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An approach to reduce a high-order linear system .to . a reduced 
order model is described . A reduced order model is assumed to 
have the same response to an input as that of the high'-order system 
and the configuration of the reduced model is then determined by 
employing a modified model reference technique. The use of the con: 
volution summation formula for mathematical manipulation of the 
problem is found to be effective in finding an error at the input .side. 
The input error and the Taylor's series expansion of the sampled 
impulse response of the reduced model around the parameters of an 
assumed model are used to determine the parameters of the reduced 
model. The determined reduced model is found to satisfy the im­
pulse response requirement of the original system with a reasonable 
degree. 

Introduction 

The need for model reduction has been recognized as one of the most significant 

problems in dynamic system theory [1,2). Considerable efforts have been made 

during the last three decades to solve the problem for obtaining an approximate 

low-order model from a high-order system. The techniques for model reduction 

so far developed can be divided into two groups. In one group, the parameters 

of the reduced model (RM) are obtained by keeping the dominant poles of 
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its transfer function the same as those of the transfer function of the high­

order system [3-10] and in the second, irrespective of the poles' positions of the 

transfer function of the original system, the parameters of the RM are obtained 

using some optimization criteria depending on the error which is defined either 

on the impulse responses of the high-order system and the RM or on their 

output responses to an input other than the impulse [11-16]. It is seen that 

in the existing techniques, the knowledge of the configuration of the system to 

be reduced is necessary. The error introduced in reducing the system increases 

as the difference in the order of the high-order system and the RM increases. 

Such an error which is referred to the output side makes the RM unacceptable 

in many cases like iri regulators and in projective control. 

An approach to the linear model reduction is described which avoids the 

knowledge of the configuration of the system to be reduced and provides a pos­

sibihty of matching the outputs of the high-order system and the RM. In this 

approach, a modified model reference technique (MRT) is used in which the 

high-order system is replaced by a reduced order model whose response to an 

input is assumed to be the same as that of the original system. An assumed 

model (model) having the same order as that of the RM and its parameters 

different from those of the RM is incorporated. For ensuring a matc~_of the 

outputs of the RM and the model in the MRT, their inputs are to be different 

which gives rise to an error at the input side. This error is called an input error 

(lE) and can readily be expressed as a function of the difference between the 

impulse responses of the RM and the model by the use of a real convolution 

summation formula. The parameters of the RM can be obtained by minimising 

a defined cost function comprised either of the error in the impulse responses or 

of the lE. The procedure for minimising these errors is, however, involved with 

a complex nonlinear computational process. An alternative technique which in­

volves a simpler computational procedure is adopted in this paper which deals 

with the use of the lE for estimating the parameters of the RM through the 

determination of the departures of the RM parameters from those of the model. 

These parameter departures can be determined by expanding the impulse re­

sponse of the RM around the parameters of the model and solving a multivari­

able polynomial equation thus obtained. The proposed approach is exemplified 

by determining the parameters of an RM which is found to satisfy the impulse 

response requirement of the considered high-order system to a reasonable de­

gree. 
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DEFINITION. Let the output of a high-order system be Y 1 (t) with its input 

X 1(t). A low-order system is said to be a reduced form of the given one if the 

low-order one has either an output Y 1 (t) with an input close to X1(t) or an 

output close to Y 1(t) with an input X 1(t). 

The above definition does" not specify the degree of the closeness between the 

inputs of the high-order system and the RM in the first ca.se and the closeness 

between the outputs in the second case. It is possible to find different forms of 

the RM for a given high order system depending upon the criterion imposed on 

the closeness. 

1. Basic considerations of the approach 

Let the input and output of a causal, linear, time-invariant multi- input multi­

output (MIMO) high-order system along with a zero . order hold element 

(Z.O.H.) be X 1(n) and Y 1 (n) respectively. According to the above definition, 

this high-order system is replaced by a RM as shown in Fig.l. The model in 

the figure is a known parameter MIMO system having the sam,e order as that 

of theRM. X2(n) and Y2(n) are the input and output of the model along with 

a Z.O.H. respectively. The IE is the difference between the inputs of the high­

order system and the model and is comprised of the two components arising out 

of (i) the departure in the parameters of the RM and the model and (ii) the 

departure in the orders of the the high-order system and the RM. 

Z.O.H. 

Z.O.H. 

REDUCED 
SYSTEM 

MODEL 
/. ____ . 

Figure 1. The idea of the proposed approach. 
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The response of the jth output of the MIMO system is a total effect of the 

response to all its inputs. The real convolution summation describing the rela­

tionship between the jth output and inputs of the MIMO (p inputs, q outputs) 

RM applicable· at the nth instant of sampling time is expressed as 

n p 

Yl;(n) = 2:. l:xdn-k)hl;;(k) n=0,1, .. . ,N; j=1,2, ... ,q (1) 
k=O i =l 

where x1, is the sampled signal of the ith input and h1,; (.,.) is the response at 

the jth output of the RM along with a Z.O.H. to an impulse at the ith input 

(sampled impulse response) and is a function of the parameters of the RM. 

A similar expression is also written for the model along with a Z.O.H. as 

n p 

Y2;(n) = 2:2: x2,(n-k)h2,;(k) n=O,l, ... ,N;j=1,2, .. . ,q (2) 
k=O i=l 

where x2.(., .) is the sampJ..=d signal of the ith input of the model and h2;;(.; .) 

is the sampled response at the jth output to an impulse at the ith input of the 

model and is a function of the model parameters. 

For ensuring a match between the outputs of the RM and the model (Y 1 ( n)-
· Y 2(n) = E(n) = 0), the model should have an input x2(., .) which is called 

a requested input to the model. In such a case, Y2;(n) = y1;(n) = y(n) for 

j = 1, 2, ... , q. One then obtains 

n p 

2: l:lx!;(n- k)hl;;(k)- x2,(n- k)h2;;(k)] = 0, n = 0, 1, ... , N (3) 
k=O i=l 

Since the commutative property holds in the real convolution summation, 

. subtracting and adding one term x1,(., .)h2,;(., .) to (3) and rearranging, the 

following expression is obtained 

n p 

2: l:x1,(n- k)[hl;;(k)-:- h2,;(k)] = 
k=O i=l 

n p 

2: l:lx2,(n- k)- x1,(n- k)]h2,;(k) 
k=O i=l 

j = 1, 2, ... , q; n = 0, 1, ... , N (4) 

This is written in the matrix form as 

k=O k=O 
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j = 1,2, .. . ,q; n = 0, . . . ,N 

where 

X1(n- k) 

X2(n- k) 

H1i(k) 

H2i(k) 

[xlt(n- k)x1 2 (n- k) . . . x1P(n- k)f E Rpxl 

[x2,(n- k)x2 2 (n- k) ... x2p(n- k)f E Rpxl 

[h1,i(k ., .)h1 2i(k ., .) .. . hlpj(k. , .)f E Rpxl 

[h2,i(k., .)h22i(k ., .) . . . h2Pi(k:, .)]T E Rpxl 

The above expression is written in a compact form as 

j = 1, 2, .. . , q : n = 0, 1, ... , N 

where 

X1(n) 

X2(n) 

H1i ( n) 

H21 (n) 

[X{(n)X{(n- 1) . . . X{(O)]T E R(n+l)pxl 

[xr(n)xr(n -1) ... xr(o)f E RCnH)pxl 

[R[(O)H[(1) ... H[(n)f E R(n+l)pxl 
J J J 

[H[(O)H[(1) ... H[(n)f E R(n+l)pxl 
J J J 
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(5) 

(6) 

The set of q equations given in (6) is farther expressed in the matrix form 

as 

[H1(n)- H2(n)]X1(n) = H2(n)[X2(n)- X1(n)) n = 0, 1 ... , N (7) 

where [X2 ( n) - X 1 ( n )] is termed as the input error (IE) and 

It is seen from (7) tha~ the parameters of the RM can be obtained either 

by minimising the lE or by minimising the difference between the two impulse 

response matrices (the error in the impulse responses). 



74 N.G.NATH,N. N. SAN 

1.1. Technique of the minimization of the lE 

Assume that the rank of the matrix H2(n) is such that the matrix 

(H!{n)J-h(n)] obtained by multiplying both sides of (7) by H!{n) is a posi­

tive definite matrix. Then [Hf(n)H2(n)] - 1 exists and is also a positive definite 

matrix. From (7), the IE is then obtained as 

n = 0,1, ... ,N 

Since tlie number of samples N is usually greater than the number of the RM 

parameters r, the unique solution can not be found and is also not expected. 

The parameters of theRM can be found by employing the weighted least squares 

error method for which a cost function is defined as 

N 

lx. = L [X2(n) - Xt(n)f Rt [X2(n) - Xt(n)] (9) 
n = O 

where Rt is a positive definite matrix of the appropriate dimension. 

With reference to (8), lx can be expressed as 

N 

lx = L xr (n)[Ht(n)- H2(n)f s (Ht(n)- H2(n)]Xt(n) (10) . 
n = O 

N 

lx = L ii [Ht(n)- H2(n)]X1(n) 11 ~ (11) 
n = O 

where S = H2(n)[Hf(n)H2(n)] - 1 R1[H!{n)H2(n)]-1Hf(n). The subscriptS of 

the norm sign indicates that the norm is weighted. The RM parameters can be 

obtained from the first-order necessary conditions for the defined cost function 

to be a minimum subject to a stability condition of the reduced system such that 

the RM parameters determine the position of the poles within the unit cycle 

(17, 18). For such a stability, the reparametrization to be performed with the 

help of Cholesky factorization used in the Levinson-Durbin algorithm requires 

a nonlinear computational procedure. 

[H!{n)H2(n)]-1H!{n) is the generalized inverse (Penrose-Moore inverse or 

pseudoinverse) which is denoted by Ht(n) [17, 20, 23]. It may be noted that 

Ht ( n) can also be obtained by taking the inverse of the partitioned matrix 

H2(n). The partition is performed after rearranging columns, if necessary, so 
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that .the left block of dimension q is nonsingular [17, 20]. In the case, where H2( n) 
is not full row rank matrix, [HI{n)H2(n)] - 1 does not exist but the generalized 

inverse of [HI{n)H2(n)] can be obtained. By means of permutation, the matrix 

[IHII{n)H2(n)] can be so arranged that its upper left block becomes a nonsingular 

submatrix having the same rank as that of H2(n). The submatrix is invertible 

and the generattzed inverse of [HI{n)H2(n)] consists of the inverse of the said 

nonsingular submatrix in the upper left block with null matrices in other blocks. 

In this case, the matrix Sin (10) and (11) is no longer positive definite and thus 

the minimization of J., belongs to the ill-conditioned class [17]. The partition of 

the expression in the norm into the range and null space of the unknown H1 ( n) 

is to be performed. The minimization is then carried out w.r.t. the unknown 

in the range space subject to the condition set in the null space [20]. Another 

technique of the minimization of the J., is to use the "weighted generalized 

inverse solution" [20] in which a positive definite matrix having the same rank 

as that of H2( n) is introduced to transform the "weighted generalised inverse 

solution" to the form of the "generalised inverse solution". 

1.2. Technique of the minimization of the error in impulse 

responses 

Multiplying both sides of (7) by a positive definite matrix R2 and their respective 

transposes, one obtains 

N 

L Xf(n)[Ht(n)-: H2(n)]T R2 [H1(n)- H2(n)]X1(n) = 
n = O 

N 

= L [x;(n) - X 1(n)fHI(n)R2H2(n)[X2('n)- X1(n)] (12) 
n = O 

It is seen that '[H1(n)- H2(n)]X1(n) on the L.H.S. of (12) is the difference 

between the nth sampled outputs Y 1(n) and Y 2(n). 

If a pth order model is chosen such that it is expressed in the state variable 

equation as 

Z2 (n + 1) = A2Z2(n) + B2X2(n) 

Y2(n) = C2Z2(n) 

(13) 

(14) 

where X2(., .) E Rpxl, Y2(., .) E Rqxl are the input and output vectors. A2, Eh 
and C2 are the matrices of the appropiate dimensions. Z2(., .) is the correspond-
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ing dimension state vector and q ~ p < PN where PN is order of the original 

system. 

Then the pth order RM is similarly expressed as 

Z1(n + 1) = A1Z1(n) + B1X1(n) 

Y1(n) = C1Z1(n) 

(15) 

(16) 

where x1 (., .) E Rpxl, Y 1 (., .) E Rqxl are the input and output vectors of the 

RM. A1, B1 and C1 are the matrices of the appropiate dimensions. Z1(., .) is 

the corresponding dimension state vector of the RM. 

The augmented system is then obtained 

(18) 

From (17,18), it is clear that for a chosen asymptotic stability model (A2 is a 

stable matrix), the augmented system which is incorporated with the state ma-

trix [ A
1 0 

] is asymptotically stable if and only if theRM is asymptotically 
0 A2 

stable (A1 is a stable matrix). The minimization of the L.H.S . of (12) when the 

number of samples N approaches·to infinity is equivalent to the minimizat ion a 

cost function J h defined as 

Jh = trace(Q n) 

where 

n=[ 
and 

Q = . lim [ Zl(n) ] [ Z[(n) Zf(n) ] E R2PX 2P 
N-+oo Z 2 (n) 

is a positive definite matrix which satisfies the Lyapunov equation 

A Q+ QAT+ V= 0 

where 

(19) 

(20) 
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and 

Bl V BT2] 2 2 ER px P 

B2 vBI 

is a positive definite matrix with 

The parameters of the RM. can then be obtained from the first-order neces­

sary. condition for a Lagrangian function form.ed from (19) and (20) to be an 

extremum. It is seen that a lot of computations is involved in solving two modi­

fied Lyapunov equations w~1ich are coupled by a projector. It is also mentioned 

that due to the lack of sufficient conditions, an absolute minimum value of the 

formed Lagrangian function may not be obtained and hence an unique solution 

may not be expected. 

As regards the continuous-time model, the input and output data supplied 

by the linear dynamical operators may be in other than time domain. The 

convolution integral (summation) still remains in the Hankel operator norms 

which maps the past input to the future output [24] The Hankel operator 

norms are used not only for the system analysis and design but also for the 

model reduction. It is seen from (7) that a cost function can be directly defined 

on the error in the impulse responses. The minimization of the defined cost 

function can then be carried out. In such a case, the impulse responses H1(., .) 

and H2 (., .) are to be expressed in the Hankel matrix form using the Markov 

parameter [19] or in any form of their norms viz., the L1 norm, The Euclidean 

(L2 ) norm, the Frobenius (trace) norm and the Tchebysheff (Loo) norm [20]. 

The error in the impulse responses and the lE can then be expressed in the 

corresponding form of the norm used and hence the defined cost functions can 

similarly be expressed. The RM parameters can then be obtained in the proper 

domain as functions of the model parameters and the input and output data of 

the system. 

Although the configuration of the system to be reduced can be ignored in 

finding the RM parameters, the computation to be carried out in the mini­

mization of the cost function belonging to any one of the above mentioned pos­

sibilities becomes complicated due to the nonlinear computational procedure 

involved. 

.S'' · 
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Alternatively, since the lE accounts for the difference between the parame­

ters of the RM and the model, a technique for determining the solution of the 

estimation problem involving a simpler computational procedure is described 

below. 

1.3. Proposed technique of the estimation problem 

The difference between the parameter (.A,") of the RM and that of the model 

(.Amv) is defined as A.Av =.A," - Amv for v = 1, 2, ... r where r is the number 

of the parameters to bedetermined. Expanding the impulse response H1(., .) of 

the RM about the parameters of the impulse response of the model H2 (., .) in 

the neighbourhood of H2 (., .) by the use of Taylor's series expansion, eqn.(7) is 

written as 

(21) 

n = 0, 1, .. . ,N 

.where M is the number of terms taken in the Taylor's series expansion. Dv 

is the symJ:>olic forms of the partial derivatives applied to H1(., .) w.r.t. the 

parameter Av of the impulse response of the RM. If lE and Dv are known, the 

A.Av ( v = 1, 2, ... , r) can be evaluated. 

It is observed that (21) expresses a set ofmultivariable polynomial equations. 

If N samples are taken together, the number of equations N is usually greater 

than the number of unknown r, this set of equations has generally no unique 

solution for A.Av (v = 1,2, ... ,r). An approximate solution can, however, be 

found by the use of the standard least squares error method but a large computer 

memory would be required. The equations can be solved in each sample and an 

arithmetic average would then be t~ken to avoid the overloading of the memory. 

If each sample is considered separately, a conjecture should be used since there 

are r unknowns in a single equation. The principle of equal effects [21] method 

which permits every variable to contribute the same amount to the error on the 

R.H.S . of (22) can be used as such a conjecture. It is, however, found that the 

steepest descent [22] method which permits all the variables to be considered 

together contributing simultaneously to the error gives better results in finding 

the parameter departures. 
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2. Estimation of the parameters of the reduced 

model 

The parameters of the RM can be estimated by finding the aforesaid parameter 

departures .~Av (v = 1, 2, ... , r). As the calculation of the parameter depar­

tures requires the knowledge of the input error lE and the gradients Dv, the 

evaluations of the lE and Dv are considered first. 

2.1. Evaluation of the lE 

The transfer function matrix of the pth order model in Z-domain consists of 

q x p entries 1ij;(z) for j = 1,2, ... ,q output and j = 1,2, ... ,p input. Each 

entry is assumed to be a proper rational polynomials and is given by 

1i2j;(z)= Yi(z) =(1-z-1)[ L:~~~{;vs" a·]* 
x2,(z) s(l + Ea=1 (jaS ) 

(22) 

j=1,2, . . . ,q; i=1,2, .... ,p 

where (1 - z- 1 )/ s appe;us due to the presence of the Z.O.H. element and su­

perscript "*" stands for the Z-transform of a given function in S-domain. The 

expression in (22) is defined on the assumption that all inputs other than the 
ith input are zero. After some mathematical manipulations, (22) is written as 

'"'p+1 -v 

( ) 
L.,v-0 a;v z 

1i2ji Z = l+'"'P+1 b· -a j=1,2, ... ,q; i=1,2, ... ,p 
L.,u=1 JuZ 

{23) 

where E~~~ a;vz-v and (1 + E~~~ bjuz-u) are coprime polynomials in which 

the real coefficients a;v and bja are expressed as the functions of the model 

parameters (ja and {;v and of the sampling period T. It is seen that (23) is 

an.ARMA model whose inverse exists. Moreover, the transfer function of the 

mod"el-inverse is a proper rational polynomials. For ensuring a desired output, 
the requested input is given in Z-domain by 

x2,(z)=1i2ij(z)yi(z) j=1,2, . .. ,q; i=1,2, ... ,p (24) 

where 1i2;j(z) stands for the transfer function of the SISO model-inverse which 

can readily be obtained from 1i2ji(z). 
It is noted that in the case of an MIMO model, each input contributes to 

all of the outputs and each output is effected by all the inputs. If the model 

delivers the same output as given by the system, the requested input becomes 
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q 

x2,(z) = L1i2ij(z)yj(z) i = 1, 2, . .. ,p 
j=O 
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(25) 

The expression for the requested input x2, ( n) applicable to the model at the 

nth instant of time is found as 

q p+l p+1 

x2,(n)= LLBi<TYj(n-d)- LA;vx2,(n-v) i= 1,2, ... ,p (26) 
j=1<7=0 v=1 

where Bj" = bj"/aiO and Av = a;v/aiO which are functions of the model 

parameters expressed via a;v and bj<T · 

lE can be evaluated by subtracting the original input ofthe system x!;(n) 

from the requested input to the model x2.(n) obtained from (26) . 

2.2. Evaluation of the gradient 

The gradients can be evaluated by taking the derivatives of the Stirling's inter­

polation formula [21] of the each entry h1,;(., .) of the impulse response matrix 

of the reduced system around that of the model h2;,(., .). 

The impulse response of the RM is given by 

(27) 

j=1,2, ... ,q; i=1,2, . . . ,p 

where 

( ) -1{[ L:~-o(eiv+~eiv)sv ]*} 
91;; n,. = z s[1 + I:~=l((;" + ~(;")s"] , 91;.(n- 1, .) 

is a sampling period delay of g1;,(n, .) and z- 1 stands for the inverse Z-transform. 

The impulse response of the model is similarly obtained as 

h2;,(n, .) = 92;;(n, .) - 92;;(n- 1, .) (28) 

where 92;;(n, .) = z-l { [ $(1~t-:=€:~::$ .. ) r}, 92;.(n- 1, :) is a sampling period 

delay of 92;;(n, .). 

Using (27) and (28), the interpolation of the impulse response of the RM 

about the impulse response of the model can be performed by the use of the 

Stirling's formula and hence the gradients c~m be evaluated. 
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2.3. Calculation of the parameter departure 

Solving of (21) is equivalent to the determination of the minimum of a function 

which is defined as 

n = 0, 1, .. . ,N· (29) 

where 

F(~Av) = [2:::~= 1 ,;,! [2::::=1 ~AvDv]mH1(n)] X1(n)- H2(n) [X2(n)- X1(n)] 
The values of the parameter departures are the values of ~Av( v = 1, 2, ... , r) 

corresponding to the minimum point of~/;(.,.) . During the course of finding the 

minimum point of~/;(.,.), an iteration process can be followed and the new values 

of the parameter departures can be found which are given by [22] 

(30) 

where ~Avo is the previous value of ~A11 • The iteration process is stopped 

whenever I ~AvN - ~Avo I attains a preassigned error limit or the function 

1/;(., . ) is near to a stationary point. 

After determining the parameter departures, the RM parameters can be 

found by adding the parameter departures to the parameters of the model. 

3. Example 

Consider a system with zero conditions (7] given by 

8s2 + 6s + 2 · 
G( s) - --=----=---­

- s3 + 4s2 + 5s + 2 
(31) 

The parameters of a RM are determined by adopting the present approach 

with the use of the data obtained from system input and output measurements 

but not using the transfer function of the given system. Let the input of the 

system be a unit step signal. The system response Y1(n) = y(n) to that input 

signal is computed and shown in Fig.2 with the sampling period T = 0.2 Sec. 

The chosen model is a second order one having the damping ratio ~o = 1, the 

undamped resonant frequency wo = 2, ao = d~~t) lt=o= 2 and bo = y(t) lt=o= 1. 
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Figure 2. Characteristics ofY1(n), X2 (n), and IE(n) 

3.1. Evaluation of the lE 

The transfer function of the model in Z-domain is 

H
2
(z) = Y(z) = (l- z-1)[ w5(aos + bo) ]* 

X2(z) · s(s2 + 2~owos +w5) 

For eo = 1, (32) is written after some mathematical manipulations as 

Y(z) A1z- 1 + J12z- 2 + A3z-3 

X2(z) - 1 + B1z- 1 + B2z-2 + B3z-3 

where 

A1 bo(l- exp( -woT)) + wo(aowo- bo)Texp( -woT) 

A2 bo[exp(-2woT)- 1]- 2wo(aowo- bo)Texp(-woT) 

A3 [bo[l - exp( -woT)] + wo( aowo - bo)T] exp( -woT) 

B1 -[2exp(-woT) + 1] 

B2 [exp( -woT) + 2] exp( -woT) 

B3 = -exp(-2woT) 

(32) 

(33) 
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From (33), the requested input of the model is obtained as 

1 
x2(n) = At [y(n + 1) + Bty(n) + B2y(n- 1) + B3y(n- 2). 

83 

- A2x2(n- 1)- A3x2(n- 2)] (34) 

where At,A2,A3,Bt,B2 and 83 are given in (33). 

The IE(n) can be evaluated by subtracting the unit step input signal of the 

system from the requested input of the model x2(n) calculated from (34) by 

using the computed values of y(n) (shown in Fig.2). The computed results of 

the requested input x2( n) and I E( n) are also shown in Fig.2. 

3.2. Evaluation of the gradient 

The impulse response of the reduced system is 

where 

z-t{(1-z-t)[ w
2
(as+b) l*}= 

s(s2 + 2ews + w2 ) 

Ut(n, .) - Ut(n- 1, .) 

The expressions for Ut(., .) for different ranges of e are 

b · l(n)- exhT)[(be- aw)sin(wnT~)] 
1- (2 

+ b~ cos(wnT~) 
for 0 < e < 1 

b(1( n) - exp( -wnT)] + w( aw - b )nT exp( -wnT) 

fore= 1 

b·1(n)- exp(-ewnT)[(be-aw) sh(wnT~ 
y'(2=1 

+b~ch(wnT~) 

fore> 1 

The impulse response of the model is similarly obtained 

h2(n, .) = g2(n, .) - 92(n- 1, .) 

(35) 

(36) 

(37) 

(38) 

(39) 
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where g2(n, .) = bo [l(n) - exp( - wonT)]+ wo(aowo- bo)nTexp( - wonT). 
Using(35)- (39), the Stirling's interpolation of the impulse response of the 

RM about the model parameters is earned out considering ~e = ~w = ~a = 

~b = 0.25. The impulse response of the model and all the partial and mixed 

partial derivatives of the impulse response of the RM up to second order around 

the model parameters are calculated. 

3.3. Calculation of the parameter departure 

Considering only three terms in the Taylor's series expansion, (21) is written as 
n 

L F(o:, /3, /, 6) = ·0 n = 0, l, ... , 20 (40) 
k=O 

where the parameter departures are defined as o: = w -w0 , f3 = ~ - ~0 , 1 = a - ao 

and 6 = b - b0 and 

2 1 4 

F( .) = Xt (n - k )[ L - 1 (L PjDj)'; ht (k, .)] 
m. 

m=l j=l 

- h2(k, .)[x2(n- k)- Xt(n- k)] ( 41) 

where 
Pj = o:, Dj = Dt; for j = 1, Pi = /3, Di = Dw for j = 2, 

Pi = /, Di = Da for j = 3, Pi = 6, Di = Db for j = 4, 
and the index "0" of (., .Dj) indicates that the partial and mixed derivatives 

are evaluated at the point (~o, w0 , ao, bo). 
Using ( 40) and following the iteration process mentioned in (30) with ref­

erence to (29), the new values of the parameter departures are calculated with 

the starting values of the departures as (0, 0, 0, 0) and with the derivatives of 

the function c/!(., . ) obtained as 

ot/J( o:, /3, 1 , 6) 
fJPi 

2F(a,P,1,6) { x,(n - k)[D; + P;D) + 1~1 P;D11Jh1(k, .) } 

(42) 

The steepest descent method is applied at each value of n( n = 0, 1, . .. , 20) 

and for each value of n, one set of values comprised of o:, /3, 'Y and 6 is calculated. 

The arithmetic average value of each of the parameter departures is found as 

o: = - 0.0816, f3 = 0.0141, 1 = 0.0084 and 6 = - 0.2847. The transfer function 

of the RM is then 
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R s - (2.0141)2 
X (2.0084 X s + 0.7153) 

( ) - s2 + 2 X (0 .9184) X (2.0141) X S + (2.0141)2 
(43) 

The impulse response of the system as well as of the RM obtained by using 

the proposed approach and of the RM obtained by Lucas [7] are computed at 

different instants of time and are given in the Table 1. 

Table 1. 

Time Impulse response of Impulse response of the 

reduced models obtained by 

(Sec.) the original system proposed approach Lucas method 

0.0 8.000 8.1460 7.6000 
0.2 3.940 3.8820 4.0600 

0.4 1.574 1.4080 1.7600 

0.6 0.260 0.0680 0.4000 

0.8 -0.411 -0.5786 -0.3190 

1.0 -0.701 -0.8212 -0 .6250 

1.2 -0.775 -0 .8450 -0.6860 

1.4 -0.734 -0 .7605 -0.6200 

1.6 -0.638 -0 .6340 -0.5000 

1.8 -0.523 -0.5020 -0.3700 

2.0 -0.409 -0.3820 . -0.2580 

2.2 -0.306 -0 .2820 -0.1655 

2.4 -0.218 -0.2020 -0.0980 

2.6 -0.146 -0 .1410 -0.0510 

2.8 -0.089 -0.0960 -0.0200 

3.0 -0 .045 -0 .0640 -0.0035 

3.2 -0 .012 -0.0410 +0.0055 

3.4 +0 .011 -0.0260 +0.0090 

3.6 +0 .027 -0.0153 +0.0096 

3.8 +0 .038 -0.0087 +0 .0085 

4.0 +0.044 -0 .0045 +0.0067 

It is observed from the table that the calculated impulse response of the re­

duced models obtained by adopting the two approaches shows different amounts 

of error at different instants of time. Determination of. an average error in 
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each case would be convenient for comparison of the accuracy obtained in 

each approach. With hr(k) and h(k) as the calculated impulse responses of 

the RM and actual system respectively, a simple average error is defined as 

TJ = N~l Ef=o I hr(k) - h(k) I, where N is the number of sampling in­
stants. The values of the ,two average errors calculated from the results ob­

tained by adopting the proposed approach and the Lucas method are respec­

tively T/1 = 0.0516, TJ2 = 0.1056. 

It is seen that the result obtained by adopting the present approach is more 

closer to the actual values than those obtained by following the Lucas method. 

Such closeness has been obtained in the present approach by considering only 

three terms of the Taylor's series expansion of the impulse response of the RM. 

The results obtained are found encouraging ~nd acceptable. 

4. Conclusion 

A new approach to obtain aRM from a high--order system is described. In this 

approach, an RM is assumed to have the same input and output characteristics 

as those of the high-order system and then a modified MRT is used to determine 

the RM parameters. Modification in the MRT lies in the fact that an input error 

is defined ipstead of the output error as used in the conventional MRT. This 

consideration allows one to use the real convolution formula which has been 

found convenient in the mathematical manipulation of the problem and it gives 

rise to an IE to be made effective at the assumed model input to ensure the same 

output of the high-order system and the model. This IE which is found to arise 

due to ( i) the departures in the parameters of the RM from those of the model 

and ( ii) the, difference between the orders of the high-order system and the RM, 

has been considered to find the departures in the parameters of the RM and the 

model. ~he departures have been calculated by the use of the Taylor's series 

expansion of the impulse response of the RM around the model parameters and 

the lE. Only three terms in the expansion series have been considered· in the 

present analysis and the results obtained have been found satisfactory. Better 

accuracy can, of course, be obtained by considering the higher terms in the 

series expansion at the cost of complexity in the computation. This possibility 

of trimming the errors in the results, however, is not observed in the first group 

of the existing reduction techniques. Different forms of the RM may, however, 

be obtained using the present approach depending upon the conjecture to be 
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used for solving the multivariable polynomial equation obtained from the series 

expansion. It may also be noted that the proposed approach does not require 

the knowledge of the configurati?n of the system to be reduced but utilizes its 
input and output data for estimation of the parameters of the RM with a simple 
computational process. 
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Metoda redukcji modelu liniowego 

W pracy opisano metod~ redukcji modelu o wysokim rz~dzie do modelu o nii­

szym rz~dzie. Przy zaloieniu, ie zredukowany model daje t~ sam(\ odpowiedz, co 

model wysokiego rz~du, poszukuje si~ jego struktury za pomocq zmodyfikowanej 

metody identyfikacji z odniesieniem do modelu. Przy przeksztakeniach uiyto 

efektywnych wzor6w sumowania do obliczania bl~d6w na wejsciu modelu: Para­

metry zredukowanego modelu wyznaczono minimalizuj(\c blqd wejsciowy i rozwi­

jaj(\c dyskretn(\ odpowiedz impulsow(\ w szereg Taylora. Otrzymany zreduko­

wany model zadowalajqco dobrze przybliia odpowiedz impulsow(\ modelu wyso­

kiego r.z~du. 
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MeTOA pe,u.yn.HpoBaHIUI Mo,u.enH 

B pa6oTe OTIHCaH MeTO,!I. pe,u.yn.HpOBaHH.ll MO,U.eJIH BLICOKoro TIOp.li,U.Ka K MO,U.e-

1IH HH3lllero nop.II,U.Ka. IlpH npe,u.nocLmKe, 'ITO pe,u.yn.HpoBaHHa.ll Mo,u.enL ,u.aeT 

TaKO'A: :>Ke pe3y1ILTaT, 'ITO H MO,U.eliL BLICOKOrO TIOp.II,U.Ka, npOH3BO,!I.HTC.II TIOHCK 

ee CTPYKTYPLI c TIOMOID.LIO MO.U.H4JHD.HPOBaHHOro MeTO,U.a H,U.eHTH4JHKaD.HH no 

OTHOllleHHIO K MO,U.eJIH. IlpH npeo6pa3oBaHH.IIX HCTI01IL3YIOTC.II 34J4JeKTHBHLie 

4JopMy1ILI cyMMHpOBaHH.II ,!1.11.11 BLI'IHCJieHH.II OlUH60K Ha BXO,U.e MO,U.eJIH. Ila­

paMeTpLI pe,u.yn.HpOBaHHO'A: MO,U.eJIH onpe,U.eJieHLI TIOCpe,U.CTBaM MHHHMH3aD.HH 

BXO,!I.HO'A: OlUH6KH H npeo6pa30BaHH.II BLIXO,!I.HOro HMTIY1ILCHOrO ,!I.HCKpeTHOrO 

oTBeTa B p.11,u. Te'A:nopa. Ilony'leHHa.ll pe,u.yn.HpoBaHHa.ll Mo,u.enL BeCLMa xopo­

lliO npH61IH:>KaeT BLIXO,!I.HO'A: HMTIY1ILCHLI'A: OTBeT MO,U.eJIH BLICOKOrO TIOp.II,U.Ka. 




