Control

and Cybernetics
VOL. 20 (1991) No. 1

Explicit solutions of coupled Riccati equations

occuring in Nash games — the open-loop case.

by
Lucas JODAR and Enrique NAVARRO

Department of Applied Mathematics
Universidad Politécnica de Valencia,
Spain

Hisham ABOU-KANDIL

Laboratoire de Robotique de Paris

Univ. Paris VI (URA CNRS 1305)

4 Place Jussieu,

75252 Paris

France

In this paper we present explicit closed form solutions of sys-

tems of coupled Riccati matrix differential equations appearing in
open-loop Nash games. By means of appropriate algebraic transfor-

mations tlie problem is decoupled so that an explicit solution of the
problem is available.

1. Introduction

When noncooperative problems are tackled, a game theoretic approach is nec-
essary: each control agent (decision maker or player) tries to optimize his own
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.cost function which conflicts more or less with the ones of the others. An equi-
librium solution must be sought, and the Nash strategy is a normal choice. In
this case, a player cannot improve his playoff by deviating unilaterally from
his Nash strategy. Due to this noncooperation, the optimization problems of
various players are strongly coupled and necessary conditions for Nash strategy
lead to complex two—point boundary value problems (TPBVP). On the other
hand when all the decision makers cooperate and associated TPBVP becomes
fairly easy to solve.
Consider a two-player linear quadratic diffrential game defined by

2’ = Az + Byu; + Bauy; 3(0) =g (11)

with the cost functionals associated with the players
=% {9:}'1{,-!:63 + f;" (2T Q12 + uT Rijus + u'{R.-gug)dt} :
zs = z(iy)

where all matrices are n x n symmetric with R;;, ¢ = 1,2, positive definite. It

(1.2)

is well known that the open-loop Nash controls must satisfy [7]:
U; = —RSIB?“I’;; Vi = —Q;z — ATW,‘, V;(ty) = Kigzy, i=1,2 (1.3)

Where ¥; is the costate vector associated with player ”¢”. When the trans-
formation ¥; = K;X, is introduced, for i = 1,2, the open loop Nash strategy
(uy, u}) is given by

u} = —R;'BY Ki(t)®(t,0)z0, i=1,2 (1.4)
where K;(t) and K;(t) are the solutions of the coupled Riccati matrix equations

K| =—-ATK) — K1A - Q1 + K151 K1 + K15: K3, Ki(ty) = Kiy

K = —ATKy — Ko — Qs + Ko S:Ks + KoSi Ky, Kalty) = Koy )
with

Si=BR;Bf, i=1,2 (1.6)
and ®(t,0) is the system’s transition matrix satisfying

&'(t,0) = (A — S1K1 — S2K2)8(t,0), &(t,¢) =1 1.7)

Note that matrix R;5 nad R»; do not appear in the necessary conditions. This
is due to the fact that under the open-loop strategy assumptions, each decision
maker optimizes his criterion knowing that du,/dz = dus/8z = 0.
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The solution of system (1.5) is generally difficult to obtain due to the perma-
nent coupling between the player’s strategies. Numerical techniques are widely
used to obtain an approximate or series solution [3]. An iterative algorithm for
solving coupled Riccati systems of the type (1.5) have been given in [4]. For the
case @, = a@)q, where « is a scalar, an analytic solution of system (1.5) was
pointed out in [1].

For convenience, the necessary conditions to be satisfied, (1.1), (1.3), are
rewritten in the matrix form as '

! A -85 =5 x z
vl=] - -AT 0 ¥, | =M| ¥ (1.8)
L2 -Q; 0 AT U, Wy

z(0) = zo, Wi(ty) = Kiszp, ¥a(ty) = Kay2y, (1.9)

Now, let us introduce the change of basis defined by

z z | I 00
o |=7|w |; T=|0 1 0 (1.10)
U, w 0 L I

for an approximate matrix L in IR**" to be determined. Thus, problem (1.8)-
(1.9) is equivalent to the following one

z! A —Sl = SQL —Sz z
v | = ~0i —AT 0 v,

3 5 (1.11)
w' LQI L Qg LAY — ATL -A w

z(0) ==zo, Wi(ty) = Kijzp, w(ty)=(Kzs — LK1s)2s
The purpose of this transformation is to find under what conditions the players’
optimization problem can be decoupled. In fact, note that if L satisfies the
system '

LQi=Qy LAT =ATL (1.12)

the matrix T-MT is reduced to a block triangular form and the costate vec-
tors ¥; and w are coupled only via the terminal condition (1.11).

2. Explicit solutions of coupled Riccati differ-
ential systems

Note that when matrices (1 and @, are proportional, i.e. Q2 = aQ, for some
scalar «, then taking L = o, one gets solutions of systems (1.12). In order to
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characterize the existence of solutions for the algebraic system (1.12), we recall
the concept of tensor product of matrices. If A, B are matrices in IR™*" and
IR¥*?, respectively, then the tensor product of A and B, denoted A ® B, is
defined as the partitioned matrix
{1113 dlzB a;,,B
A®B=

amB amaB ... am.B
If A € IR™*", we denote

ar; M,
Ag= , 1<j<m vee M = :
Umj M,
If M, N and P are matrices of suitable dimensions, then using the column
lemma [5, p.410], we get
vec (MNP) = (PT ® M)vec N (2.1)

Taking into account (2.1), the algebraic system (1.12) may be rewritten in the
form

Cvec L = vec [0,Q2] (2.2)
where
IQAT —AQI
C= 2.3
[ QT eI (23

If we denote by C* the Moore-Penrose pseudoinverse of C, then from theo-
rem 2.3.2 of [6], system (2.2) is compatible, if and only if

CC*tvec [0,Q,] = vec [0,Q,] (2.4)

If condition (2.4) is satisfied, then the general solution of (2.2) is given by the
expression

vec L=C%vec [0,Q2] + (I - C*C)Z (2.5)

where I denotes the identity matrix in IR** X" and Z is an arbitrary vector in
IR™. Effective methods for computing C* may be found in [2, p.12].
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If we assume the existence of a solution L of system (1.12) then from (1.11)
it follows that
z' v t —Sq T z(0) = zo,
. v | = 0 Wy |; ¥y(ty) = Kipzg (2.6)
w' 00 | -4

w w(ty) = (K25 — LKi1y)zs
where

‘T A& “f—ap
= [ -Q1 —AT ]

Let us consider the change t = #(s) =t; — s, 0 < s <1y, and let

8(s) = a(ty ~ 5) = 2(t), ¥i(s) = Va(ty — 5) = (1),
w(s) = w(ty — s) = w(t)

(2.7)
Hence, problem (2.6) may be rewritten in the form

z v S T

(d/ds) ‘i‘l = 0 ‘1’1
W g 0 | &7 W (2.8)

&(ty) = zo, ¥i(0) = Kiyzy = K17%(0),

(0) = (Kay — LK17)2(0)

Solving (2.8) we obtain
W(s) = exp(sAT )w(0) (2.9)

i@ | _ ][ 20
[@1(8) = =l ”{[%(0)]*

+ /08 exp(uV) [ 5(;2 ] exp(uAT)tﬁ(O)du} (2.10)

From (2.8), (2.10) we have

[ #(0) | 1.
= = z(0
A ¥,(0) | [ Klfl ©
From this and (2.8), (2.10) it follows that

- 2() = G(s)z
|40 | = CORO

(2.11)

(2.12)
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where

G(s) = exp(—sV) {

ar
Ky

+fnsexp(uV) S{;g ] exp(uAT)du(Koyp — LKU)} (2.13)

Thus, we have
#(s) = [1,0]G(5)2(0); ¥1(s) = [0, 1]G(5)%(0) (2.14)

Note that [I,0]G(0) = I, and from the continuity condition of G there exists an
interval 0 < s < 4, such that

[Z,0] G(sj is invertible for all s € [0, 4] (2.15)
From (2.14) and (2.15) we obtain_

2(0) = {[1,0]1G(s)} " &(s); W1(s) = {[0, [IG(s)}{[I,01G(s)}~'&(s) (2.16)
for 0 < s < §. Now, from (1.10) and (2.7), it follows that

Wy(s) = LWy (s) + w(s); Wa(t) = LY () + w(t) (2.17)
From this and (2.9), (2.16) we obtain
Wy(s) = {exp(sAT)[Koy —LK1s] + L[0, I)G(s)}{[I,0]G(s)} *2(s) (2.18)

for 0 < s < 6. From (2.7) and the relationéhiﬁ W, (t) = Ki(t)z(t), fori = 1,2, it
follows that ¥;(s) = K;(s)(s), i = 1,2. Taking also into acount (2.8), (2.16),
we have

Ky(t) = [0, G (ty — t){[I, 0)G(ty — 1)} (2.19)
and
Ky(t) = {exp(AT(ty —t))[Kay — LK1s] +
+L[0, I]G(t; — ) }H{[I,0]G(t; — t)} ! (2.20)

for all t € [t; — &,1;], where G is defined by (2.13). Thus the following result
has been proved:

Theorem. Let us assume that matrices A and @, saiisfy the condition (2.4)
where C is defined by (2.3), and let L be a solution of the algebraic system (1.12).
Then, there ezists a positive number & such that on the interval [t; — 6,1;], the
unique solution of the coupled Riccali system (1.5) is given by (2.19), (2.20).
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Remark. Note that the case Q2 = a1, where a is a scalar, is a particular
case of the previous theorem taking L = al. It is important to note that from

(2.19) and (2.20), we have the following relationship between K1(t) and Ks(t):
Ka(t) = LK1(t) + exp(A” (t; — t)){Kay — LK1, H{II, 0G(t; - )}

and as the function {[I,0]G(t; — t)}~! is involved in the computation of
the Ky, the computational cost is reduced because Ks(t) is expressed in terms
of K1(t). Finally we recall that efficient methods for computing ezponentials of
matrices and integrals involving them that appear in the expression of G(s), may
be found in [8]. These procedures are exiremely easy to implement and yield an
estimation of the approximaiion error.
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Jawne rozwigzania sprzezonych réwnan
Riccatiego wystepujacych w grach Nasha
z otwarta petla

W pracy przedstawiono jawna postaé rozwiazan dla ukladéw sprzezonych macie-
rzowych réwnan rozniczkowalnych Riccatiego pojawiajgcych sie w grach Nasha
z otwarta petla. Za pomoca odpowiednich przeksztalcen algebraicznych do-
prowadzono do rozsprzegnietych réwnan, co pozwala otrzymac jawna postaé
rozwiazania zadania.

SiBHOe pelleHHNEe CONMPAXKEHHBIX ypaBHeHUl
Pukkatu, BeicTynapomux B urpax Hama

C pa3OMKHYTOMI nmerien

B paGoTe mpencTaBneH #ABHBI BHI pELIEHHNH OJIS CHCTEM CONPIXKEHHBIX
MaTpHYHBIX JH(pdepeRnupyeMsIX ypaBHeHH# PHKKaTH, IOABIAIOLIAXCH
B urpax Hsuia ¢ pasoMkHyTOM nmeriest. C moMousio COOTBETCTBYIOIIMX a]-
refpanyeckux NpeoGpasoBaHmit IONYYEHBI PACHpPAYKeHHbIE YPaBHEHHA, YTO
TIO3BOJSIET NOCTHYE pPelileHHe 3a[la4M B SBHOM BHME.




