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1. Introduction

We are going to consider the following optimal control problem for a strongly
nonlinear second order ordinary differential equation with homogeneous Dirich-
let boundary conditions :

Find
inf J(u,9), J(u,y)= j oz, u(z), y(2), ¥ (2))d, (1)
subject to
u € Usa = {ue L2(0,1): u(z) € Q ae. z € (0,1)}, (2)
~(d/dz)a(z, (), ¥ (2)) + Yz, u(2), 1(2), ¥ (2)) = 0, z € (0,) } -
y(0) = y(1) = 0.

Here L$;(0,1) stands for the m-fold Cartesian product of L*(0,1) and
Q C R™, m > 1, is an arbitrarily given set containing at least two elements.
The given real-valued functions ¢ = a(z, 5,1), b = b(z,r,s,t) and g = g(z,r, s,1)
are defined for z € (0,1), r € Q and s,{ € R and satisfy certain assumptions to
be specified below.

The main characteristic feature of the above control problem is that the state
of the system is given by the solution of a boundary value problem for a nonlinear
second order differential equation. A survey on the relevant literature has been
given in [10]. Here we want to mention only [2,3,12,13,14,17], in which both
analytical and numerical aspects were investigated for certain control problems
with linear second order ordinary differential equations whose coefficients (all
or some of them) may act as control functions. Book [11] shall summarize the
findings of the authors in the domain.

The present paper is devoted to deriving the Pontryagin Minimum Principle
for the control problem (1-3). It is a free continuation of [8,9], in which we have
proved a Pontryagin-like Minimum Principle for a linear respective quasilinear
second order ordinary differential equation, whose all coefficients are depending
nonlinearly on the control parameters. Because of the example given in [8,15]
we could not expect the Pontryagin Minimum Principle to be valid if the leading
coefficient of the differential equation (that means “coefficient” a in (3)) depends
on the control. (This statement is rather surprising in view of paper [16].)
However, if the leading coefficient is not depending on the control parameters,
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then optimality conditions derived in [8,9] yield the corresponding Pontryagin
Minimum Principles. Thus, we extend our previous results and show that a
Pontryagin Minimum Principle is also valid in the case when the state equation
is given by the strongly nonlinear two point boundary value problem (3). We
overcome the special difficulties connected with the strong nonlinearity of (3)
by means of [7]. In that paper we have given an explicit formula for the solution
of a linear two point boundary value problem with measurable coefficients (and
a right hand side belonging to H~'(0,1)). Note also that in general (3) not
can be rewritten as a system of two first order ordinary differential equations in
normal form. It is know that control problems for implicit differential equations
possess certain peculiarities (cf., e.g.,[5]).

Like in [8,9], in order to derive the wanted optimality condition we use a
needle-like variation of the optimal control. In section 2 we introduce some
notations and formulate the needed assumptions. In section 3 we study the
solution of (3) related to the varied control and prepare the proof of the final
result, which is given in the last section 4.

2. Notations and assumptions

Most of the notations used in this paper are standard. So we shall use |-| for
the Euclidean norm in R*, n > 1, || - || for the norm in C[0,1] and || ||, for
the norm in LP(0,1), 1 < p < oo. H}(0,1) stands for the usual Sobolev space,
whose elements vanish at the ends of the interval (0,1), and in which the norm
is given by || ¥|lo=]| ¥ ||2. We recall that H(0,1) is continuously embedded
into C[0, 1] and that there are two elementary inequalities

ly@)I <llylle  Yee[0.1], [lyll2<llyllo : (4)

satisfied by each y € H}(0,1).

‘Now we give the assumptions A1-A3; the assumptions A4 and A5 will be
given below. In all what follows lower indices s and t mean the partial derivatives
of the corresponding function with respect to these variables. f €CAR denotes
a function f: (0,1) x R x R — R satisfying the Carathéodory conditions.

Al: a,as,a; €ECAR

b(-,u(-),-,-), b,(-,u(-),-,-), bi('su(')r'!')‘ CAR v U,
9‘(', U(-), ) ')v 93(':.'“(')! i '): gi(': “(')1 Y ')! } s e
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A2 (i): For any X > 0 there is a positive constant gy such that
la(z,s,t) | < pia(1+[2]) |

for a.e. z € (0,1), Vs € Rwith | s [< A, Vt€ R.

(ii): There is a positive constant « and for any A > 0 positive constant psy
such that '
a < ay(z,s,t) for ae. z € (0,1), Vs, € R,
I as(z,s,t) l! a(z,s,1) < pax -
for ae. 2 €(0,1),Vs,t € Rwith |s |+ |t |< A

(iii): There are two positive constants 4 and § such that
| as(z,5,8)—as(z,0,7) |, | ar(z,s,t)—ae(z,0,7) | < p(|s—o [+ |t—7)
for a.e. z € (0,1), Vs,t,0,7r€ Rwith |[s—0a |, |t —7|< 6.

A3 (i): For any A > 0 there are the function hyy € L(0,1) and a positive
constant pzy such that

[b(z,7,5,) || 9(z, 7, 8,) | < haalz) +pan [ £

for ae. 2 € (0,1),V{r,s} €Q x Rwith |r |+ |s|< ), VIt ER.
(ii): For any A > 0 there are two functions hax € L(0,1) and hsx € L%(0,1)
such that

| b,(z,r,s,l) i‘l | g&(x T' 8 t) |< h24\( )
| be(z, 7, 5,t) |, | ge(z, 1, 5,1) |< haxr(z),
for ae. 2 €(0,1),V{r,s,t} €EQ x Rx Rwith |r |+ |s|+|t|< A

(iii): For any X > 0 there are two positive constants pay and 8, such that
| bs(z,7,8,8)— bs(z,7,0,7) |,
I bi(xsr)s)t) = bt(zlr! a, T) |)
|g,(:c,r‘,s,t)-—g,(x,r,a,f)_L
| gt(x: r, 8, t) . Q‘t(x, o, T) |

Spa(ls—o|+]t=7])

for a.e. z € (0,1),Vr'€ Q with |7 | < X and Vs,t,0,7 € R with | s — o |,
It—‘f'l( -

The first conclusion of these assumptions is that

a(,3(), ¥()) € L(0, 1) Vy € H}(0,1),

b, u(-), (), ¥'(-)), 9 (- u(-), ¥(-), ¥'(-)) € L'(0,1) Yu € Uaa,Vy € H3(0,1).
Hence, the cost functional J is well defined over Usq x H}(0,1) and for fixed
u € Uza we may define a function y € H}(0, 1) to be (weak) solution to the
boundary value problem (3) if
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(a(z,y,¥)2' + bz, u,y,y)z)de =0 | Yz € HL(0,1). (5)

ok.____"_.

By means of the generalized Lemma of DuBois-Reymont (cf.,e.g.,[1]) it is easily
checked that y € Hj(0, 1) is a solution of (3) if and only if

oz, 1@,V (@) = [Ue,u(©),uO VO =cw) VeeD1] (@

with the constant

c(u) = a(z,y(2),¥'(2))s=0 (7)

Throughout the whole paper a solution to any linear or nonlinear two point
boundary value problem is to be understood in the above sense with the respec-
tive integral identity. Concerning (3) we formulate now the assumptions A4 and
A5.

A4: For each u € U,q the boundary value problem (3) has a unique solution
y(u) € H}(0,1) and there is a constant C' > 0 with

ly(w) lo<C  Vu € Uaa.

A5: For any A > 0 there is a positive constant v such that

1 .
/ [0, 3 7)2 4 (6 (2, 9, 9/) + B2, 9, ) 22
0

+ bs(z, u,y,)2ldz > v || 2 |13

Vz € V(0,1) = {y € H'(0,1) : y(0) = 0 or y(1) = 0}, V {u,y} €

Usa x HE(0,1) for which ¥ € L%(0,1) and || [u]||oo+ || ¥ [l < A

We remark that, for example, in [4] the reader can find sufficient conditions for ;
the unique solvability of (3) with fixed u € Usq. Assumption A5 ensures that.
certain linear boundary value problems, which will play an important role in
the text, are uniquely solvable. We finish this section with some notations. So
let {uo, %0} € L3 (0,1) x H{(0,1) be any fixed optimal solution to the control
problem (1-3). The upper index “o” always indicates that the corresponding
function is defined by means of this optimal solution. For example,

a®(z) = alz, yo(z), vh(2)), b°(z) = b(z, uo(z), yo(x), vh()),
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9°(z) = g(=, uo(2), 9o(2), vo(x))

but also

a2(2) = as(2, 30(2), 96()), -, 9%(2) = 9(x, uo(2), 4o(), ¥6()) , & € (0, 1).

Finally, for fixed u € @ by w C (0,1) we denote the set, whose elements
are Lebesgue points of a finite number of integrable functions occurring in what
follows and for which the estimations in A2—-A3 are satisfied. Obviously, w has

the measure one; in general, w depends on u.

3. Preliminaries

As we have said in the introduction we are going to derive the Pontryagin Mini-
mum Principle for the optimal control problem (1-3) using needle-like variations
of the optimal control ug . To doso ,let u € Q and £ € w C (0, 1) be any points
‘and € € (0,€e0) a parameter. Then, for g5 > 0 sufficiently small we define

ug(z) if ze€(0,1)\E

Clearly, u. € U,q and, hence, by assumption A4 there exists a unique solution
ve = y(ue) € H}(0,1) to the state equation (3) corresponding to u.. Thus, we
have to investigate the behaviour of y, and J(u.,y.) if € tends to +0. At the

“:(-’”)z{u E=[(¢+e) (8)

moment, because of (4) and A4, we know that

”y:HC < ”y:”(l < C, (9)

where here and in the whole following text C denotes a generic constant. Qur
first lemma gives a regularity statement on the state y(u) € H§(0,1) for arbi-
trary u € Ugq and shows that ||yl||c is bounded by a constant not depending
on the parameter ¢.

LEMMA 1 (i) y(u) € L*=(0,1) Yu € Uaq
(i1) 3C > 0: ||yl < C.

PRrOOF: (i) For arbitrarily fixed u € Uaq let y(u) € H}(0,1) be the correspond-
ing solution of (3). In virtue of the Langrange formula and (6) we have

; _
y(u)'(z) /ﬂ ay(z, y(u)(z), 0y(u)'(2))d0 = a(z, y(u)(z), y(u)' (<))

— (e, 0)(2),0) = [ B(E,u(E) yw)E), ) €)dE +<(u)
- a(z,y(u)(z),0), ae. z€(0,1).
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Choosing A > 0 such that |u(z)|+ |y(u)(z)| < A for a.e. z € (0,1) and applying
the assumption A2 (i,ii) and A3 (i), we come to * ‘

1
ly(u)'(z)] < a™*( /ﬂ (=, u(z), y(u)(2), y()'(2))ldz + |c(u)]|

+ la(z, y(u)(2), 01) < o™ (l[hsalls + paally(w)lIg + le(w)] + p12),
ae. z€(0,1), '

and statement (i) is proved.

(i) Because of (8) and (9) we can take a constant A > 0 (not depending on
€ € (0,€0)) such that |u.(z)| + |ye(z)| < A , a.e. z € (0,1), and (10) considered
for u = u, yields :

|y (@)] < o (Ilhaalls + #oalveld + le(ue)| + p1n),  ae. 2 €(0,1).

Furthermore, again using (6), A2 (i) and A3 (i) we obtain

el < [ la(e, e(e), v @Nldz+ [ 16z, uele), el v @)l
< (L (1gello) + Rl + manllzell5-

Because of the both last estimations and (9) the claimed second statement (ii)
is also proved. |

Next we introduce some auxiliary functions by setting

1 . Yy
(g = fo a(2, %o + 0%k — vo), ¥ +0(, — ¥b))db,
arle) = ] 0 (2,90 + 0(3 — v0), ¥ + O(¥, — ¥))d8,
1 : &
bie() = [ oy e, 0+ 00 — v0), 06 + 000 — 54))d0,
% (11)
bne(ﬂ‘-‘)_ = /[) bs (:"-'; Ue, Yo + G(ys =t yn); y6 # ﬂ(y'e = y{]))dg!
9'1;(1') = ./D gt(x1 Ue,y Yo + 'g(y: - yﬂ):y:} o+ 8(9{" . yﬁ))d‘g:
1
wddl = fﬂ 05 (2, tes Yo + (5 — Yo), 9 + O(s, — b)) db,

and
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Ag(z) = g(z,ue(2),30(2), ¥(2)) — ¢°(2),

where z € (0,1). Note that Ab(z) = b(z,u; yo(z), yo(z) — b°(z) if z € E and
Ab(z) = 0ifz € (0,1)\ E and analogously for Ag. By Lemma 1, assumptions A2

Ab(z) = b(z,ug(x),yo(x),yé,(w))—b[’(a:),} )

(ii) and A3 (i,ii) we may easily conclude that these functions have the following

properties: .

aie, a2 € L°(0,1) with o< a1(z) < C, [laz(z)| < C,
: ae. z€(0,1),
bie,91¢ € LZ(O: 1) with ”blzllﬂs ”9'1:“2 <C, (13)
bze,g2: € L'(0,1)  with ||bgell1, [lg2¢lh < C,
Ab,ANge LY(0,1) with [|Ab]|s,||Agll: € C:

Here, to point out once more, C' does not depend on ¢ € (0,€q). In the proof of
both inequalities of the last line of (13) we have to use additionally the fact that
by definition of w £ € w is a Lebesgue-point of 6, (-, u, yo(-), ¥5(-)) € L*(0,1)
and ¢°% g(-, u, ("), vo(-)) € L'(0, 1), respectively.

With the functions ay,...,bs defined in (11) and Ab defined in (12) we
consider the following linear second order boundary value problem :

—(d/dz)(a1c(z)p'(z) + aze(2)p()) + bre(2)p'(2) + b2e(2) () } (14)
= —Ab(z),z € (0,1), p(0) = p(1) =0,

for which p € H{}(0,1) is said to be a solution if

fn (a16(2)P'(2) + aze(2)p(2)) 7' (2) + (b1e(2) (z) +

| : (15)
bee(2)p(2))2(2))dz = —/ﬂ Ab(z)z(z)dz Yz € Hy(0,1).

Taking into account Lemma 1 we find a constant A > 0 such that || |uc]||eo +
(1= 0)yt + Oy.lloo < A VO €[0,1] . Thus, in A5 we can substitute u = u, and
Y=Y+ 0(y —w) = (1= 0)yo + 0y, 0 € [0,1]. If we intergrate the resulting
inequality over 6 € [0,1], then we see that this boundary value problem is
with respect to ¢ € (0,¢&p) uniformly coercive on H}(0,1). In other words, by
the generalized Lax-Milgram-Theorem the boundary value problem (14) has a
unique solution p. € HJ(0,1). To study p. as e — +0 we could try to use the
coercitivity of (14). Doing this and considering (4), we would find

1
vallpell? < / |Abllpeldz < [|AB]llpello,
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which by (13) would give
lpello = 0(e*~%)  for each § € (0,1)

However, since this estimate is not sufficient for deriving the desired optimality
condition we are forced to apply deeper results concerning linear boundary value
problems with measurable coefficients. The properties of the coefficients stated
above in (13) and certain properties of (14), which essentially are consequences
of assumption A5, allow us to apply [7]. There we have proved the existence of
a generalized Green function G, = G¢(z,£),z,£ € (0, 1), having properties

Ge,Ges € L®((0,1) x (0,1)) with |Ge(z,£)], |Ge=(z,€)| < C, ae.z,€ € (0,1),

and using which the solution p. € H}(0,1) to (14) and its derivative p. can be
written as

1 1 '
pel(z) = —/ﬂ G. (::,{)Ab({)d&, pe(z) = —/0 Gez(z,8)Ab(E)dE, ae. z € (0,1).
By (13) these formulas yield the crucial estimates

|P£(x)lv |P:(I)| S Ct; ae. r€E (U) l), (16)

whose importance will become evident in the next lemma.
LEMMA 2 [t is true that

pe(z) = yt(r) = yO(m)l ae. z€(0, 1): (17)

where pe,ye = Y(ue) and yo = y(uo) are defined above.

PRrRoOF: Indeed, by the respective definitions of y. and yo we have

o
Il

/l(a(zl yt)y;] = GG(Z))Z’dﬁ
01 )
¥ / (b(z, ue, ¥e, yi) — b(z, ue, uo, yp))zdz

0

+ Al(b(z,uc,_yo,y’o) —b%(z))zdz Vz € H}(0,1).

Applying Langrange formula to the first two intergrands and using the func-
tions aje, ..., bs. and Ab defined in (11) and (12), respectively, we see that this
identity has-the form
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1
[ (@relat = )+ aaely = w)ds
1 !
* / (b1e (¥ — yo) + b2e (ve — yo)]2dz
0

1
+ /Abzdx Vz € HL(0,1).
0

o
I

which shows that besides p also y. — yo solves the boundary value problem (14)

and , hence , relation (17) is true. =1
According to (16) and (17) we obtain the estimates
|ve (2) — vo(2)], lve(2) — wo(2)| < Ce,  ae.z €(0,1). (18)

Another consequence of (16) and Lemma 2 is that now we can calculate the
limits of the functions ay, ..., g defined _in (11) as € — +0.

LEmMMA 3 Ife — +0 then

9 in L*(0,1)

a1 — a?, Qoe — @

b1 — btl)’ bge — b?:
Jie — 97, 92e — g5

}in © LY(0,1)

PrROOF: As examples we prove the first and the last statement; the proofs of
the other ones are analogous. Thereby we have to use the assumptions A2 (jii)
and A3 (iii). So let § > 0 be taken from A2 (iii) and ¢ € (0,¢€0) so small that

lve(2) — wo(@)], 1. (z) — vh(z)| < 6, ae. z€(0,1).

By the definition of a;., by (17), A2 (iii) and (16) we obtain

|are(2) — af(z)] < fu las(2, yo(z) + 8pe (), o () + bpz(z)) — af (z)|dO
< p(lpe(z)] + |pL(2)]) < C, ae. z €(0,1),

which proves already the first assertion. For the proof of the last one we take a
~ XA >0so large that |u.(z)| < A, ae. € (0,1), and choose € € (0,¢0) so small
that - . -

lve(2) — vo (@), [¥6(z) — to(2)| < 6x ae. 2 €(0,1),
where now 8, is taken out from A3 (iii). Then by the same argument and
‘because of the definition of u, we find the estimate

1 1
/0 |g2:(3) = QE(I)ldx S \/.0 lgh(z) = gs(x: ut(x):yﬂ(x)sy{](z))ldz +
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]0 195 (2, 4e(2), w0 (2), %h(2) — 92(2)|de
1 1
< [ [ 0o, (o) + 002 (2),(2) + 06 2))

= gs(r,us(x),yo(x)ayﬁ(r))ldf’dr-i-LIya(a:,u,yo(z),yé(x))—yf(w)ldr

+e

1 3
< ;mj; (Ips(:n)l+Ipi(-'~?)l)cfbr+]f |9s(2, u, yo(2), ¥o(2)) — 92 (2)|d=,

from which the last statement of the lemma follows. |

4. Pontryagin Minimum Principle

After the preparations in the previous paragraph we are now in a position to
prove very easily the sought Pontryagin Minimum I rinciple for the control prob-
lem (1-3). To formulate it in a customary way we first introduce the adjoint
state by means of the linear boundary value problem '

—(d/dz)(a(2)2'(z) + B(2)2()) + a2(2) () + B2(2)z(=) } -
= (d)dz)gd(z) - (=), =z €(0,1), 2(0)=z2(1)=0,

for which z € H}(0,1) is said to be a solution if

] 1[(ﬂ!?(:L')Z'(z)+bi’(I)Z(x))zf (2)+(a; ()7 (2)+b5()2(2))y()]de

0

1
= - ]0 (62 (@) + 2(@)u(@)dz Yy € HY(0,1).

Its unique solution zo € H{(0,1) (cf. A5) is called the adjoint state. Our final
result given in the theorem below

THEOREM. Under the assumptions AI1-A§ the necessary condition for
{uo, w0} € LL(0,1) x Hj(0,1) to be an optimal solution of (1-3) is that

9,1, 90(2), %4(2)) + b(z, 1, yo(2), vh(2)) 20 (2)
> g(z, uo(2), 10(2), vh(2)) + b(z, uo(2), 0(2), vH(2))20(2)
Yue@ ae. z€(0,1),

where 29 € H}(0,1) denotes the adjoint state defined by (19).

ProOF: In order to prove the theorem we consider the difference
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0 < J(:‘::yc) — J(Uo,yo)
fﬂ (002, e(2), ve(2), Yo(2)) — 9(2, 4el(2), 0(2), Y (2)))dz

& j (0, 4 8), o ), 4aL)) — (&) e

which by means of the functions gic, g2c and Ag defined in (11) and (12), re-
spectively, can be rewritten in

0§/£}Ag(z)dx+£ (g1e(2)pi(z) + 92¢(2)pe (2))de. (21)

In the definition of p, , that means in (15) with p = p. , we take z = 29 and in
the definition of 2y, that means in (20) with z = 2z , we take y = p,. Then we
using the both resulting relations we obtain inequality (21) in the form

0< /E(Ag(x) + Ab(z)zo(z))dz + J (), (22)
where

J(€)

1

A e of)ptdet [ (one— opede

/ (a1c — af)zppLdz + [:(“2: — a3)zgpedz
'y / (b1e — b )zgpsd.‘r:%-/ (bae -_mb Yzopedz.

Now, begause of (16) and (4) we have

le=tJ(e)] < Clllgre — 92111 + lg2e.— 9211
+  (llate — aflloo + llaze — a2 lloo)l|26112
(I[b1e = BY[l1 + [lb2e — 82[11)lI20]l0] »

which , by Lemma 3 , implies

+

-+

J(€) = 0(¢) as € — +0.

Therefore, if we divide inequality (22) by € € (0,&9) and if afterwards € tends
to +0 , then we obtain

0 < Ag(€) + Ab€)z0(€)
(€, 4, 90(€), ¥6(8)) — 9°(€) + (B(€, u, 0(€), ¥6(€)) — b°(€))20(£).

Since at the beginning of section 3 both u € @ and £ € w C (0,1) were taken
arbitrarily the theorem is proved. [ |
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Clearly, if the control set @ C R™ is convex and if for ae. z € (0,1)
the functions b(z, -,-,-) and g(z, -, -,-) have their respective gradients b, and g,
continuous on @ x R x R, then for the solution {ug,yo} € LL(0,1) x HE(0,1)
of the control problem (1-3) the above theorem yields the linearized (weak)
Pontryagin Minimum Principle

(g2(z) + b2(2)20(x), u — up(z))rm >0 Vue€Q, ae. z€(0,1),

where (-,:)rm denotes the scalar product in R™. In [6] optimality conditions
of such a type has been proved for both unconstrained and constrained control
problems with a quasilinear second order ordinary differential equation, whose
leading coefficient may also depend on the control u € U,g. We remark that the
functional analytic method used there cannot be applied to the control problem
considered above. In a forthcoming paper we shall consider the optimal control
problem (1-3) with additional integral constraints.

Book [11] contains illustrative examples demonstrating the use and advan-

tages of the result here presented.
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Zasada minimum Pontriagina dla mocno nieli-

niowego zadania dwubrzegowego

W pracy wyprowadzono warunek konieczny optymalnosci w p_ost.aci zasady mi-
nimum Pontriagina dla zadania sterowania optymalnego z*mocno nieliniowym
réwnaniem rézniczkowym czastkowym drugiego rzedu i z jednorodnymi wa-
runkami brzegowymi Dirichleta. W dowodzie uzyto standardowego podejécia
z iglowa wariancja sterowania oraz uogdlnionej funkeji Greena dla rozwiazania
liniowego zadania dwubrzegowego. -

IIpunnun muauMmyma IloHTpsAruHa s cujibHO He-

JHUHEeNHON ABYXIrpaHUYHON 3agayu

B paGo're npencTaBlIEeHO HBOGXOLLI‘IMOC YciIoBHE OITHMAaIBHOCTH B BHE
OpUHOHIA MUHUMYMa I'Ion'rpﬂrnna OJig 3afla4yHl QIITHMAJIIBEHOI'O YIIPDaBJIEeHHMA
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C CHJIBHO HeNMHEHHBIM nuddepeHnManbHLIM YpaBHEHHEM B YacTHBIX IIpO-
M3BOJHLIX BTOPOTO MOPANAKA ¥ OAHOPONHBIMH I'PAHUYHBIMM ycrnoBuaMu [lu-
puxie. B pokasaTenscTBe HCNIONB3YeTCA CTAHAAPTHEIN NOAXO[, C HrOIbYaTOMN
pucriepcueit ynpasneHus u oGobuennas dpynknus ['puHa nis pelueHns nm-
HelfHOM ABYXIpaHHYHOM 3aga4vun.







