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In this paper we are dealing with the optimal production of sul
phuric acid in a sequence ofreactors. Using a suitable approximation 
to the objective function, this problem can easily be solved using the 
maximum principle. A numerical example documents the applica
bility of the suggested approach. 

1. Introduction 

The case we are solving in this paper is taken from the theory of chemical 

reactors, but is of so elementary a character that it will be understandable 

without any prior knowledge of chemicaJ engineering. Further details on the 

technical aspects of the problem can be found in Aris [1]. Here we are primarily 

dealing with the problem of optimizing a sequence of reactors. These problems 

have been discussed using dynamic programming in Aris [2] and the discrete 

version of the maximum principle in Fan and Wang [3]. 

In this paper we are specifically dealing with the production of sulphuric acid. 

It is known that high extent of reaction is obtained at a low rate of reaction, 
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therefore to obtain faster production the products are reacting in a sequence 

of continuous~flow reactors and by letting the temperature fall from reactor to 

reactor it is possible to achieve that the products react faster in the first reactor 

and slower in the last reactors . Obviously the optimal solution will demand 

an infinite number of reactors, but due to the investment cost the number of 

reactors is usually reduced to, 3 ~ 5 reactors. 

In Section 2, our problem will be formulated as a discrete~time control prob

lem. In Section 3, the optimality conditions based on the discrete version of the 

maximum principle will be formulated and it is also shown that this system of 

equations can be easily solved. Section 4 presents the numerical solution of the 

case in study, and finally the last section gives some final remarks. 

2. The optimization problem 

The case in study is the production of sulphuric acid in a series of N reactors, 

that in our case has been fixed toN= 4. The whole process is illustrated below : 

Control 
variables 

State x(O) 
variables 

Return 

u(O) T(O) u(1) T(1) u(2) T(2) u(3) T(3) 

x(4) 

t(O) t(1) t(2) t(3) 

Figure 1. The discrete~time control problem. 

where th~ state variables are x(i + 1), the extent of reaction, and measure . 

how far reaction has been progressed in stage i. Then x(i + 1) = x(i) + u(i), 
i = 0, 1, ... , N -1, where u( i) is the increase of the extent of reaction at p~riod i. 

The control variables are u( i) and T( i) where the last one is the temperature 

at the i th stage. 

Moreover we have the relation for the holding time: 

. u( i) 
t(l) = r(x(i) + u(i), T(i)) 

(gram mole/It.) 
(gram mole/lt.jsec.) 

(1) 
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where r() is the rate of reaction. The problem is to find the optimal control 

that minimizes the total time, and changes x() from x(O) = 0 to x(N) = a, 
a specified value less than one. 

Formally our problem is then 

subject to 

x(i + 1) = x(i) + u(i), for i = 0, 1, . .. , N - 1 

x(O) 
x(N) 

u( i) ?:: 0, 

0 
a 

for i = 0, 1, . . . , N - 1 

· As the T( i)'s are independent of each other (2) can be expressed as: 

[

N - 1 (") l 
F = {~~~} {; ~t)c r(x(i~: u(i), T(i)) 

(2) 

(3) 

(4) 

(5) 

(6) 

Now for given values of x ( i) + u( i), the values of T( i) that minimizes r( ) 
can be uniqu•ely determined using a one-variable search procedure . In this way, 

we find the function R( ): 

R(x(i + 1)) = max r(x(i) + u(i), T(i)) 
T(i) 

That is graphically illustrated in Figure 2. 

(7) 

The function R() for our actual case in study is in Figure 3. We will now , 

approximate this function by the following expression 

(8) 

This approximation is also shown in Figure 3. 

Note that this approximation is best in the tail of the function R( ), this 

will be sufficient for our practical purposes because as shown i.n Section 4 the 

optimal x(i)'s ·will be located at the tail of the function R( ). Moreover, by 

varying k1 , k2 different approximations could be obtained, (in the last section 

we will continue this discussion). 

Obviously, for cases where the x( i)'s will take small values it will be better 

to approximate the function, R( ) by a two- exponential curve of the form 
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r 

Small c 

T 

r 

Intermediate c 

T 

r 

T 

R(c) 

c 

Figure 2. The rate of reaction functions r(c, T) and R(c), where T is temperature 

in °K and c is the extent of reaction in (gram mole/ It .). 
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Figure 3. Maximum rate of reaction as a function of extent of reaction. 
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In such a situation the analytical approach of Section 3 is still valid but the, 

number of parameters to be estimated is doubled. 

Although the optimization of (6) could be directly performed on the original 

function, this approximation will permit us to develop an elegant way to find 

the optimal solution as it will be shown in the next section. The elegance of 

the method resides in the fact that we obtain quasi-analytical results due to 

the fact, as it will be shown later, that in the region of interest the criterion is 

strictly concave. 

Finally, note also that the optimal solution { u*} is dependent of k1 . 

3. The optimality conditions 

Our problem is to find the optimal solution of the following discrete-time prob

lem: 

N -l 

k1F = min L u(i)ek,(x(i)+u(i)) 
{u(i)} i=O 

subject to 

x(i + l)" 

x(O) 
x(N) 

x(i)+u(i), i =0,1, ... ,N-1 

0 

a, and k2 > 0 

u(i) > 0 

(9) 

(10) 

(11) 

(12) 

(13) 

The necessary conditions for the optimality of x(i) and u(i) are given by the 

following relations (Vidal (4]): 

max H.(x*(i), u(i),p*(i + 1)), for i = 0, 1, .. . N- 1 
u(•)?:O 

oH. 
ox*( i) 
oH. 

op*(i + 1) 

p* ( i), for i = 0, 1, ... N - 1 

x*(i +1), for i =0,1 , ... N - 1 

(14) 

(15) 

(16) 
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and the boundary conditions: 

x(O) = 0 
x(N) = a 

where {p( i)} are the adjoint variables and the Hamiltonian is defined as: 

29 

(17) 

H(x(i) , u(i), p(i + 1)) = -u(i)ek,(x(i)+u(i)) + p(i + 1)(x(i) + u(i)) (18) 

It is easy to show that the Hamiltonian is quasi concave in u( i) (actually for 

u(i) 2: 0, 1{ is strictly concave). Moreover for given values of x(i), p(i + 1), the 

Hamiltonian has a unique, bounded maximum that is achieved at a finite value 

u( i) 2: 0. Therefore the necessary conditions give also sufficient conditions for 

optimality, i.e. the directional convexity of the set of extended states' assumption 

is satisfied, see further N ahorski et al [5] . 
.;\ssume now that at the optimal solution u*( i) # 0, then (14) necessarily 

becomes: 

or: 

{)'}{ = 0 
8u(i) 

-ek2 (x(i)+u(i)) _ k2u(i)ek 2 (x(i)+u(i)) + p(i +1) = 0 

for i = 0, 1, ... , N- 1. 

And the adjoint equations become: 

-k2u(i)ek,(x(i)+u(i)) +p(i + 1) = p(i) 

Comparing (20) and (21), we find the following conditions: 

p( i) = ek 2 (x(i)+u(i)) 

for i = 0, 1, .. . , N- 1, from where we obtain: 

u( i) 

x( i) 

ln:;i) _ x(i), 

lnp(i- 1) 
k2 

for i = 0, 1, ... , N- 1. 

for i = 1, ... , N. 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

Replacing (23) and (24) in (21); we obtain the following system of equations in 

{p( i)}: 

Jnp(N- 1) 

p(i + 1) 
p( i) 

p(1) 

p(O) 

k2 a 

p( i) 
1 + In p( i _ 1) , 

1 + lnp(O) 

for i = 1, ... , N - 2 

(25) 

(26) 

(27) 
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Let us now reduce this system of equations to a single equation in p(O), by 

introducing the following operators: 

La(x) 

Li+l(x) 

ln( ex) 

ln ( eL; ( x)) , for i = 0, 1, ... , N - 3 

Then it is easily shown that 

i 

p(i + }) = p(O) ·IT Lj(p(O)), for i = 0, 1, ... , N - 2. 
j = O 

Thus we obtain one single equation on p(O): 

N - 2 

p(O) · IT Lj (p(O)) = ek,a, 
j=O 

(28) 

(29) 

(30) 

(31) 

that can be solved by any iterative method. Thereafter it is easy to calculate 

the other p(i)'s and the optimal x(i)'s and u(i)'s . 

4. An example 

Let us illustrate our approach by solving the case illustrated in Section 2, where 

k2 4.79 

kl 3.17-10-4 

a 0.9700 

Solving equation (31) gives 

p*(O) = 8,680 

and thereafter we can calculate from (30) 

p*(l) p(O) ln( ep(O)) 27.438 

p*(2) 59 .016 

p*(3) 104.214 

And the optimal values of control and state variables are calculated from (23) 

and (24) 

u*(O) 0.4512 x*(l) u*(O) 
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u*(1) 

u*(2) 

u*(3) 

0.2403 

0.1599 

0.1187 

x*(2) 

x*(3) 

x*(4) 

0.6914 

0.8513 

0.9700 

and the value of the objective function is 

N-1 

F = _!._ L u*(i) · p*(i) = 1.011945 · 105 sec. 
kl i =O 

5. Final remarks 

31 

(32) 

The calculations made before finding the optimal p*(O) can be utilized to per

form sensitivity analysis on the parameters a and k2 , by keeping one of tl.em 

constant and varying the other. This is shown in table 1. 
' 

k2 = 4.79 k2 = 4.79 a = 0.97 a = 0.97 

p*(O) a k1F k2 k1F 

8.00 0.9435 28.3161 4.6593 29.0978 

8.63 0.9682 32.0128 4.7809 32.0735 

8.64 0.9685 32.0735 4.7828 32.1219 

8.65 0.9689 32.1342 4.7846 32.1702 

8.66 0.9693 32.1949 4.7865 32.2187 

8.67 0.9697 32.2557 4.7883 32.2670 

8.68 0.9700 32.3165 4.7902 32.3154 

8.69 0.9704 32.3773 4.7920 32.3639 

8.70 0.9708 32.4382 4.7938 32.4123 

8.71 0.9711 32.4991 4.7957 32.4608 

8.72 0.9715 32.5600 4.7975 32.5092 

8.73 0.9719 32.6210 4.7993 32.5577 

8.99 0.9813 34.2171 4.8460 33.8219 
' 

Table 1. Sensitivity analysis 

The second and third column in Table 1, show the changes in F due to small 

changes in a, this information can be used to evaluate to what extent it pays to 
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modify the value of a = 0.97. 

The last two columns show the cha}lges in F due to small changes in k2. 

Since k2 is an estimated value, this information can be used to find better value 

of k2 by comparing F with the actual criteria function, for a given k1 . This 

information can be used in another model with the purpose of finding "best" 

values of k1 and k2. 
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Optymalizacja ciqgu reaktorow 

W pracy rozwazono optymalizacj~ produkcji kwasu siarkowego w ciqgu reak

tor6w . Po zastosowaniu odpowiedniej aproksymacji wskaznika jakosci problem 

ten mozna latwo rozwiq,zac za pomocq, zasady maksimum. Przyklad numeryczny 

potwierdza mozliwosci zastosowania proponowanego podejscia. 

0nTHMH3ai..\IUI TeXHOJIOrH"tJ:eCKO:A: JIHHHH peaKTOpOB 

B p86oTe p8CCM8TpHB8eTc.ll onTHMH38Il.H.II npoH3BO,li.CTB8 cepHoR KHCJIOThi B 

TeXHOJIOrH'ieCKOR JIHHHH pe8KTOpOB. Ilocne npHMeHeHH.II COOTBeTCTBYIOlll;eR 

8llllpOKCHM8Il.HH llOK838TeJI.II K8'ieCTB8 9TY 38,!1.8'-iY nerKO pelllHTb C llOMOlll;blO 

npHHD.Hll8 M8KCHMYM8. "lfHcneHHbiR npHMep llO,li.TBep:>K8eT B03MO:>KHOCTH 

npHMeHeHH.II npe,ll.n8r8eMoro no,li.XO,ll.8. 


