il
a = \u.
a =42 a}, = —38.48789 b”_ § B
by = 4.5 bt, = 2.94428E — 05 preet
. 15 bis = 4.999853E — 03
= 3.033222
ap =25 a3, = 41.45624 o 0.3903063
a = \U.
a; = 8.2 aj, = —38.42302 =
bi =05 e _9.40637E 05 | oo = 0:9999759
ki 15 = bis = 5.000012E — 03

It is seen that although the widely different models are chosen, values of the
system parameters obtained from this computation agree well.

7. Conclusion

The proposed IE approach to estimate the system parameter is found to be
applicable to any form of input signal and to overcome the restriction to the
persistently exciting signal to be used for the estimation purpose existing in
the approaches to date where the order of the persistency of the input should
be twice the order of the system whose parameters are to be estimated [19].
This approach hence satisfies the demand of practical cases where the system
parameters are asked to be uniquely estimated with the use of the actual form
of the input signal which may not be persistent. The approach can thus be
successfully applied in the cases where the system does not permit the use of any
test signal including even PRBSI for estimation of its parameters. The influence
of noise considering its presence on both sides of the model-inverse is discussed
and it is shown that an unbiased system the GLS estimation as obtained in the
known approaches considering the noise present only on the output side of the
model. The true value of the system parameters can, therefore, be determined in
the same way as used in the existing approaches by the use of proper filters. The
form of the generalized recursive solution for facilitating the on-line computation
of the system parameters in the case of corrupted data is also found to be the

same in both existing and the proposed approaches if some suitable interfaces are
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used to supply the necessary data. Thus, the algorithms developed, applicable
to the existing approaches, may also be used for computations in the present
approach. _ '

The IE approach can aiso be extended to estimation of parameters of a
reduced-order system with two advantages over the existing techniques. First,
any form of the input signal can be used and second, the outputs of the system
to be reduced and of the reduced-order system are totally matched which is of
great significance in the case of a regulator and a projective control.
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O pewnym podejsciu do estymacji parametrow
systemu

Opisano metode estymacji parametréw oparta na uwzglednieniu bledu na wejs-
ciu wynikajacego z zapewnienia tego samego wyjscia ukladu i1 jego modelu przy
tym samym pobudzeniu. Metoda ta nie wymaga stosowania na wejsciu sygnalow
pobudzajacych odpowiednio wysokich rzedow. Rozwazono takze nieobcigzona
estymacje parametréw przy pomocy tej metody w przypadku, gdy wektory po-
miaréw sa zakldcone przez szum addytywny, jak rowniez otrzymano rozwiazanie
rekurencyjne dla wyliczania wektora parametréw na biezaco.

O HekoTOpOM moaXxofe K OlleHKe MapaMeTpOB CHC-

TeMbl

OnucaH MeTO/I ONEHKH IapaMeTPOB, OCHOBAHHEIA Ha yueTe olubKu Ha BXOfe,
BBITEeKalOlIe# U3 obecreyeHrHs OMHHAKOBOTO BBIXO[a CHCTEMEL H €€ MOJIENH
npH TOM e Bo36y>xaeHun. IToT MeTop, He TpebyeT HCIONL30BAHMS Ha BXOJE
BO36yXaIOUIMX CHTHAJNOB COOTBETETBYIOLE BHICOKOTO MOpAAKa. Paccma-
TPUBAETCA TaK)ke HeCMELIEHHad ONEeHKa [IapaMeTpPOB ¢ IOMOIILLI0 STOT'O Me-
TOMla B CIIy4ae, KOT[la BEKTOPHI M3MEPEHM HCKAXKEHBI A[IMTUBHEIM IIYMOM.
IMonyyeno pexyppeHTHOe pellleHHe [IJI TeKYILero BEIYMCAEHAA BEKTOpa Ia-
paMeTpoB.




