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Poland 

The paper consiqers a silent duel in which the players have one 
bullet each, the accuracy functions are arbitrary as well as the payoff 
function and the players can move as they like. Strategies for both 
players are established under such conditions. · 

1. Introduction 

Let us consider a game which will be called G(1, 1). It consists in a duel fought 

by Players I and 11, who can move as they want. The maximal speed of Player I 

is v 1 , the maximal speed of Player 11 is v 2 and it is assumed that v1 > v2 2: 0. 

The players have one bullet each and this fact is known to both of them. It is 

also known that the duel is silent: neither player hears the shot of his opponent. 

At the beginning of the duel the players are at a distance cif 1 from each other. 

Let P1(s) (resp . P1 (s)) be the probability of achieving success (destroying the 

opponent) by Player I (resp. II) when the distance between the players is 1- s. 

The functions P1 ( s), P2( s) will be called accuracy functions. It is assumed that 
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they are increasing and continuous in [0, 1], have continuous second derivatives 

in (0, 1) and that P;(s) = 0 fors~ 0, P;(s) = 1, i = 1, 2. 

Player I gains k > 0 if the success is achieved only by him, gains .:....j < 0 if it 

is only Player II who achieves success, gains w if both Players achieve success 

and gains 0 if none of them does, -1 ~ w ~ k. The duel is a zero-sum game. 

As it will be seen from the sequel, we can suppose without any loss of 

generality that v1 = 1 and that Player II is motionless. It is assumed also that 

at the beginning of the duel Player I is in the point 0 and Player II is in the 

point 1. 

About definitions and results in the theory of the game of timing see [3, 4, 

5, 7, 9, 10, 15, 17]. 

2. Auxiliary duel 

In order to solve G(1, 1), aS defined in the previous section, determination of op­

timal strategies in an auxiliary game Go(1, 1) will be useful. Consider one- bullet 

silent duel with accuracy functions Pt(s), P2(s) in which Player I approaches 

Player II with constant velocity v = 1 all the time, even after firing of his bullet. 

Player I gains k > 0 if it is only him who achieves success etc., similarly as in 

the duel defined in previous section. 

Denote by Ko(s,t) the expected gain of Player I ifhe shoots at the moment 

sE [0, 1] and Player II shoots at the moment t E [0, 1]. It is assumed that 

It is easy to see that Ko(s, t) is the expected payoff in the duel in which 

Player II is not allowed to fire after the shot of Player I. 

Denote by ~g the strategy of Player I in the game Go(1, 1) in which he fires 

his shot at a random mome:n:t s distributed according to the density pft(s) in 

the interval [a, 1], 0 < a < 1, and discrete probability 1- p, 0 < p < 1, in the 

point 1. This distribution is chosen in such a way that if t E [a, 1) then 

Ko(~0 ; t) = (1) 

p [k 1t Pt(s)ft(s)ds + 11 

(-IP2(t) +k(1- P2(t))P1 (s))ft(s)ds] 

+ (1- p)(k- (k + !)P2(t)) = const . 
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In the above formula function K0 (~8; t) is the expected gain of Player I if 

Player I applies strategy {0 and Player II fires his shot at t. 

We obtain 

Ko~8;t) = p((l + kP1(t))P2(t)!t(t)-'-
t . 

- P~(t) 11

(1 + kP1(s))!t(s)ds] - (1- p)(k + l)PHt) = 0, (2) 

()2 K~~eg; t) = p((lP~(t) + kl?{(t)P2(t) + kP1(t)P~(t))!t(t) 

+ (l -f-kP1(t))P2(t)J{(t)- P~'(t) j\1 + kP1(s))ft(s)ds + (3) 

+ (l + kP1(t))PHt)!t(t)]- (1- p)(k + l)P~'(t) = 0. 

Eliminating the integral from equations (2) and (3) we obtain 

(l + kP~(t))P2(t)!f (t) + [2(1 + kP1(t))PHt) + kP{(t)P2(t)]ff(t)­
P"(t) 

- ~(t) (l + kl?t(t))P2(t)!t(t) = 0 

from where we get 

·! (t) - c PHt) 1 
- Pi(t)(P1(t) + t) (4) 

for the constant C satisfying equation 

C ( . P~(t)dt _ 1 la P{(t)(P1(t) + t) - . (S) 

Moreover, from (1) and (4) we;btain 

if 

Ko(~g;t) = pCk [ {1 P1(s)PHs)dsl - P2(t)11 P~(s) ds] 
la Pi(s)(P1(s) +f) t P2 (s) 

+ (1- p)(k- (k + l)P2(t)) 

= pCk [11 P1(s)PHs)ds + P2(t)- 1] (6) 
a P{(s)(P1(s) + /:) 

+ (1- p)(k- (k + l)P2(t)) 

= pCk [11 P1(s)PHs)ds - 1] + (1- p)k = const. 
a Pi(s)(P1(s) + /:) 

pCk = (1- p)(k + l). (7) 
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Let 718 be the strategy of Player II in Go(1, 1), in which Player II chooses at 

the random the moment t of the shot, according to the density h(t) in [a, 1], to 

obtain 

Ko(s; 710) 

= 16

( -lP2(t) + k(l- P2(t))P1(s))h(t)dt + 1.1 

kP1(s)h(t)dt = const. 

ifs E [a, 1). The function K 0 (s; 718) is the expected gain of Player I if Player II 
applies the strategy 718 and Player I fires the shot at s. 

Proceeding in the same way as before we obtain 

f (s) - D P{(t) 
2 

- P2(t)(P1 (t) + f )2' 
(8) 

D {1 P{(s) - 1 
la P2(s)(P1(s) + -} )2 - ' 

(9) 

l 
D = P1(a) + k' (10) 

a kP1(a) 
Ko(s, 710 ) = D 1 = kP1(a) 

P1(a) + k 
(11) 

if a:::;· s < 1. 

Assuming that Ko(e8; t) = Ko(s; 718) = const for s, t E [a, 1] we obtain 

additional equation from (6) and (11) 

pCk [11 Pl(i)P2(s)ds - 1] + (1- p)k = kPl(a). 
a Pi(s)(P1(s) +f) 

(12) 

From equations (5), (7), (9) , (10) and (12) we determine the unknown pa­

rameters C, D, a, p . Let us notice that we have five equations but only four 

unknown quantities. 

By eliminating from the above five equations parameters C and D we obtain 

the system of equations 

(k 1)(1- ) 11 P2(t)dt - k 
+ p a Pi(t)(P1(t) + t) - p, 

(kP (a) l) 11 P~(t)dt . - k 
1 + a P2(t)(P1(t) + fp - ' 

(13) 

(14) 
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(1·- ) [(k l) ( P1(t)P2(t)dt -l] = kP (a) 
p + la Pi(t)(P1(t) + f)2 1 (15) 

with unknown quantities panda. 

From (13) and (14) we obtain 

1
1 P'(t) 

(k+l)(1-p) a Pl(t)dt=kPl(a)+l 

or, computing the integral, 

(16) 

On the other hand, integration by parts leads to equations 

1
1 P~(t)dt 

a Pi(t)(P1(t.) + t) 

Now, we can obtain from (13) and (15) 

[
. k 

(k + 1)(1 - p) -­
k+l 

(17) 

(18) 

= kP1(a). (19) 

Assume that equations (14) and (16) have a solution . By introducing the 

values of p and fa1 P,(t)~~:?t~~t )2 obtained from (14) and (16) into (18) and (19) . 
we obtain identities. Then, the system of five equations, (5) , (7), (9), (10), (12), 

has a solution C, D, p, a, C > 0, D > 0, 0 < p < 1, 0 < a< 1, if equations (14) 

and (16) have a solution p, a, 0 < p < 1, 0 < a < 1. 
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Let us consider {tinction 

( ) - (kP ( ) 1).11 P{(t)dt 
r.p a - 1 a + . a P2 ( t) ( P1 ( t) + f )2 . 

We have 

r.p'(a) kP'(a) [11 P{(t)dt - 1 l 1 
a P2(t)(P1(t) + t)2 P2(a)(P1(a) +f) 

<!..!> kP'( ) [ [
1 

P2(t)dt · k l 
1 a -la Pi(t)(P1(t) +f)- k + 1 < O. 

It follows then that there exists at most one solution a, 0 < a < 1, of the 

equation r.p(a) = 0. 

We prove that if there exists a solution a, 0 < a < 1, of the equation (14) 

then there exists a solution p, 0 < p < 1, of the equation (16). Since the integral 

at the left hand of equation (17) is positive then, for constant a being a solution 

of (14) 

k 1 1 ---+ - >0 
k + 1 P2(a)(P1(a) +f) P1(a) + t 

or 

what ends the proof. Then the solution . C, D, p, a of five equations exists, 

C > 0, D > 0, 0 < p < 1, 0 < a < 1, if there exists a solution a, 0 < a < 1, of 

the equation (14). 

Let P1~t) = t, P2(t) =to:, a > 0. We obtain 

1 

(kP ( ) 1) J P{(t)dt 1 
a + P2(t)(P1 (t) -t l )2 

a k 

( ka + 1) -.o+rf: ( _x_l ) o: dx 
1- -X 

k k 
1i+T 
p 

(1-a)- < k 
k+l 

1 

J dt 
(ka + 1) to:(t + l )2 

a k 

k 
-.o+T 

< . ( ka + /) J dx 
(1- fxt -m 

for each 0 <a< 1. Then for these P1(s), P2(s) equation (14) has not a solution 

a, 0 <a< 1, when a is small. 
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Lemma. If there exists a solution a, 0 < a < 1, of the equation {14} then for 

this a the strategy eg is maximin and the strategy "13 is minimax in the game 

Go(1, 1). The value of the game is v~1 = kP1(a). 

PROOF: Let constant a be a solution of equation (14). We have proved that 

Ka(eg;t) = kP1(a) 

for a ~ t < 1. Moreover 

Ko(eg; 1) p 11 

kP1(s)!I(s)ds 

> p 11 

kP1(s)!I (s)ds + (1- p)(k- (k +l)P2(1)) 

lim Ko(eg;t) kP1(a) 
r-+1-

since Ko(eg;t) = const = kP1(a) for a~ t < 1. 
Ift <a 

Then 

Ko(~o; t) 

= p 11

( -lP2(t) + k(1- P2(t))P1(s))h(s)ds + (1- p)(k- (k + l)P2(t)) 

> p 1\ -TP2(a) + k(1- P2(a))P1(s))!I(s)ds + (1- p)(k- (k + l)P2(a)) 

= Ko(e8; a) = kPt(a). 

for any strategy 17 of Player II. 

On the other hand 

for a ~ s ~ 1 and if s < a 

Ko(s; ry0) = kP1(s) < kP1(a) . 

Then 

for any strategy e of Player I. The lemma is proved. • 
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3. Main result 

Let us return to the duel G(1, 1) defined at the beginning of the paper. Assurrie 

that there exists a solution a, 0 < a < 1 of equation (14). Let the constant ak 

be defined for a given natural n as follows: 

l
a; 1 

a0 =a, p a,_
1 

h(s)ds = -;:;-• i = 1, ... , no, 

n 0 is defined from the inequalities 

1
ano 1 

p>p h(s)ds~p--. 
a . n 

Define the strategy e of Player I in the game G(1, 1) as follows: 

If there exists a solution a of equation ( 14) (case 1) Player I moves back and 

forth with maximal speed in the following manner: at first between 0 and a1 , 

then between 0 and a2, ... , finally between 0 and ano+l· At the i-th step, 

i = 1, ... , no + 1, he can shoot at random only if he is between the point a; _1 

and a; and goes forward and he shoots with the probability density ph ( s). If 

he has fired his shot at the i-th step he reaches the point a;, evades to 0 and 

never approaches Player II. If Player has not fired between the points 0 and 1 

and survives, he fires when he is at 1 as soon as possible. 

If no solution a, 0 < a < 1, of (14) exists (case ~), Player I, following~·, 

does not approach Player II. 

The strategy TJo of Player II is defined in case 1 as follows: if Player I reaches 

the point t first time and his velocity is v1 ( r) fire at random at time r with 

density v1(r)h(t(r)). Otherwise do not fire . 

It is assumed that the function v1 ( r) is piecewise continuous. 

In case 2, when equation (14) has no solution a, 0 < a < 1, strategy TJ 0 is 

defined similarly but firing has probability density v1 ( r)n( t( r)) where function 

n(t) is defined in (8), for a= 0, where D = Do satisfies equation 

D [ 1 P{(s)ds _ 
1 0 Jo P2(s)(P1(s) + f)2 - · (20) 

Theorem. The strategy e is E:-maximin and strategy TJo is mznzmax in the 

game G(1, 1) . The value of the game is vu = kP1(a) if there is a solution a, 

0 < a < 1, of the equation (14} and vu = 0 in the other case. 

PROOF: Assume Player I applies strategy e and that equation (14) has a 

solution a, 0 < a < 1. We say that Player II fires the shot in ( i, a') if he shoots 
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when Player I is at the point a' and if this happens during the first Player's 

approach to ai or during evasion from ai-l· Denote also by (i, a') the thus 

defined strategy of Player II. ·We obtain 

K(e ;i, a') > 

> p [l''-1 

kP1(s)Jt(s)ds + 1~ (-lP2(a') + k(1- P2(a'))P1(s))JI(s)ds] 

+(1- p)(k- (k + l)P2(a'))- }_ 
n 

;::: p [1a,_ 1 

kP1(s)JI(s)ds + 1~ (-lP2(a;) + k(1- P2(a;))P1(s))JI(s)ds] 

+(1- p)(k- (k + l)P2(a;))- }_ 
n 

2: p [la' kP1(s)f1(s)ds + 1~ (-lP2(a ;) + k(1- P2(a;)P1(s))JI(s)ds] 

+(1- p)(k- (k + l)P2(a;))- k + l 
n 

kP1(a)- e: 

where c: = ill. n 

If Player II fires only when Player I reaches the point 1 t~e best for him is 

to fire as soon as possible. For such a strategy 1J we obtain from the definition 

of the function K 0 (s, t) 

K(e; TJ) p 11 

kP1(s)JI(s)ds + (1- p)w 

> p 11 

kP1(s)JI(s)ds.+ (1- p)(k- (k + l)P2(1)) 

lim K0 (~0 ; t) kP1(a). 
t-+1-

Wherefrom it follows that 

for any strategy 1J of Player II. 

Suppose also that Player I had fired the shot in the point a' and later he 

evaded. Assume that he reached this point for the first time. For such a strategy 

(denote it also by a') we have: if a ~ a' < 1, then 
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K(a'; 17°) (21) 

la'( -lP2(t) + k(I- P2(t))P1(a'))h(t)dt + 1~ kP1(a')h(t)dt 

kP1(a') 

and if 0 ::; a' < a, then 

Suppose that the farthest point reached by Player I is a' but he fired the 

shot later, in a"::; a' . For such a strategy ewe have, if a::; a'< I, 

K(e; TJ 0
) 

a' . 1 

= 1 ( -lP2(t) + k(I- P2(t))P1(a"))h(t)dt + 1, kP1(a")h(t)dt 

::; kP1 (a) 

by (21), and also ifO::; a'< a 

K(e, 17°) = kP1(a")::; kP1(a). 

Since approaching of Player II after the shot (of Player I) is for Player I not 

better than evasion when Player II applies 17° then 

for any strategy of Player I. 

· Suppose now that the equation (14) has not a solution a, 0 < a < 1. In this 

case Player I assures for himself the value 0 simply by evasion. 

As we remember, in this case Player II applies the distribution n(t) defined 

similarly as that given by (8), distribution for a = 0 and D = Do satisfying the 

equation (20) i.e. Do~ P1(a) + f = f (compare with (9), (10) and (14)). 

Suppose that Player I shoots at point a' and evades. Assume that he reaches 

this point for the first time. We obtain for 0 ::; a' < 1 

K(a'; 17°) (22) 

r' 1 Jo (-lP2(t) + k(l- P2(t))P1(a'))Jg(t)dt + 1, kP1(a')fg(t)dt 

1 a' 

kP1(a') 1, fg(t)dt- (kP1(a) + l) 1 P2(t)fg(t)dt 

kl2 ( ~ - Do) < 0. 
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Suppose that the farthest point reached by Player I is a' but he fired a shot 

later in a" :::; a'. We obtain for such a strategy e 
K(e;11°) 

a' 1 

{ ( -IP2(t) + k(1- P2 (t))P1 (a"))f~(t)dt + { kP1 (a")f~(t)dt la la' 
a' 1 

< 1 ( -IP2(t) + k(1-:- P2(t))P1(a'))J~(t)dt +1, kP1(a')J~(t)dt 
< 0 

by (22). Since here also approaching of Player II after the shot of Player I is for 

Player I not better than evasion, when Player II applies 17°, then 

for any strategy e of Player I. This ends the proof of the theorem. • 

When P1(s) = P2 (s) ~~ P(s) all integrals in the paper can be computed 

explicitly . .Moreover when k = I we obtain from (14) 

[ 1 + P(a) · 1] 
(1 + P(a)) log 2P(a) + 2 = 2. 

This equation has a solution a for which 

P(a) 3::0.177655 

and we obtain from (16), (7) and (10) 

p:::: 0.872793, C:::: 0.291494, D :::: 1.177655. 

Duels under arbitrary moving, as far as author knows, were never considered 

before exept in the papers of the author (see [13, 14]) . 

About other results in the theory of the game of timing see [1, 2, 6, 8, 11, 

12, 16]. 
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Cichy pojedynek przy dowolnym poruszaniu si~ 

W pracy rozpatruje siE: cichy pojedynek, w kt6rym pojedynkujqcy si(( (Gracze 

I i II) majq po jednym pocisku, funkcje celnosci i funkcja wyplaty sq dowolne 

i gracze mogq poruszac si(( jak chcq. Wprowadzono strategie obu graczy dla 

tych warunk6w. 

TuxuA noe,u.HHOK npu npoH3BOJibHOM ,U.BH:>KeHHH 

B pa6oTe paCCM&TpHB&eTCH THXHA IIOe,[I,HHOK1 B KOTopoM COCTH3&10IIJ;HeCH 

(HrpoK I H HrpoK 11) HMeroT no o,u.HoMy cHapx,ll,y, a cpyHKU:HH nona,[I,&HHH 

H cpyHKU:HH IIpH6biJIH IIpOH3B01lbHbl H HrpOKH MoryT CB060,[I,HO IIe~eMeiiJ;&TbCH. 

BBe,[l,eHbi cTpaTerHH o6oHx HrpoKoB npH BTHX ycnoBHHX. 




