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In the paper, an analytic solution is presented for the problem
of calculation of [e?dt for large dynamic systems with many time
delays. The system of equations used for determination of unknown
polynomials Ci(s), i =0, 1,...,n is underdetermined. With the use
of certain symmetry properties this difficulty was overcome and the
unknowns C; have been uniquely determined by analytic formulae,
which are noticeable by their simplicity and the lowest possible or-
der. The method proposed here gives analytic formulae and solution
algorithms much simpler than those proposed by Penrose [2]. An ex-
ample is given which makes it possible to compare both methods.
The results obtained may be used to compute optimal regulator set-
tings in parametric optimization.

1This work was supported under contract RP.1.02.ASO 2.1/1990.
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Int_roduction

The calculation of the integral squared dynamic error for systems without time
delay was generally worked out, and the analytic formulae were obtained in
many papers (Feldbaum 1957), (James, Nichols, Philips 1974), (Newton, Gould,
Kaizer 1957). The analogous problem for the systems with one delay was solved,
in (Goérecki H., Popek L. 1982), (Grabowski P. 1983), (Walton K., Gorecki H.
1984).

The present work is a generalization for the systems with many commensu-
rate delays. At the end of the paper some practical examples are given.

The analytic formula for integral squared error of the system enables estab-
lishing of the optimal values of the parameters of controllers.

1. Statement of the problem

Let us consider the integral

as °° z
oz /{, e2(t)dt (1)

where £(t) is the transient error of stable system. By virtue of Parseval’s theorem
the integral (1) can be calculated from the formula
1 P

=g E(s)E(—s)ds (2)

where E(s) denotes the Laplace transform of (t). Let us assume that

B = 70> L ®
where _
A(s) = Ao(s)+ Ai(s)e™" + ...+ An(s)e™™"
Ao(s) # 0
An(s) # 0 (4)
Ai(s) # 0 1<i<n-—1 for at least one “i”
B(s) = Bo(s)+ Bi(s)e™*" +...+ Bn(s)e ™"

Ao(s), A1(s), - .., An(s), Bo(s), Bi(s), . .., Bn(s) are polynomials of the operator
“” and 7 > 0 is a real and positive number representing time delay. We
have made the basic assumption about asymptotic stability of the system. In
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consequence, all the poles of E(s) or equivalently all zeroes of A(s) lie in the
left half of the complex s-plane. This fact is the corner—stone of the presented
method.

The substitution of (3) into (2) gives

1 [i® B(s)B(<s)
7= ).y AR Q

Using partial fractions the integrand of (5) may be separated into two parts,
namely |

J:;f‘“’ B(s)B(=s) ,  _ 1/"” O 4

2]:[3 —joo ( ('—'—5) 21—[.? Jw#(S)A(S)
| (6)
i 1 = C( s)
210 J_jco 1(s)A(—5) )
Denoting
e—ST =
B(-s) = ‘? (7)?
*A(-s) =A
C(-s) =C
we express our problem as follows.
We want to split the product into the sum
i E_Bg+ Biz+4...4 Baz® Bo+Biz7l'+...4 B,z ™"
T Ao+ Az .o F Azt Ag+ Azl 4. Apz?
(8)

_ Co+Ciz+...+Cp2" " Co+Ciz~ 4 ...4Chiz™
- p‘.[Ao+A12t+...+AnZn] p[A(]*{*A]Z_l +...+ A,,z‘“"}

L9

Comparing the coefficient of the same powers of “2” in both sides of equation
(8) we obtain (2n+1) equations for the (2n+2) unknowns Cy, Cy, . . ., Cp, Co, Ch,

2We omit the dependence on “s” for simplicity.
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..., Cp, so the solution of this system is not unique, the system is underdeter-
mined.

A-C=
[ 40 0 ...0 0 A, 0... 0 ) éc,.
A Ap .0 0 ApgA.... 00 e
Kl gy O Ay Hpvoo Ba 6 gl
= An An-_l---Al Ao AU J?ll...x‘in_l .::1,1 b Cﬂ —
0 Ap ...A3 Ay 0 Ag...An_2An_: 9
. . . - . . . . . Cl
0 0 dadig 0 0... % H c:
| 0 0 ...0 A, 0 O0... 0 A | 2,;1
i By 0 0 0 |
Bi B ...0 0
Dot B,
B,_1Bn_s...Bg 0 Bn_y
=p-| By By_1...B1 Bg || : (9)
0 Bn ...B: B B,
2 -3 By
0 0 ...BjyBa
| 0 ‘0 ...0 B

We will choose the solution which has the property of symmetry. Observe
that in order .that the solutions for unknowns Cj,...,C, be polynomials and
not rational functions of the operator “s” we have introduced the unknown
polynomial p(s).
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Denoting in the equation (9) by

D, = i
b By 0 0.0 0
n._l By By ...0 0
: - . .
D : L d k
Ijl Bn—l Bn—zn.BU 0 Bn—l
DD —_— Bl’l Bﬂ—l".'Bl BO . E (10)
0 —
Dy 0 Bn ...B B {;1
5 oy L 0
' B B By B
Dn—l 0 0 0 B 1
Dn | s e n
we can write the equation (9) as follows
e (11)

From the linear equation (11) we deduce that the solution for C has the following
general form

C=MD- (12)
where the matrix M can be determined after the substitution of (12) into (11)

(AM — pE)D =0 ‘ (13)
As the vector D is not a zero-vector, we conclude that

AM = uE (14)

where E denotes a unit matrix.
For establishing the structure of the unknown matrix M we will use a special
matrix 3

e - (15)

1 0

which has the following properties:
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1°33=E (16)
This corresponds to the square root of the unity matrix.

2% Premultiplication of the matrix X by matrix 3 corresponds to the change
of the order of rows of the matrix X.

3% Postmultiplication of the matrix X by matrix 3 corresponds to the change
of the order of columns of the matrix X.

4% Premultiplication and postmultiplication of the X by matrix 3 gives as
the final result the angle II of turn of the matrix X, which we denote

3X3 = Xn (17)

THEOREM 1 Due to the special struciure of the matriz A in equation (9) the
following relation holds

An=A (18)

This means that the matrix A is equal to the matrix Ayy which is turned by
the angle II, and in which the argument “s” is substituted by (—s).
The proof may done by inspection of the matrix eq. (9).

THEOREM 2 The same property (18) holds for the unknown matriz M.
Mp=M (18
ProoF: We start with the relation (14)
AM = pE
We apply the operation (17) to the both 'sides of the equation (14)
JAM3 = 3[pE)3 = [Epln = pE (19)

because p is the polynomial, and the unit matrix turned by the angle II is again
the unit matrix.
The left-handed side of equation (19) can be written as follows

3AM3 = 3JAEM3 | (20)

Using the identity (16) we can replace the matrix E by the product 33 and we
obtain that '

JAM3 = 3AEM3 = 3433M3 (21)
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Now we apply the identity (17) to the relation (21) and using (19) we obtain
finally that

AnMy = pE (22)
Replacing the argument “s” in the relation (22) by (—s) yields the relation

AnMp = iE = pE (23)
if necessary condition

p=p (23)

holds (see App.1.)
Comparing (14) with (23) we have that

AnMp = AM (24)
Using the relation (18) in (24) we obtain

AMy = AM (25)
Hence we obtain the final result

Mp=M (26)

Returning to the equation (9) we observe that the matrix A has the dimen-
sions (2n+1) X (2n+2), and its multiplication by M is possible if the dimensions
of M are (2n + 2) x (2n + 1), and so we conclude that the matrix E has the
dimensions (2n + 1) x (2n + 1).

Assuming that the matrix N has the form

My, M. M
M= @ £ ¥ 9
[Mﬂ M, Mﬁ] W0
and taking into account the equality (26) we obtain
2 Msx Myx M, My M. M
N e I
M-:”r Msﬂ‘ MO“I Mﬁ Mﬂ Mﬁ
Comparing submatrices we have
Mﬁr = Mcr {29)
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Myr = M, (31)
’ MSI’ = Mr} (32)
Mﬁ’r = M, (33)
Mar = M; (34)

Using the relations (33) and (34) in (27) we obtain the final form of the matrix

M, M, Mg,
M= "’]

and the equation (14) can be written in the form :

[ 4 0 ...0 0 4. Q...

By Ag o=l B Aguphsns O 0

Apr Beovcceils 0 Ay Ay By B
An Apq... A1 Ay A Ay...
0 A, ...A2 Ay 0 Ag...

0 O codply—y B 0 e Ag My
0 0 ...0 A, 0 0... 0 A

[ ap1 g2 ... Qon £p Bﬂn an )ém
@11 @12 ... Qin €1 |Bn-1,n--Pn-1,2Pn-1,1
: : : ~
On—1,10n-1,2+..0n=1,n | En=1 Bin .- P12 P
On,1 Op2 ... Onn En Bon --- Boz  Bo -
Bor  Poz ---_50n Mo Qnp ... Gpy Qg
Buu Pz ... bBin M |G-l Gn-1,20n-1,1
Bn-11Bn-12---Bn-1n |Mn-1 | @1n ... G12 @1
L Bnt Bnz --- Pan Mn Qo ... Gpy  Qop
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1 000 0 0 00
01 00 0 0 0 0
0 0 0 0 00
=4 0 00 0 0 00O
0 0 0 O 1 0 00
A - 01 0 0
00 0 0 A
| 00 00 @ 00 X |
The equation (12) can be now written in the form
o T
Gizq
Cy
¢ |
Co -
Cy
Cn—l
" Cn
[ g a2 Qon =] _ﬁnn -_;Bn2 _,Bnl i
a1 3 Xin €1 ,Bn—l,n .. -.3n—1,2 ﬁn—l,l
Mn-11%n-12.--0n—1n |En-1 F(-?ln ,@,3 E}J
| @1 Gna ... Gpp En Bon --- Boz  Por
Bor  Poz --- Pon 7o @nn @n2  @n1
P Bie Bin M |®n-1n.. ®n-120n-1,1
Bn-1,1Pn-12---Pn-1n |P-1 | @1n ... @12 @11
| Bna Bn2 oo Ban Mn Qon oz @1

From the set of equations (37) we

CD)CI)"

Dn—l
D,

(36)

(37

need only the subset for -determining

., Ch, because the unknowns Cp, Cy, ..

Co,C4, ..., Cn by replacing the operator “s” by (—s).

.,Cp can be determined from
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The unknowns Cy, C4, . .
set (37), namely
Co
C1

Chn-1
Ch

Bor Boz ... Pon o
B Bz ... Pin m

Dnn

Brn-1,1PBn-12---Bn-1,;n Mm-1 @un

16n,1 JBn,2 e

ﬁn,n Tin ﬁ'ﬂn

., C,, can be calculated form the lower subset of the

(38)

T =
n

Dn—.'i
ﬁnz d’nl D
On_1n...0n_120n_11 -~
Dy
Dy
. 12 g1 o 1

Qg2 @p1

Dn—l

| D, ]

In order to determine the elements of the matrix M we consider the equation

(36). At the first stage we determine the elements of the matrices M, and My

(see (35)).

We can write two matrix equations as follows :

-

Ay 0 ...00] 201 202

Ay Ay ... 00 11 12
Ajcadyniiadel On-1,1%n-1,2-..
L Qn1 Qnp2 ...

Ay 0...007} gﬂl goz

A1 B ves 010 11 12

+ . o : 'f
4 4 v Ba-1,1Pn-1,2--

A A "'-A 0 ¥ '
1 ’ gt = 673.1 ﬁn,z

-?Gn-l,ﬂ

Xon
X1in

Un—-1n

X¥nn

,BOn i
ﬁln

ﬁﬂ'ﬂ .
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1 0 . 0
0 1 . 0
0 0 1

L0 O s 4 JL
fiﬂfil -fin—ljn-
0 Ap...An_gAn_q

3 2 : :
00... 4 A
00... 0 A J
[0 0 0 07

0000
=gl 5 £ £ 3
00 00
[ 0 0 0 0 _

ap1 p2 Qon
a1 e5)] Xin
Un—11%—1,2-.-%n—1,n

Xn1 @pn2 ... Gnn |
Bor  PBoz -.- Pon
558! B2 . Pin |

Pn-11P8n-1,2.+-Prn-1n
;891,1 }Gn,2 s ﬁn,n

Now, to reduce the number of calculations we assume that

e} 2 Xon

2581 12 QXin

Un—-110%n—-1,2..-Un—-1,n

L ®n1 Qn2 ... Qun
®o1 Yoz Pon

©11 P12 Pin

Pn-11¥n-1,2:--Pn-1,n
L ®Yn1 ¥nz .- Pnn

-Au“il...
0 Ap...

[T = R
S O s

. Ao Ay

n—1 An
/in—?. An—l

pe

0 A

-

(39)

(40)

(41)
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where the matrix M, is to be determined. The substitution of (41) into (40)
gives :

-AnAn—-l---A_l AO i -AOAI---A?I—I An T
0 An ...A2 A 0 Ag...An_g An_y
0 0 ...ApAn_1 0 0... A4y A
| 0 0 ...0 A, 1 LO O. 0 Ao I
[ o1 Yoz ... YPon A‘io -!‘il . -a“in—l An
P11 P12 .. PIn 0 Ag...An_2An_1
) ) . " : 5 .
Cn—1,1¥n-1,2---Pn-1,n 00...A4 A
L ¥ni1 $n2 . $an 0 0. 0 Ag
[ Bor Boz ... Pon 00 ... 0
Bi1 Pz --- Bin 0 0 0
" : : : =8 : : (42)
Bp=1.1Pn=1,2++:Pa=1,n 00 0
L ﬁn,l .ﬁn,z ﬁn,n 0 0 0

Taking into account that the first two matrices in (42) are permutable and
different from a zero matrix (see App. 2) we can obtain that

Bor  Boz ... PBon
B Biz o Pin

Br-11P8a-1,2++Pa-1n
JG:?,I 181'1.2 ﬂn,n

[An An—1...A1 Ao | [ wo1 o2 --- won |
0 A, ...Ax Ay P11 P12 --- Qin
5] BT LS : : : (43)
0 0 An Aﬂ—l Pn-11¥n-12---¥Pn-1,n
0 0 ...0 A, 1L Pnil ¥n2 .- ¥an |

In such a way two unknown matrices M, and My are replaced by one un-
known matrix M.
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Returning to the equation (39) it is evident that due to the fact that the
last columns in the matrices A and A have only zero elements, the elements of
the last rows of the matrices My and Mg have no influence on the final result.

Direct observation of (41) and (43) gives that

Onj = Aopnj for
orj=1ton (44)
ﬁnj = _An‘Pnj }

In every column of the matrix M we have one degree of freedom because the
number of equations is (2n+ 1), and the number of the elements in the column
is (2n + 2) eq. (36). For that reason in every column of the matrix M we can
arbitrarily choose the value of one element.

. The simplest is to assume that ¢,; = 0 for j = 1,...,n because then there
ISop; =pFpj=0forj=1,...,n. -
I By doing this we have equations (45), (46) and (47) in which we omit the
last column in the matrices A, and Ag, and the last rows in M, and My instead
of equations (39), (41) and (43):

- -

Au 0 o B Qp1 @p2 ... Qpn
A} Ag v 0D o1 12 ... Oin
+
An1Apn_2... A0 | on-110n-12...0n_1n
An 0 ...0 ][ Bor Poz --- Bon
Ap—145... 0 Pu1 Pz --. Bin
+ . .. . . . =
Ay Az... Ay | | Ba-1,1Bn-12---Pr-1n
1 0
0 1 0
=p (45)
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ap1 Qpz2 ... OQpn

11 12 ... Qin

Wn-1,1%®n-12-..-®_1n

4‘101‘}1---13,:—1 Y01  Po2 --- Pon
| T || B o
0 0... A pn;1}1¢n;1,g...apﬂ;1,ﬂ
Bor  Poz ... Pon
Pu P2 -or B |
ﬁn;l,lﬁn;l,z---ﬁn;l,n
AnAn—.l---Ai Yo1  Yo2 --- Pon
S el I I e (a7)

0 0 ...A, Pn-1,1 (Pn—1,2---(Pnl—i,n

The substitytion of (46) and (47) into (45) gives the set of equations for
calculating the elements of the unknown matrix M,:

Yor Yoz -.- Pon

1
1 o111 @12 --- @in 0 won U
[My-My—Ms- M- : . ) =gl ., . v, (48)

Prn-1,1¥n-1,2---¥Pn-1,n 00 ... 1
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Ao 0 0 i
A Ay 0
JM—;‘ = .
| An—1An-2...40
[ Ag Ay cullyey
0 Ag...An_s
My = .
0 0... Ay
= = > 48’
Az O o0 (48)
7, o
My = 5 &
A, Ap...A, ]
ApAn_1...4; ]
0 An - A-2
My = v i
| 0 0 ...A4, | )

Take the matrix
[ Piy Pyy ... Pia
Py Pasy ... Py

Fn1 Pro...Pan

[ Ao 0 ... 0 AgA; ...
Ay Ay ... 0 0 B

| Aoy gonsily | L0 0 oce g

.0 AnApq.. A

0.
An-14n... 0 0 An ...4;
- ¢ & g o G w4 : (49)

A Ay A, 0 0 ...A,
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We can obtain the solution for the elements of the matrix M,:

o1 o2 ... Pon
Y11 P12 ... Pin Pagi

Pn-1,1¥Pn-1,2---Pn-1n

Where the adjoint matrix P,4 is given by

Qi1 Qi2...CQ1n

Q21 Q22 .. -Q?ﬂ
Padj == 3 s, .

in Qﬂ2‘--an

(50)

(51)

|P| — denotes the main determinant of the matrix P and for ‘the sake of simplicity

we assume that
p=|P|
Returning to the equations (41) and (43) we obtain
Qo1 Qo2 ... Qon

@11 @12 ... (in

Hp—-1,1%n—-1,2..-%n—-1n

Qn 1 ®n2 ... Unn

-/_10%1---@;“1 :fin 1 Q11Qi2-..Qin
0 Ag... An_2An_ Q21 Q22...Q2n

- AO AI in Qn2 . -an

oS s
o o

I 0 A JLO 0...0 |
Bor  Poz ... Pon ]

B Pz ... Pin

ﬁnml,lﬁn—l,Z‘--ﬁn—l,n
ﬁn,l ﬁn,Z ﬁn,n 4

(52)

(83)
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AnAnc1.. A1 Ao 1 [Qu1Qiz--.Qin ]
0 A, ...Ay Ay Q21 Q22...Qan

0 0 ---Aﬂ/ir:—‘l inQn'z'--an
| 0 0 ...0 A, 0 0 ...0

<4 L =

For the complete determination of the matrix M it is necessary to determine the
elements ¢;(i = 0,1,...,n) and the elements n;(j = 0,1,...,n). The starting
point for our consideration is the equation (36). We can write that

Aa 0 ...0 0 1]
A Ag ... 0 0 €1

An_y An——2-:-A0 0 En-1
A, An_1...A1 Ao En

A, 0...0 0 o 01
Kol vex @ 0 m 0
+ e : =#|I} (55)
0
1

x‘}l A‘Ez---_fin 9 -1
Ag Ay...Apn-14n M

From this it is evident that in particular the following equation holds
Ageo + AT,-; =20 (56)

We have also that

0A,...Ay A A
- - - - 61
@ ;i 5 . +
00 ..4,A, 1
00..0 4, |[™
L €n
0Bl 1| ™ »
. _ A m 0
gl#s W oE G =l i (57)
00... A A .
00... 0 A L
L Tn | 0
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We can omit the first columns in the matrices of eq. (57) taking into account
equation (56). Equation (57) takes the form

Ap ... Ay A €1
Y ey : : +
0 ...AnAn—] Eﬂ—l
0...0 A, €n
Ag...An2An_y n 0
" _ : : =5 : (58)
0... Ay A Nn-1 0
0 0 .ﬁo n 0

We postulate now, on the basis of eq. (58), that

E1 A An z.An 1
a = : .'- _ (59)
En-1 3 0 . I} wﬂ--l

En 0...

and due to the fact that the matrices in (58) are non-zero and permutable

M Az A:
Na-1 0. n n-l

Mn 0.

Taking into account equation (56) we can also write

= A,
€0 Yo _ (61)
m = —Aopo
where the elements g, %1,...,%, are to be determined. We can rewrite the

equation (55) in the form

Ao ...0 0 £1 An... 0 0 m

An_9...A¢ 0 i Ay... Ap 0 -1
An1...A140 | | &n Ay ... An 1A, Tn
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0 Al. Ars-l

=p||-e]| - -0 | (62)
0 An—l Al
1 An Ap

The substitution of the equation (59), (60) and (61) into the equation (62)

gives

¥

[My - My — M3 - My] - E =
%-1
Pn

0 . -
A A
0 : 1 .1
N P /S B 5 R | S (63)
0 Ax An-a
pi A
1 A5 ]
[ 49 ...0 0 ]
Ml = :
Ap_s...A 0
P i oo i A
AO‘--ﬂn—?.fin—l
My = 2 *
0 Ay A
| 0 A
[ Ag 0 ...0 7
AvcyAses 0
M; = ;
| A Al A, |
-An An—l Al 1
0 A, As
My = :
| 0 0 An |
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Using the notation (49) we rewrite (63) in the form

Py ... P P, Y1 0 Py
E . : i 2 =pu . Y 5 1!%
Pn—l,!.---Pn—l.n—l Pn—l.n ﬂr)n—l 0 Pn—l,n
Pﬂl Pn2 Pnn u‘)n 1 Prm

It is evident that we can state the following

THEOREM 3
A?'n—l Al Pln
Ao | : = " = : (65)
A1 An—l Pn—l.,n
110 An Pﬂﬂ

Proor: We have the following general statement

Pr,n = Z[Ar-ignhi s A;Jq,‘_,-,”] (66)
i=1
This yields
r 0
Pr,n = Z Ar—iA"n—i = Z A."—.f‘iﬂ—j (67)
i=1 j=r=1

putting i = r — j in (67) we obtain

r-1 r—1
ZAr—jA-n—j = Arfin + EAr—jAn—j
§=0 F=1
Finally
r—1 _ _ _ r—1 ~
Pr,n - ZAr—:‘An—;‘ + AgAn—r — AfAﬂ - Z: Ar-»jAnhj =
i=1 j=1 )
= Ao = Ay Aa (68)

Using the notation (51) we obtain from (64) after using Cramer’s rule that
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¥ Q1n 0 Q1n
g - : + : - :
'ubn—l Qn—l,n 0 Qn——l,n
¢n an 'Jbﬂ Qrm o V"O
From the equation (59) we see that:
En = Aﬂ'f’n

-Similarly, from the equation (26) and (31), (32) it is evident that

En = WMo
or
En = Tlo
“but
no = —Aoto (see eq. (61)).
Hence
flo = —Aoto
Comparing (72) and (71) we obtain
En = —J‘ID’%E’O
which together with (70) gives
Aogpn = —Aotho

From (74) we have that
Yn + %f_’o‘= 0
From (69) we have also that
¥n = Qnun + %o
Combining (75) with (76) gives
Yo+ Yo+ Qun =0
We have also from (71) that 5o = £, which with (61) gives

€n = —Ao¥o

(69)

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(77)

(78)
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We have also from (70)

&n = Ao¥n | (79)
Comparing (78) and (79) we receive

—Aotho = Aotn
from which we have

Yo+ ¥n =0 (80)

Taking into account (76) and

¥n = Qnn + Yo (81)
we find that

Yo+ o+ Qnn=0 (82)
Comparing (82) with (77) we see that

Qnn = Qna (83)

This means that Q,,, is an even function of “s”.
Let us denote

p = p(s?)
and - (84)
g = s-q(s?)
Then we can write
Yo = p+g
'150 = P—q (85)

Adding together (85) we have
Yo+vo=2p ' (86)
From (77) and (86) we have

p= _%an (87)

and

Yo=—5Qmtq (88)
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But we have one degree of freedom and g may be chosen arbitrarily. We put for
simplicity '
g=0 (89)
Finally
1
Yo = _5 Qnn (90)
On the basis of (60) and the second equation. (61) we can write:
-T}o i -AQO--.O 0 --q['o ]
m 0 A,...A A Y1
: ==l & £% 3 7 : (91)
Mn-1 0 0 -..An An_l d’ﬂ—] :
L ’iﬂ o L 0 0 .o 0 An 4 L ¢n _.
Using now (90),(76) and (69) we finally find:
[ no ]| [A0 0...0 0 7T _%Qrm
m 0 Ap... A2 A Qin -
== : (92)
Mn-1 0 0...AnAp_1 Qn-l,n
L In | 0 0. 0 A, JL %an
Returning to (38) we can write:
[ Co ] [ Bor  Poz ... Pon D [0 ]
C Pii Pz ... Pin b ﬂl m
: = Z : 2 : +| ¢ | [Do]+
Cn-1 BPrn-11Pn-12-..Pn-1n 51 -1
L Cﬂ Jd L ﬁn,l ﬁﬂ,2 ven ﬁn,n L Tn
I _dnn. s ﬁﬁnz *ﬁnl | Dl
Ap—1n-.--¥n-120-11 .
+| : : (93)
- = - Dn—l
Cfln . ffl,ﬂ €§1,1 D,
. Qon oz o1 i

where:
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[ Bor Poz .- Pon | a
ﬂ‘n ﬁfz ;Bl-.n Do,
ﬁn—l,lﬁn—l,%--ﬁn—l,n 51
L ﬂn,l ﬁn,? ﬁn,n J
AnAn-r.cAr Ao | [QuQi2...Qin | D
0 A, ...Ay A Q21 Q22...Q2n b »
n—1
==1: : 1 2 f Te, o . (94)
0 0 Aﬂ An—l in Qn?---an D
0 0 0 A, J Lo o ...0 | '
[ no Ap 0 .0 _%Qrm
M 0 Ap... 42 A Q1n
: [Do] =~ ¢ & = ¢ : [Do] (95)
-1 00 An An—l Qn—-il,ﬂ -
L 0 0...0 A4, %an
[ v&nn . _&"2 _’&nl i Dl
On—-1mn---Un—-1,20n—1,1 N
& G1, & Do |
n e _1,2 _1,1 D,
| don ... @02 Qo1
[0 0... 0 0 A ] [QuiQiz-.-Q1n ] D
00... 0 A A4 Q21 Q22 ...Q2n B
= . n—1
=1 e : : f e b ; (96)
0 Ag... Ap—3Apn—2An—1" in Q_nﬂt--Q_rm D
| AgAy...An—2Apn-1 A, ] L O 0 ...0 | .
Denoting by
[ Uo [ Q11 Q12...Qin | b
Uy Q21 Q22...Q2n D "
n—1
: =1 i = T = . (97)
Un—-l in Qn! v Qrm D
1
| | 0 0 0
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[ Vo ] [ —3Qnn ]
Wi Q1in
: | = : (Do) (98)
Vi1 Qn-1n
L Vo L %Qrm J
We can write (93) in the form
[ Cp ] An An_1... A1 Ag U
Cy 0 An ...A2 A || U1
: s=| 5 £ % 8 . o
Cn-1 0 0 ...Apdaog Un-1
| G, 0 0 ...0 A, Un
[Ag 0 ... 0 0 [ Vo
0 Ap... A3 Ay W
o R
0 0...A, Any Va-1
[00...0 4, |l W
[0 0... 0 Ay [ Uo
00... 4 A Uy
+ o8 : (99)
0 A isBpgilpsy | [P
| Ao A1 ... An—1 An U,
or finally
F AL T Us
An-—-l Ul
Co=| : : (100)
Al Un—l
[ Ao | L Vo
& s Y
An—1 Un-1 :
Cp= : : ' (101)
Ay Uy
[ A0 | L Uo
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4 An ... Az U+ W
= : &
G 0 ...A4n | [Un-1+ Vo
Ao 0 | |Un-1 Ay
= SESLE O el A R (102)
An—a... Ao | | Th An-1
After calculation of the unknown polynomials Cy,...,C, we can calculate the
integral '
1 i
Jy = 27 e E(s)E(—s)ds (103)

= 1 [7® By(s)+---+Ba(s)e™*™ Bo(—s) + -+ Bu(—s)e*™ .
T 2mj —joo Ao(8) + -+ An(s)e~*""  Ag(—8) + -+ An(—8)e*""

g L/jm _ Col(s) + Ci(s)e™*T + -+ + C(s)e™*™
x= 27y —joo |P(S)I[AO(3) + Al(s) B +An(s) —am'r]

(104)

i 3 f*’“‘ Co(—s) + C1(—5)e*" + -+ -+ Cp(—s)e*™" ds
27j J_joo |P(=8)|[Ao(~5) + A1(=5)e*” + - -+ An(—5)e*""]

Observe that for physical realizability and for the existence of the integral the
degrees of polynomials By(s),..., Ba(s) must be less than of Aq(s),..., An(s).

Suppose that the degrees of Ag(s), ..., An(s) are “m”, than these By(s),...,
B, (s) are at most (m—1) and in the consequence the degrees of Cy(s), ..., Cn(s)
are at most (3m —2) —2m =m — 2.

Consider now the integrals

Co(s)+ Ci(s)e™" +---+ C',.(s grnr
J |P(s)I[Ao(5) + Al(S)e‘” Fot @]

f Co(-= S)+C1( 8)e’” + .-+ Cu(—8)e™™ - .
|P(=5)|[Ao(—5) + A1(—5)e’” + - + An(—5)e*™"]

Putting s = R’% we see that these integrals are equal zero on the arcs when
R — oo, because the degrees of C(s) are at most (m — 2), and that of A(s)
are equal “m”.

For that reason we can write that
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Co(s) + Ci(s)e™*" + -+ -+ Cp(s)e™*"" P
Ao(s) + Ar(s)e™*™ + - - -+ Ap(s)e~n7

o (105)
. / CO(SJ -+ Cl(s)e—s‘r I Cn(s)e—snr .
Ao(8) + Ay (s)e=*T + -+ -+ Ap(s)e*nT
joo C[)('_s) + Cl(*—s)g” Fosiiv ok Cn(_s)eanr
—joo Ao(s) + Ai(s)e=*T + -+ Ap(s)e=snT
(106)

Co(—s) + C1(—s)e’” + - - -+ Cp(—5)e*™” ds
Ao(s) + Ar(s)e=*T + -+ -+ A, (s)e—snT

and now to apply Cauchy’s Residuum Theorem.

Taking into account that denominator of the first integral has no roots in the
right half-plane, and this of the second integral no roots in the left half-plane
and using the relations (105), (106) we calculate the integral

/ Co(5) + Ci(s)e™*T + -+ -4 Cp(s)e™*"" i
72 =377 | PO)Ao(s) + A" -+ An(3)e=]

(107)

/ (—8) + C1(—s)e*" -4 C,,(—-s)e"" %
211’_}‘ [P( S)l[Ag( )+ Ar(— s)e”' -+ Ap(—s)esnT]

This two integrals are equal by symmetry,. it 1s sufficient to take the double .
value of one and ﬁnally we have:

9 Z +Cl(8)e_” B Rt Cn( ) any
|P(s)|[Ag(s + A (s)e‘" + -4 An(s)e ““"']

s_.s.

(108)

where s; are these roots of equation |P(s)| = 0 which are lying in the right
half-plane or on positive imaginary axis including the origin.

Appendix 1.
We prove now that condition (23’) holds

p=p

Proor: It is evident from equality (52) that the following must be fulfilled:
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|P|=|P|
It is known [4, p.15] that
|PT| = |P|
From the structure of matrix P (see (49)) it is evident that

F= M}_Mz - Maﬂf&

It is also easy to observe (see (48’)) that the following equalities hold :

MT = M,
M = M,
M = M,
7

From (111) we have that
BT = T MT - MTNZ

Using the above equalities we obtain that
PT=P

Taking into account (110) we have
|PT|=|P|

From the equation (114) we see that also
|PT| = |P]|

Comparing (114) and (115) we see finally that
|P| = |P|

and due to the assumption (52)

p=|P|
we have
H=p

which ends the proof.

(109)
(110)

(111)

(112)
(113)
(114)
(115)

(116),
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Appendix 2.

LEMMA 1 The two matrices in eq. (42) are permutable
FG=GF : (+47)

Proor: We consider the matrices
[An An-1...41 Ao ]
0 An ---A2 Ai *

F=| 2 2%, 8 1 (118)
0 0 ...A,An-1
0 0 ...0 A,

and
-A_(]Anl.--.(in_l Aﬂ
0 Ap...An-2An-1

G= 3. 8% 3 % (119)
00... Ay A
[ 0 0... 0 A

and the matrix Hiny1)x(ns1) [1, p-24]

010 ...0
0 _0 ! [N |
H= |32 3 7 " ; (120)
0 0 0 1
0 0 0 0
Fg 0 170 ..
0 0 0 1 0
.hrﬂ = E g 4 3 ." % . (1203)
0000 ... 1
0000 ... 0
_0 00 0 ... 0_

and so on.
We can write

F=AnE+ Apg_1H+ -+ AcH" (121)
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G=AE+AH+ -+ AH" (122)
Then it is easy to observe

FG=ApAoE + (An-1A0 + ApAH + -+ AgA  H™ (123)
On the other hand

GF = AgAnE + (AgAn—1 + A1AL)H + -+ -+ A AgH™" (124)
But we have for the products .

ApA, = AL Ay (125)
Iand so on (as the products of polynomials) and we see that really

FG=GF

We compare now on a simple example the method of Penrose [2] for finding
solutions of the underdetermined system with the proposed method.
EXAMPLE
PROPOSED METHOD

We considet now the system with one delay n =1

_ Byo(s) + Bi(s)e™?"

Ee) = 2o + A(s)e (126)
From relation (49) we have
P [ADAHQ == Ay‘il] (127)
The adjoint matrix is
Pagi =Qu1 =1 : (128)
From (10),(97),(98) and (99) we have
.Dl = BgBl
5 = . 129
Dy = BoBy+ B1B } (129)
Uo = Quby, Vo = —3QuDo
130
U = 0, Vi =  3QuDo {a0)
Co = %Aq(BuBg-{-B;Bl)_— AIBD‘f‘jl (131)
Ci1 = A¢ByB; - %AI(BUBO + B1B,)
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from (127) we have that
|P| = AgAp — A1 A4 (132)

Finally from relation (108) we have

5) +.Ci(s)e™*" '
> PS4 A (133)

s=s;

where s; are the roots of equation
|P(s)] =0 (134)

lying in the right half-plane.

Ja = B - B ) (135)

_22[%Ao(BlBl+BnBl)—_AlBoBi]+onBoBl—-Ai(Ban+Bi By)je*"
(AgAg — A1 A;)[Ao(s) + Ar(s)e27]

=5
where s we calculate from relation

Ao(s)Ao(—s) = Al (S)Al(—s) =} (136)

System with two delays n = 2
_ Bq(s) + Bi(s)e™*" + By(s)e~ 2"

E(s) =
)= Zo(s) + Ar(s)e= + Agl(s)e 57 (59)
From relation (49) we have
Ag — Ag Ay, AgA; — A1A
p= | Aodo— A4y, AgA; - A4y (138)
AgA1 — A1Ag, AgAp — AzAs .
and the determinant
|P| = (AoAo — AsAs)? — (AoAr — A1As)(AoAr — A1 Ay) (139)
The adjoint matrix is
B = Qu Q2 (140)
Qn Q2

where




64

H. GORECKI L. POPEK

Qu = AgAg— Aza‘?z
Q12 = AjAy— AoAy
Qn = A4y —AdAy

Qa2 = AgAo— AzAy
From (10) we have

Dg = B[)Bg

Dy = BiBy+ BoB

Dy = ByB;+ BB + ByBy
Dy = BBy + BB

Dg = B(]Bz

The relations (97) give
Uo = QuDs+ Qi2Dy

v, = inpz + Q22D
U2 = 0
and from (98)
Vo = ‘%szDo
i = Q2D
Vo = 3Q22Dp
Finally from (100),(101) and (102) we obtain that:
Co = —(AUo+ A1U1 + AcWo)
C: = —AVao+ AUy = AUy

Ci = Al —A1Va— Ax(Ur + VA)

PENROSE METHOD [2, p.242]

(141)

(142)

(143)

(144)

(145)

The unknown vector C' can be determined from the relation

C=(A" )+ -D
where

(A*)t = (AA*)"'4

In the case of the system with one delay

AO 0 Al 0
AA* = | Ay, Ay Ay A
0 A 0 A

(146)

(147)
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Agja + A]_A; QAQEI 0
— 2A0A; 2(ApAg + A1 Ay) 2404, (148)
0 2/_10}11 AaIATu + Ao.«‘io

and using (143) we find finally

1
)t = - - - s o [y Koo K 149
L) (AoAo — A1 A1)} (Ao Ao + A1 A1) By Bl (149)

~where

Ao[(AoAo)? + (A1A1)?] — AgA%(AoAo + A1 Ay)
—AgAoA1(AoAg + A1 Ay) + 242 A3

A[(AoAo)® + (A14;)%] — AJA (AoAp + A1 Ay)
—ApA A (ApAp + A1 Ay) + QAEA'f

K1=

—AZA1(Aody + A1 A)) + 1A1(AoAo + AL A))?
%AO(ADAU + A1 A)? — AgA2(AgAp + A1 Ay)
—AoA}(AoAo + A1 A1) + 1 Ao(AcAg + AL A))?
%Al(Aojo + A1 A1)? — AZA (AoAo + A1 Ay)

2A3A2 — AgA1 A (Agdo + AL Ay)
—A}A1(AoAo + A1 Ay) + A[(AoAo)? + (A141)?)

2;&3.{4? - A()Aljl (Ao[ig + Alx‘il)
—AgA%(AgAp + A1 Ay) + Ao[(AoAo)? + (A141)?]

K3 =

Conclusion

From the relation (145) it is evident that both the nominator and denominator
are much more complicated in comparison with the proposed method. In con-
sequence the calculation of the integral J; is also very complicated especially
for systems with multiple delays.

The method presented solves the problem of undetermined system of lin-
ear equations, taking additionally into account some symmetric features of the
system. This in turn leads to the choice of the simplest solution from an infi-
nite number. This simply' means that the obtained formulae have the smallest
number of terms. )

The proposed method using some simmetrization procedure leads to the
simplest analytic results for calculation of integral squared error of system with
many delays. This method can be used also as a starting point for the calculation
of such integral for the systems with distributed delays.
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The obtained analytic results enable us to calculate the integral for very
complicated systems, such as, for example, a distillation column, where the
direct numerical calculation is impossible at all. The value of the integral may
serve as the performance index of the system and as the basis for optimization
with respect to parameters of controllers.
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Obliczanie catkowego bledu kwadratowego dla
wielkich - systeméw dynamicznych z wieloma

wspolmiernymi opéznieniami

W pracy przedstawiono analityczne rozwigzanie zagadnienia obliczania ffzdt
dla wielkich systeméw dynamicznych z wieloma opdznieniami. Uklad réwnan
uzyty do wyznaczenia nieznanych wielomianéw Cj(s),i =1,...,n jest niedook-
reslony. Uzywajac pewnych wlasciwosci symetrii trudnosé te pokonano i niez-
nane C; wyznaczono jednoznacznie w postaci prostych wyrazen analitycznych
o najmniejszym mozliwym rzedzie. Zaproponowana metoda prowadzi do prost-
szych wzordw i algorytmoéw obliczeniowych niz metoda przedstawiona przez
Penrose’a [2]. Podano przyklad pozwalajacy na poréwnanie obu metod. Otrzy-
mane wyniki moga by¢ przydatne do obliczania optymalnych nastaw regulatora

w optymalizacji parametrycznej.
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Briuncienne WHTerpajibHON KBaJApaTHON omMMGKHU
oJisi GONBIINX NUHAMHYECKUX CHCTEM CO MHOTHMH

COU3MEPHM bIMH 3alna3/blBaHUAMH

B paboTe mpepcTaBieHO aHAJMTHYECKOEe pEIIeHWE 3a[a4Y¥ BBIYHCICHUS
[ €dt pns GonpMX AMHAMUYECKUX CHCTEM CO MHOTHMMHE 3ala3fLIBAHUSIMH.
CucTeMa ypaBHHeHMH, MCIONb3yeMas [JIS OIpefeNeHUs HEM3BECTHHIX MHO-
roynenos C;(s),i = 1,...,n HemonHocTeI0 onpepenena. Mcnonesys nekoro-
phle CBOMCTBA CUMMETDHH STH 3aTPYLHEHHS [IpeoiolieHs!l ¥ HensBecTHBIE C;
onpefeseHsl OLHO3HAYHO B BH/E IIPOCTHIX aHAJIMTHYECKHX BLIpaXKeHUH BO3-
MOJKHO HaKMMeHBIllero mopsanka. IlpenyaraemMeift MeTop npuBoguT K Gonee
npocTHIM GOpPMYy/iaM M BBIMHCIMTENBHEIM AJITOPHTMaM, YeM MeToJ, Hpef-
crasiensiit [leHposoM [2]. [laeTcs mpuMep MO3BONSAIOLLMY CPaBHATE 06a Me-
Tona. [lonyyeHHbIe pe3ynbTaThl MOTYT GBITH IOJE3HEI OJIS BEIYMCICHUS OI-
TUMaILHON YCTAHOBKH PETYJISTOPa B IaPAMETPHYECKON ONTHMM3ATINN.







