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The paper considers the class of n-person games with side pay­
ments in which cooperation among palyers is communication-wise 
limited through imposition of certain graph structures. It is shown 
that there is a unique allocation rule,· both efficient and fair, essen­
tially given by the Shapley value of a restricted game. Moreover, if 
the game is superadditive then the allocation rule is stable. 

Introduction 

In the analysis of n-person games with side payments it is often assumed that all 

players will cooperate with each other and therefore the formation of the grand 

coalition is taken for granted. This of course is not the case in many practical 

situations where only partial cooperation may be sought by some of the players. 

In several cicumstances this may be due to a lack of communication among 

several participants. These situations were first considered by Myerson [7) who 

studied in particular the problem of how the reward (or the cost) resulting from 

the corresponding games should depend on which players cooperate with each 

other. As far as this article is concerned, the method Gf research has been to 
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impose various communication graphs on groups of players in order to describe 

the communication properties and the economic possibilities. By borrowing 

from the theory of cooperative games with coalition structures as established 

by Aumann and Dreze [1], a unique allocation rule which is both efficient and 

fair can be derived and shown to be essentially given by Shapley value of a 

restricted game. Furthermore, it turns out that if the game is superadditive, 

then the proposed allocation rule is stable, that is to say two players can always 

benefit from reaching bilateral agreements. 

A more general problem dealing with conference structures and fair alloca­

tion rules has been investigated by Myerson [8]. His contribution extends the 

results of this paper to games without side payments and generalizes the fair 

allocation rule discussed here. 

Most of the definitions and results pertaining to the n-person cooperative 

games with transferable utility are available in [9], and for mathematical models 

in social sciences a standard reference is the book of Kemeny and Snell [5]. 

1. Communication graphs 

Let N = {1, 2, ... , n} be a non-empty finite set, referred to as the set of play­

ers. An indirect graph A on N is a subset of unordered (and unequal) pairs 

of elements in N: we will call these pairs arcs. If { i, j} E A, then the inter­

pretation is that the players i and j can communicate directly with each other. 

Furthermore, i and j can communicate in N if there exists a chain of arcs in A 

of the form {i1, i2}, {i2, ia}, {ia, i4}, ... , {ik-1, ik} with i = i1 and j = ik. We 

say that i and j are connected in N with respect to A if either i = j or i and 

j can communicate in N. Graphs -of this nature will be termed communication 

graphs. It is obvious that the number of distinct communication graphs on N 
is equal to 2n(n-l)/ 2 . 
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Example 1 Let N = {1, 2, 3}. Then the eight possible communication graphs 

are 

1 1 1 1 
• 

I \ 
• 

• • • • 
2 3 2 3 2 3 2 3 

1 1 1 1 

1\ L ~ 6 
2 3 2 3 2 3 2 3 

Recall that a collection { C1, C2, ... , C~c} of subsets of N is said to be a 

partition for N if 

n 

UCi=N and CinC;=0 forall i,jEN,i=f.j. 
i=l 

A variety of problems related to communication networks have been inves­

tigated by Cohen [2]. In particular, the notion of structural centrality has been 

considered by MacKenzie [6], and for a game theoretic approach the reader can 

consult the work of Grofman and Owen [3]. 

Any subset of N is called a coalition and denoted by S. Such a set is said to 
be ,connected if each pair in S is connected in N. S is called a component of N 

if it is connected and if for all connected sets T with T :J S we have T = S. 

The components of N form a partition of N and will be denoted by NI A. 

One can speak of communication within the coalition S provided only chains 

as before are used with i1, i2, .. . ,ik E S . We will write SIA to indicate the 

components in S with respect to the communication within S. In other words, 

SI A can be interpreted as the collection of smaller coalitions into which S would 

break up if players could only communicate along the arcs in A. For more on 

coalition formation, see Shenoy [11). 

Example 2 Let N = {1, 2, 3, 4, 5, 6} and suppose that the arc set is A = 
{{1,2},.{1,3},{1,4},{3,4},{5,6}}. Then the communication graph is repre­

sent~d by 
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2 
5 

3 \ 
6 

Now consider the coalitions L = {2,3,4} and M = {5,6}. Then L/A = 
{{2},{3,4}} and M/A= {{5,6}}. Furthermore, N /A = {{1,2,3,4},{5,6}}. 
Note that L is connected inN but not within L. 

R~mark 1 For a communication graph, the partition N /A is the natural way 

to describe the coalition structure. In fact, although two players may not have 

a direct communication between themselves, they can still communicate through 

an agreeable mutual third party. 

2. Communication games 

Let < N, v > be a cooperative game in characteristic function form. Then v 

maps each coalition SE 2N into the real number v(S) to be interpreted as the 

reward the numbers of S would have to divide among themselves if they were 

to communicate with each other directly or indirectly. 

Definition 2.1 The communication game corresponding to the situation de­

scribed above is < N, VA > where for all S E 2N, the characteristic function 

zs 

vA(S) = L v(T). 
TES/A 

Note that vA({i}) = v(i) for any arc set A for all i EN. Also, vA(S) = v(S) if 

vis additive, VA(S) :::; v(S) if vis superadditive, and VA(S) = v(S) when S is 

connected. This implies that VA can be viewed as the characteristic function of 

the game where the players are restricted to communicate only along the arcs 

in A. 
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Example 1 Let < N, v > be the 5-person game with v(N) = 5, v(2, 3, 4, 5) = 
2, v(l, 2, 3) = 2 and v(S) = 0 otherwise. If A= { {2, 3}, {3, 5}, {4, 5}} then the 

communication graph is 

2 

1 'e 

5 

and for corresponding communication game < N, VA > 

VA(N) 

VA({2,3,4,5}) 

v(2, 3, 4, 5) + v(1) 

v(2, 3, 4, 5) 2 

2 

VA ( S) 0 for all other coalitions. 

Example 2 For the communication situation of Example 2 in Section 1, sup­

pose that v(S) = ISI- 1 for all SE 2N \ {0}. Then the corresponding commu­

nication game is defined by 

VA(L) 

VA(M) 

VA({3,4,5,6}) 

VA({2, 3, 4}) v(2) + v(3, 4) 

VA({5,6}) v(5,6) 1 

VA(3, 4) + v(5, 6) 2 

and so on. In particular 

VA (N) = v(1, 2, 3, 4) + v(5, 6) = 3 + 1 = 4 

i.e. less then v(N) = 5. 

Let en denote the class of all n-person games. 

1 

Definition 2.2 For each T E 2N \ {0} the T-unaminity game < N, UT > is 

defined by 

UT ( S) = { 1 if T c s 
0 otherwise 
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(In particular, for the N-unanimity game, uN(S) = 0 ifS :f. N and uN(N) = 
1). Let us point out that this game has only one sensible solution: only (and 

all) the players in T contribute something to a coalition, while the others do 

not. Furthermore, the players in T are undistinguishable. Hence, each of the 

members in T should receive the amount frr and the other players nothing, 

which is how much they are c·apable of obtaining by acting on their own. 

To show that en is a (2n - 1 )-dimensional linear space, is enough to prove 

that the set {UT IT E 2N \ {0}} is a basis for en. In fact, this set of games is a 

linearly independent set. Also, each game V E en can be written as 

v = L CTUT where eT= L ( -l)ITI-1 5 1v(S). 
TE2N\{0} , S:SCT . 

We recall that core of a T-unaminity game < N, UT > is given by the set 

C( UT) = conv{ ei li E T}, i.e. the convex hull generated by the vectors ei. 

Finally, players i and 'j are said to be symmetric in a game < N, v > if 

v(S U {i}) = v(S U {j}) for all SE N \ {i,j}. Now, it is not difficult to verify 

that in a T-unaminity game, players i, j ET are symmetric and so are players 

i,j EN\ T. 

Consider now a communication situation with N players and arc set A fixed. 

Let LA: en- en be the map defined by LA(v) = VA. Then it is easy to see that 

LA is linear. In fact, for v, w E en and A, JJ E ~) LA(Av + JJW) = (.Av + JJW)A 
and since by definition, 

(.Av + JJW)A(S) L (.Av + JJW)(T) 
TES/A 

.A L v(T) + JJ L w(T) 
TES/A TES/A 

AVA(S) + JJWA(S) 

for all SE 2N, it follows that LA(.Av + JJW) = AVA + JJWA = .ALA(v) + JJLA(w). 
Suppose now that v is superadditive. Then by defonition, 

and 

LA(v)(Sl) + LA(v)(S2) = VA(SI) + vA(S2) 

L v(T) + L v(T) ~ L 
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shows that also VA is superadditive. In particular, if v is additive, that IS 

v(S1 U S2) = v(SI) + v(S2) for all S1, S2 E 2N with S1 n S2 = 0, then 

LA(v)(S) = L v(T) = L L v(i) = L v(i) = v(S) 
TES/A TES/A iET iES 

and therefore LA(v) = v. 

Finally, for the T-unanimity communication game < N, ( uy )A > one can 

prove that 

if there is a connected set K such that T C K C S 

otherwise 

3. The Shapley value 

Let 4>(v) = (4> 1(v), 4> 2 (v), ... , 4>n(v)) be an imputation of the game in charac­

teristic function form < N, v >. To turn this vector in ~n into a solution for 

the game, Shapley (10] has imposed four axioms which read as follows . 

Axiom 1 (Symmetry) lf1r:N--+ N is a permutation ofthe player set and if 

the characteristic function w is defined on N by w(S) = v(1rS). Then for all 

i EN, ~;(w) = 4>,.-(i)(v). 

This condition states that the value assigned to a player is independent of the 

labelling. In particular, it implies that in a symmetric game, all players are 

assigned equal value. 

n 

Axiom 2 (Efficiency) L 4>;(v) = v(N). 
i=l 

This condition, known as Pareto optimality or group rationality, ensures that 

the value 4>( v) is indeed an imputation for the game. 

Axiom 3 (Dummy Property) Jfv(S - {i}) = v(S) for all S, then 4>;(v) = 0. 

In other words, if a player adds nothing to any coalition, then his value is zero, 

and such a player is called a dummy. 

Axiom 4 ( Additivity) If v and v' are two characteristic functions defined on 

the same set of players N as w = v + v' is the characteriiJic function on N, 

then 4>(w) = 4>(v) + 4>(v'). 
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It is easy to see that the function defined by (v + v')(S) = v(S) + v'(S) for all 

S E 2N is also a characteristic function defined on 2N. Furthermore, if a player 

participates simultaneously in two games, then one can think of him as taking 

part in a single game with characteristic function v + v' and expecting to gain 

the sum of the rewards for the two separate games. On the other hand, it is 

hard to imagine that a player taking part in the game v + v' will behave as if 

he were playing only one of them. 

The Shapley value is the unique vector <Ii( v) which satisfies the axioms above, 

and the components of it can be computed according to the following formula: 

<li;(v) = L (n -ISJ)!~ISI- 1)![v(S)- v(S- {i})] . 
. S:S;Ji n. 

An alternative expression is given by 

<li;(v) = .!_ L v(S)- v~~- {i}). 
n S:S3i (1~1-1) 

Here, as in the previous formula, the quantity v(S) - v(S- {i}) represents 

the contribution made to the coalition s - { i} by the new joining member i. 

One plausible interpretation goes as follows. Suppose that the grand coalition is 

formed gradually (i.e. by one player at the time) and randomly (i.e. according 

to a device for which each player has the same probability ~ of being selected). 

Then the Shapley value can be viewed as the expected value of the marginal 

contribution made by a player to the coalition already formed before him. On 

the other hand, note that for each S, the number (n- ISJ)!(ISI- 1)! gives the 

number of permutations of N in which elements of S - { i} come first (in some 

order), then i, and finally the rest of the elements (in some order) join in. 

Examples la. The Shapley value for an additive game is equal to 

<Ii(v) = (v(1), v(2), ... , v(n)). 

lb. For a 2-person game, the Shapley value is given by <Ii(v) = (<Ii 1 (v), <li 2 (v)) 
where 

<Iil(v) = v{1) + v(N)-v~l)-v(2) and <li 2 (v) = v(2) + v(N)-v~l)-v(2)_ 

le. Let < N, v > be the 3-person game with' v(0) = 0, v(1) = 4, v(2) = 
6, v(3) = 3, v(1, 2) = 12, v(1, 3) = 14, v(2, 3) = 16, and v(1, 2, 3) = 20. 
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The the Shapley solution for the first player is 

= ~ [v(l)-v(0) + v(l,2~-v(2) + v(l , 3~-v(3) + v(1 , 2,3~-v(2,3)] 
3 _m (.) u (,) 

= ~ [4 + 12- 6 + 14- 3 + (20- 16)] = ~ 
3 2 2 2 

and analogous calculation lead to <1> 2 ( v) = 1
2
5 , <1> 3 ( v) = 7 for the second 

and the third player respectively. 

Lemma 3.1 Let< N, v > be ann-personal game with the property that v(S) = 
0 if 1 rj_ S or 2 rj_ S. Then <I>1(v) = <I>2(v). 

PROOF: 

<I>t(v) = L ISI!-(n:ISI-1)![(SU{l})-v(S)] 
s: 511 

= L 1(S, n)[(S U {1})- v(S)] + L 1(S, n)[(S U {1})- v(S)] 
s,SiH 

S'i2 

= 0+ L !(S,n)[(SU{1})] 
s,Siill 

S~2 

= L !(S,n)[(Su{2})] 
s,Siill 

S~2 

s,Sill 
S~2 

= L 1(S, n)[(S U {2})- v(S)] + L 1(S, n )[(S U {2})- v(S)] 
s,Si12 

S~l 

= <I>2(v). 

S' Sii12 
S~l 

Lemma 3.2 For any game< N, v >, <I>( -v) = <I>(v). 

PROOF: 

<I>;(v) L ISI!(n-~SI- 1)! [-v(~ U.{i}) + v(S)] 
S :S1i 

= - L ISI!(n -I SI- 1)! [v(S U {i}) -v(S)] 
S : S1i n 

<I>;(v). 

• 

• 
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We return now to communication situation and the corresponding commu­

nication games. To see how the outcomes of a communication game depend on 

the cooperation structure, consider the next 

Example 2 Let < N, v > be the 3-person game where V(1) = 1, V(2) = 
V(3) = 0, V(1, 2) = 2, V(1, 3) = 4, V(2, 3) = 8, V(1, 2, 3) = 13. The eight 
possible communication graphs are of course those listed in Example 1 of the 

Section 1. Note that vA({1}) = 1 and vA({2}) = VA({3}) = 0 for all A. The 

other values of the characteristic functions for the corresponding communication 

games are reported in the table below for !SI ·~ 2 together with the Shapley 

value 4>(vA)· Observe that for the original/ game the Shapley value was 4>( v) = 
(6 9 11) 2 1 2 1 2. 

A VA( {1, 2}) VA( {1, 3}) VA( {2, 3}) VA( {1, 2, 3}) ~(vA) 

0 1 1 0 1 (1,0,0) 

{{1, 2}} 2 1 0 2 (~,~,0) 
{{1, 3}} 1 4 0 4 (~,0,~) 
{{2, 3}} 1 1 8 9 (1,4,4) 

{{1,2},{1,3}} 2 4 0 13 (11 li 25) 
3 ' 6 ' 6 

{{1, 2}, {2, 3}} 2 1 8 13 (~,v,s) 
{{1, 3}, {2, 3}} 1 4 8 13 e 7 13 35) 

6 , 3 , 6 

{{1,2},{1,3},{2,3}} 2 4 8 13 (3, ~' li) 

The bargaining solutions proposed by Harsanyi [4] for n-person games are 

a gener_alization of the Shapley value for games without side payments. 

4. Coalition Structures 

In coopetative games with n players the grand coalition does not necessarily 

form. When only smaller coalitions may form, it seems reasonable to consider 

the problem of how the outcome of a game should depend on which players 

communicate with each other. When for some reason the player set splits up 

int~ disjoint groups C1 , C2, . .. , Ck which represent a partition of N, we speak 

of a coalition structure C = { C1 , C2 , ... , Ck}. Games with coalition structure 

have been studied by Aumann and Dreze [1] as well as bY. Wallmeier [13]. 

Example 1 Let < N, V > be the 3-person (additive) game with v(S) = 0 if 

!SI = 1, v(S) = 100 if !SI = 2, v(N) = 120. Experience shows that in playing 
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such a game, often a 2-person coalition may form, each player taking half of 

100. This corresponds to one.ofthe 3 coalition structuresC1 = {{1},{2,3}}, 
C2 = {{2}, {1, 3}} and Ca = {{3}, {1, 2}}. 

Example 2 Consider the T-unanimity game UT. In playing this sort of game 

often T will form and the members of this coalition will then divide the gain 

of 1 in some acceptable way. This corresponds to the coalition structure C = 
{T, {i}iEN\T }. 

Remarks When ·the grand coalition forms, the corresponding coalition struc­

ture is the trivial one where C = {N}. Note also that for a game with n players, 
the number of distinct co~lition structures is 2n-l - 1. 

For a game < N, v > with coalition structure C, the pre-imputations are 

payoff configurations (w.r.t. C) x E lR" such that LiEC x; = v(C) for all C E C. 
The set J+(v,C) of all such pre-imputations is (n -ICI)-dimensional, and the 

elements if I*(v,C) are said to be C-efficient. 

The imputation set and the core, with respect to the coalition structure C 

are defined by 

I(v, C) := {x E I*(v, C) I x; ~ v(i) for all i EN} 

and 

C(v,C) := {x E I*(v,C) I x(S) ~ v(S) for all SE 2N}. 

Both of them are convex and compact sets, and they can be empty. 

Moreover, for a game < N, v > with coalition structure C, x E I( v, C) 

dominates y E I ( v, C) via coalition S if 

x; > Yi for all i E S and x(S) ~ v(S). 

and therefore the D-core w.r.t. C is given by 

DC (v,C) := {x E i(v,C)Ix is undominated by the elements of I(v,C)}. 

Also, a stable set M w.r.t C in < N, v > is a subset of I( v, C) such that 

M n dom(M) = 0 and MU dom(M) = I(v,C). 
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Examples For the game of Example 1, it is easy to see that (50, 50, 0) E 

I(v,C3) and that C(v,Ck) = 0 fork= 1, 2, 3. Note that also C(v) = 0. For the 

coalition structure of Example 2, we have 

C(v,C) = I(v,C) = {x E ~+I x(N\T) = 0, L:x;v(T)}. 
iET 

Let N = {1, 2, 3} and suppose that the coalition structure is given by the partition 

C = {{1,2}, {3}} . If the characteristic/unction is v 0 : G3 --+ ~with va(S) = 0 if 

ISI = 1, va(1, 2) = 3, va(1, 3) = va(2, 3) = a, va(N) = 4 where a E [0, 4], then 

{xE~3 1 x1+x2=3,x3=0} 

{x E ~3 I x; ~ 0, x1 + x2 = 3, X3 = 0} 

conv{(0,3,0),(3,0 , 0)} 

{ x E ~3 I x; ~ 0, X3 = 0, x1 + x2 = 3, x1 + X3 ~ a, 

X2 + X3 ~a, X1 + X2 + X3 ~ 4,} 

{ ~ E ~3 I x; ~ 0, X3 = 0, x1 + x2 = 3, x1 ~ a, x2 ~ a, 

X1 + X2 ~ 4,} 

0. 

Remark Coalition structure need not be restricted to supperadditive games. 

Take for instance < N, v > to be the non-superadditive 4- person game with 

v(1, 2) = v(3, 4) = 3, v(1, 3) = 1, v(N) = 5 and v(S) = 0 for the other coali­

tions. If the coalitional structure. is C = { {1, 2}, {3, 4}} then 

I*(v, C) 

I(v., C) 

C(v,C) 

{X E ~4 I Xl + X2 = 3, X3 + X4 = 3} 

{X E ~t I Xl + X2 = 3, X3 + X4 = 3} 

conv{(3,0,3,0),(0,3,3,0),(3,0,0,3),(0,3,0,3)} 

conv{(3,0,3,0),(0,3,3,0),(3,0,0,3),(1,2,0,3),(0,3,1,2)}. 

Recall that the reasonable set R( v) for a game < N, v > is defined by 

R(v): = {x E ~n I v(i) ~ x; ~ 5II,l;~/v(S)- v(S \ {i}))}. 

Obviously, C(v) C R(v) and therefore the re~~Sonable set can be thought of as 

a "core catcher". For games with coalition structures w~ have a similar result, 

namely 
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Lemma 4.1 The core C(v,C) is asubset of the reasonable set R(v) . 

PROOF: If x E C(v, C) then x; ~ v(i) for all i EN. Suppose that SEC with 

i E S. Then 

x; + x(S- i) = v(S) 

and hence 

x; v(S) - x(S- i) 

< v(S)-x(S-i) 

< max( v(S) - v(S \ { i})) 
S :S3t 

i.e. C(v,C)\R(v). • 
A one-point solution for games with coaliton structures, which generalizes 

the Shapley value, is described in the next theorem due to Aummann and Dreze 

[1] . 

Theorem 4.2 Let N = {1, 2, .. . , n} and C = { Ct, C2, . .. , Ck} be a partition 

of the player set. Then there exists a unique function f: an -. ~n with the 

following four properties: 

(i) Additivity: f(v + w) = f(v) + f(w) for all v , wE an 
(ii} Dummy property: /;(v) = v(i) for all V E an and all dummy players i 

(iii} c - efficiency: Lfi (V) = v( C) for all c E c and V E an 
iEC 

(iv) C- anonimity: f(v(f) = u*(!(v)) for all V E an and all permutations 

u: N--> N with u(C) = C for all C E C. 

The function 4l>c is defined by 4l>f(v) = 4l>;(vl2c) fori E C, C E C, v E 

an, where vi2c, C E C denotes the game with player set C, and where the 

characteristic function is the restriction of v to 2c. 

PROOF : (a) First we show that 4l>c has the required properties. For the addi­

tivity, note that if i E C E C, then 

4l>f(v + w) 4l>;(v + wl2c) 4l>;(vl2c + wl2c) 

4l>;(vl2c) + 4l>;(wl2c) 4l>f{v) + 4l>f(w) 

where the third equality follows from the additivity of the Shapley value. For the 

dummy property, it is obvious that if i E C E C is a dummy player in < N, v > 
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then the same holds in< C, vl2c >and therefore ()f(v) = ()i(vl2c) = 0 by the 

dummy property of(). The efficiency of ()i implies the C-efficiency of ()C, i .e. 

L ()f(v) = L ()i(vl2c) = (vl2c)(C) = v(C). 
iEC iEC 

From the anonimity property of the Shapley value, ()(vu) = u• ( ()( v)) it follows 
that <)C(vu) = u•<)C(v), i.e. the C-anonimity of ()C . 

(b) Now suppose that /:en -+ ~n satisfies the property (i)-(iv). Let V E an. 
We have to show that if i E C E C, then 

From Section 2 we know that a game V E an can be written as a linear com­

bination v = LT CTUT of unanimity games where the summation is taken over 

all coalitions 0 ::f T C C. Then by additivity, f(v) = LT f(cTUT ). Now 
C-anonimity implies that for i, j E C n T 

and the dummy property yields /i(CTUT) =)when i r:J. T. From the C- efficiency 
it follows that 

"" { CT if T c c L..Ji(CTUT) = CTUT(C) = 
iEC 0 otherwise 

and thus 

li(CTUT) = { OITI-1 ifT cc 
otherwise. 

from which we can write 

li(v) = Lfi(cTuT) = L ITI- 1cTeT if i E C. 
T T:TeC 

But this implies that /i(v) = ()i(vl2c) because from v = LTeN cTuT it follows 
,that 

vl2c = L CTUT 12c = L CTUT . 
TeN Tee 

• 
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5. Allocation rules 

Let C sn denote the set of n-person communication situations. An allocation 

rule is a map F: csn -.. lJ?n which assigns to a communication situation ( v, A) 

a payoff vector F( v, A). For instance, the map F: csn -.. lJ?n which assigns to 

a communication situation ( v, A) the Shapley value~( VA) of the corresponding 

communication game is an allocation rule. Before characterizing such a rule 

some definitions will be given. 

Definition 5.1 An allocation rule F: csn -.. lJ?n ts called efficient if for all 

(v, A) E csn and all C E NI A, 

LF;(v,A) = v(C). 
iEC 

This condition states that, if C is a connected component of NI A, then the 

members of C ought to allocate to themselves the total reward v(C) available 

to them. Note that the allocation within a connected coalition C still depends 

on the actual graph. 

Example 1 An allocation rule might assign a higher payoff to player 1 in A 1 = 
{ {1, 2}, {1, 3}, {1, 4}} then in A2 = { {1, 2}, {2, 3}, {3, 4}} because his position is 

more crutial in communicating with other players in the former arc set. In each 

case, however, the above condition requires that 

4 4 

LF;(v,Al) = LF;(v,A2) = v(1,2,3,4). 
i=l i=l 

Efficiency ofF means that for (v,A) E csn, the vector F(vA) is a C- efficient 

payoff vector for v, where C is the partition NI A of N. The notion of C-efficiency 

was discussed in Section 4. 

Definition 5.2 An allocation rule F: csn -..l)?n is called fair if for all (v, A) E 

csn and all {i, j} EA, F;(v, A)- F;(v, A\ {i,j}) = Fi(v, A)- Fi (v, A\ {i, j} ). 

Note that this condition asserts that two players should gain equally from their· 

bilateral agreement. Also, fairness of F implies that if in a communication 

situation ( v, A) with { i, j} E A the direct communication between i and j is 

broken (and this results in the communication situation (v,A \ {i,j})), then 

both players i and j lose the same amount of reward. 

Fair allocation rules in the context of conference structures have been studied 

by Myerson [8). 
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Example 2 Return to the table of Example 2 in Section 3, and suppose that the 

allocation rule is the Shapley value ~( vA)· Then, if the direct communication 

between players 2 and 3 is broken, the amounts of lost reward are 

and 

11 1 
~2 (v, {{1, 2}, {2, 3}})- ~2(v, {{1, 2}}) = 2- 2 = 5 

~a(v, {{1, 2}, {2, 3}})- ~a(v, {{1, 2}}) ==5-0= 5 

which are the same. 

The following result is due to Myerson (7]. 

Theorem 5.3 {i) There is a unique allocation rule which is efficient and 

fair. 

{ii) This rule assigns to (v,A) E CS" the Shapley value ~(vA) of the commu- \ 

nication game < N, VA > corresponding to v and A. 

PROOF: (i) Suppose F 1 and F 2 are efficient and fair allocation rules, and let 

V E en. We show by induction on IAI that F 1(v,A) = F 2(v,A) for all A. First 

of all, note that F 1(v, 0) = F 2(v, 0) = (v(1), v(2), ... , v(n)). Now take A with 

IAI = k 2:: 1 and suppose that F 1(v, B) = F 2 (v, B) for all B with IBI < k. 

Then, for each pair { i, j} E A, the fairness property implies that 

Fl(v,A)- Fl(v,A \ {i,j}) = F}(v,A)- F}(v,A \ {i,j}) 

and 

Fl(v,A)- Fl(v,A \ {i,j}) = ~l(v,A)- Fl(v,A \ {i,j}). 

By the induction hypothesis we have 

F{(v,A \ {i,j}) = Ff(v,A \ {i,j}) for k E {i,j} 

and therefore Fl(.v,A)- F?(v,A) = F}(v,A)- .F](v,A). 

Since this holds true for all pairs i, j which can communicate directly i.e. for 

{ i, j} E A, the same formula applies for all i, j which are connected inN. Hence, 

for each component C E N /A there is an ac E ~ such that for all i E C 

Fl(v,A)- F/(v,A) = ac. 
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Next, the efficiency of F 1 and F 2 together with the above relation imply that 

ICiac = z)Fl(v,A)- Fl(v,A))- v(C)- v(C) = 0 
iEC 

and therefore ac = 0. Thus, F/(v, A)= Fl(v, A) for all i E C i.e. F 1(v, A)= 
F 2 ( v, A) and we have shown that there is at most one allocation rule which is 

both efficient and fair. 

(ii) To prove the existence of such an allocation rule, let V E en and take an 

undirect graph A on N, denoted by (N, A). Note that VA = LCEN/A _xc where 
.X c E en is defined as 

and therefore 

.xc(S):= L v(T) forall SE2N 
TESnCjA 

vA(S) = L v(T) = L ( L v(T)) = L .xc(S) 
TES/A CEN/A TESnCjA CEN/A 

where use was made of the fact that elements of SI A lie completely in a com­

ponent of N with respect . to the arc set A. 

Now the additivity property of the Shapley value implies that 

~(vA) = L ~(.Xc). 
CEN/A 

Let 6 E NI A. For the proof of the efficiency property we must show that 

L ~;(vA) = v(6). 
iEC 

First of all, ~;(.XC)= 0 for all i E 6 and C :f:. 6 because i is a: dummy player in 

_xc if i E 6 :f:. C. Furthermore, LiEC ~;(vA) = .X6 (N) in view of the efficiency 
and dummy player property of the Shapley value. Hence, . 

L ~;(vA) = L L ~;(.X c)= .xc(N) 
iEC CEN/A TEC/A 

which combined with 

.X
6 (N) = L v(T) = L v(T) = vA(6) = v(6) 

TENnCjA 
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yields the desired result. 

Finally to prove the fairness of the rule, let v E Gn, (N, A) with { i, j} E A 

and introduce the game w: 2N-+ 3? with 

Since w(S) = 0 for all S with { i, j} cf_ S, Lemma 3.1 implies that ci>;( w) -ci>i ( w). 

Using the additivity property of cl) and Lemma 3.2 we then obtain 

and the fairness of this allocation rule is demonstrated. • 
Remark When the communication graph A is complete, then < N, VA >= 
< N, v > and ci>(va) = ci>(v) . 

Example 3 Let N = {L 2, 3} and suppose that the characteristic function is 

v(1) = v(2) = v(3) = 0, v(1, 3) = v(2, 3) = 6, v(1, 2) = v(1, 2, 3) = 12. Then 

the Shapley value is given by ci>( v) = (5, 5, 2), while the nucleolus as well as the 

bargaining set select the allocation (6, 6, 0). The efficient and fair allocation rule 

is as follows: 

F(0) = (0, 0, 0), F( {1, 2}) = (6, 6, 0), 

F( {1, 3}) = (3, 0, 3), F( {2, 3}) = (0, 3, 3), 

F( {1, 2}, {1, 3}) = (7, 4, 1), F( {1, 2}, {2, 3}) = (4, 7, 1), 

F( {1, 3}, {2, 3}) = (3, 3, 6), F( {1, 2}, {1, 3}, {2, 3}) = (5, 5, 2). 

As pointed out by Myerson [7}, the core of the original game is C( v) = (5, 5, 2), 
which appears to be a rather unstable allocation since players 1 and 2 could 

earn 12 units of reward for themselves which exceeds 5 + 5 = 10 units as sug­

gested also by the Shapley value. However, when we consider the associated 

communication graphs, the payoff vector (5, 5, 2) is part of a fair and efficient 

allocation rule. Consequently, if any one of the players were to break either or 

both of his communication links, then his fair allocation would decrease. For in­

stance, if both players 1 and 2 were to simultaneously break their communication 

links with player 3, then both would benefit, but each would gain even more by 

continuing to communicate with 3 while the other alone broke his communication 

with 3. 
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Definition 5.4 An allocation rule F: csn-~n is said to be coalition formation 

friendly in (v , A) if for all {i,j} EA, 

F;(v,A) ~ F;(v,A \ {i,j}). 

Tijs {12] has shownthat the allocation rule described in Theorem 5.3 is coalition 

formation frzendly provided the game < N, v > is superadditive. 
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Gry z narzucona strukturCl porozumiewania 

w pracy rozwazono klas~ gier n- osobowych, z wyplatami pobocznymi, w kt6-

rych wsp6lpraca mi~dzy graczami jest ograniczona w sensie porozumiewania 

si~ przez narzucenie pewnych struktur grafowych. Pokazano, ze istnieje jedyna 

regula przydzialu, zar6wno sprawna jak i sprawiedliwa, w zasadzie dana przez 

wartosc Shapleya ograniczonej gry. Jesli ponadto gra jest superaddytywna, 

to regula przydzialu jest stabilna. 

Mrphi c uaB.H3auuoA cTpyKTypoA cornacoB&HH.H 

B pa6oTe paccMoTpeH KJiacc Hrp c n-HrpoKaMH 1 c .n.onoJIHHTeJILHhiMH 

BhiHrphllllaMH 1 B KOTOphiX COTpy,ll,HH'feCTBO Me:>K,Il,Y HrpoKaMH orpaHH'feH0 1 B 

.CMhiCJie B03MO:>KHOCTH COrJiaCOBaHHJI1 B pe3yJILTaTe HaBJI3aHHJI HeKOTOpbiX 

rpa!l>oBbiX cTpyKTYP· IloKa3aHo, 'ITO cyi.U;eCTByeT e,ll,HHCTBeHHoe npaBHJio 

pacnpe.n.eneHHJI, KaK s!l>!l>eKTHBHoe TaK H cnpaBe,ll,JIHBoe, B npHHII;Hne 3a,ll,aH­

Hoe 3Ha'feHHeM Illenne.11 orpaHH'feHHOA Hrphl. B cnyqae, ecJIH KpoMe sToro 

Hrpa JIBJIJieTCJI CBepxa,ll,,l,HTHBHOA1 TO npaBHJIO pacnpe,ll,eJieHHJI JIBJIJieTCJI 

ycTO:A:'fHBbiM, 


