
Control
and Cybernetics
VOL. 20 (1991) No. 2

Logic operations with neural networks

by

Bohdan Macukow

Warsaw University of Technology

Institute of Mathematics

00-661 Warsaw, POLAND

Henri H. Arsenault

Centre d'Optique, Photonique et Laser,

Universite Laval

Quebec, P.Q., CANADA GlK 7P4

Most publications on neural networks focus on pattern recogni­
tion and associative memories. This paper is designed to present
a new but promising area for neural nets application - logic oper­
ations. It is shown that a multilayer system composed of simple
identical elements can perform any boolean function of two, three
or more variables. l\1oreover, the system combining with boxes and
CAM networks can perform any complex boolean operatiou.

1. Introduction

There are many similarities between an electronic computer and a Iwural net­

work. Both systems are composed of a large number of simple processing units

116 B. MACUKOW, H . ARSENAULT

- gates or neurons. On both systems these elements perform simple operations

but the whole network can perform very complicated tasks.

The possibility to realize the equivalent of electronic gates using neuronlike

elements can be an important step toward a creation of a computer based on

neural networks.

There is a big difference in speed. A single neuron transmits about 1000

pulses per second, while silicon chip can handle a billion or more. The high

degree of connectivity in neural nets (each neuron is connected to thousands of

others, while electrical gates usually have only a few interconnections), allows

neural nets to work as a parallel processor which can perform a huge number of

simple operations per second.

Some recent papers dealt with the application of optical structures to realize

logic operations of a few variables [1, 2, 3]. Neural nets with their simple

elements and massive parallelism can perform most logic operations with high

speed and great accuracy. Logic gates based on this approach could be a step

towards a creation of a general- purpose optical computer.

One of the interesting and promising applications of multilayer neural nets

is their ability to perform logical operations. In our previous papers [4, 5] a few

simple neural nets able to perform the XOR logical operation were introduced.

A universal three -layer network model which can perform eight logic operations

W'1S also shown, but the network contained one element with an artificially

increased threshold value.

In the section 2 of this paper we first briefly recall some general ideas of

a presentation of the logical functions of n variables . We also present a new,

improved version of previous module (see Fig. 2), a four-layer network with all

elements identical as well as a universal five-layer module for three - element

logical operations (Fig. 3).

Two other models able to perform any logical operation of n variables are

shown in section 3. The first model is composed of the five layers (for n > 4): the

input layer, the output layer and three intermediate (hidden) layers. For n = 2

and n = 3 there are necessary only 1 and 2 intermediate layers respectively. The

special structure of the second model allows to realize the same logical functions

with only one intermediate layer. Moreover, ifthe network is devoted to perform

only 2n elementary logical operations of n variables - the output layer can be

removed. Concluding remarks in the section 4 suggest some possible further

generalizations and improvements of the models.

Logic o pera.tiona w ith neura.l networks

a)
A B f
0 0 0

0 1 0

1 0 0

1 1 1

c)

b)

d)

117

f = AB

A~

B

AB

time

Figure 1. The four presentations of the AND function . a) a function table;

b) an algebraic expression; c) a block diagram; d) a timing chart.

2. Logic operations

There are four method of displaying a Boolean function which a logician uses

to characterize a net of switching elements (6]. They are

1. a function or truth table

2. an algebraic expression

3. a block or logic diagram

4. a timing chart (wave forms).

Figure 1 shows an AND function of two variables in each of its four presenta­

tions.

The number of significant Boolean functions is of interest. There are 22
n

functions of n variables, and this number goes up dramatically with the number

of variables n. Values up to four variables are given in Table 1.

Any logical function can be written in a canonical form. An expression is said

to be in a canonical sum- of-products form when variables are logically ANDed

into groups (called minterms) that are logically ORed to form a function. Every

variable appears in every minterm once in the canonical sum-of products form.

All2n minterms of n variables can be generated in a network of n + llevels, and

the minterms can be combined into arbitrary functions in an additional level.

118 B. MACUKOW, H . ARSENAULT

number of variables number of functions

n of n variables

1 4

2 16

3 256

4 65 536

Table 1. Table of numbers of function of n variables.

2.1. Functions of two variables

The canonical form for a function of two variables is

f = ABfo + ABfl + AB/2 + AB/3 (1)

Each term of this canonical form (minterm form) corresponds to one row of

a function table.

Any of the required operations may be achieved by a multilayered universal

logic module shown in Fig. 2. In the network we distinguish input neurons

(input layer) to which excitatory input signals are applied, assuming the values 0

or 1. There are a two intermediate slabs and one output element. The lines

with arrowheads between the input and the first intermediate slab and between

the intermediate slabs represent interconnections having weights equal to + 1.

The lines without arrowheads represent inhibitory interconnections with weights

equal to -1. The neurons of the network are identical binary elements with

threshold equal to .zero. The left element in the input layer (shown white), is

always activated by the application of an input signal equal to + 1. This is

necessary to perform operations for which global zero input (A= 0 and B = 0)

leads to a non-zero output.

With the input vector IN

IN= (l,A,B]

the total input to the first intermediate slab is equal to

X= IN*W 1

where * indicates a matrix product and

w1 = [-~
-1

0

1

-1 : -n

(2)

(3)

Logic opera.tioos with neura.l networks 119

1 A B

INPUT LAYER

I

INTERMEDIATE SLABS

Il

OUTPUT LAYER

Figure 2. A universal logic module programmable for any of the 16 two- element

logic operations.

is the matrix of connection weights between the input layer and the first inter­

mediate slab. The threshold binary function <I> gives the layer output

- { 1 X= <I>(X) = O
for x; > 0

otherwise, i = 1, 2, 3, 4.
(4)

The total input to the second intermediate slab is defined by

(5)

120 B. MACU~OW, H. ARSENAULT

where

w' = u ~ ~r ~ l
is the matrix of connection weights between the slabs. After thresholding, the

output of the second intermediate slab

y = <I>(Y)

multiplied by the matrix W 3 yields the network output

OUT = <I>(Y * W 3
)

where

(W3f = [wo, w1, w2, w3]

For the network shown in Fig. 2

OUT = <I> {<1>(1- A- B)wo +<I>(A- B)wr + <I>(B- A)w2

(6)

(7)

+ <I> [<I>(A+ B)- <I>(A- B)- <I>(B- A)] w3} (8)

By setting values of weight w0 , w 1 , w 2 , and w3 to zero or plus one the network

can perform each of the 16 possible two-element logical operations such ·as OR,

XOR, AND, and so on.

It should be pointed out that each of the 16 operations can be expressed in

the form of Eq. (1), and the values of the coefficients / 0 , /r, /2, and /3 (equal

to zero or plus one) are identical with the values of the weight w 0 , w 1 , w2 , and

w3 from Fig. 2.

Each term in Eq. (1) can be called the elementary term (minterm), and each

of those four elementary logical operations can be obtained with the network

shown in Fig. 2 with only one weight equal to + 1. Any other operation can be

expressed as a linear combination of those four elementary terms (operations 1,

2, 3, and 4 in Tab. 2). The values of weight for each operation are shown in

Table 2.

The well- known operation OR (A+ B), using logical theorems (expansion,

distributive, commutative, De Morgan's etc.) can be rewritten into a canonical

form

A+B = A(B+B)+B(A+A)

AB+AB+AB

AB+AB+BA+BA

(9)

Logic operations with neural networks 121

Operation weights

Wo wl w2 W3

1 AB NOR 1 0 0 0

2 AB 0 1 0 0

3 AB 0 0 1 0

4 AB AND 0 0 0 1

5 AB+AB B 1 1 0 0

6 AB+AB A 1 0 1 0

7 AB+AB A 0 1 0 1

8 AB+AB B 0 0 1 1

9 AB+AB XOR 0 1 1 0
10 AB+AB+AB OR 0 1 1 1

11 AB+AB XOR 1 0 0 1

12 AB+AB+AB A+B 1 1 0 1

13 AB+AB+AB NAND 1 1 1 0

14 AB+AB+AB A+B 1 0 1 1

15 OUTPUT ALWAYS 0 FALSE 0 0 0 0

16 OUTPUT ALWAYS 1 TRUE 1 1 1 1

Table 2. The 16 possible two- element logical operations.

The network from Fig. 2 can perform this operation by setting the values of

weights

WO= 0, W1 = 1, W2 = 1, W3 = 1 (10)

which ~ives the required result.

2.2. Functions of three variables

A similar method can be applied to three- element logic. The network is shown

in Fig. 3 with the same rules of connections as for the network shown in Fig. 2.

The canonical form of any function (any among 256 possible operations) is

described by the expression ·

f = ABCfo + ABC!l + ABCh + ABC/3

+ABCf4 + ABCfs + ABCf6 + ABCh (11)

122 B. MACUKOW, H. ARSENAULT

INPUT LAYER

I

INTERMEDIATE

li

SLABS

Ill

OUTPUT

Figure 3. A universal logic module programmable for any of the 256 three­

element logic operations.

Each of those eight elementary terms can be performed by the network shown

in Fig. 3 with only one weight W; equal to plus one. Any other from all 248

operations (the total number according to the Tab. 1 is equal to 256, including

the 8 elementary), can be obtained by setting at least two of the values of coef­

ficients f; (i = 0, 1, ... , 7) to plus one and the rest to zero.

The zero or plus one values of the coefficients f 0 , ... , h are identical with the

values of weights w; (i = 0, 1, ... , 7) shown in Fig. 3.

To achieve the three-element logical operation OR (A+ B +C), the transfor­

mation to the canonical form is

A+B+C

= A(B +B)(C +C)+ B(A +A)(C +C)+ C(A + A)(B +B)

Logic: operations with neural networks 123

ABC + ABC + ABC + ABC + ABC + ABC + ABC (12)

which means that the f; (i = 1, 2, ... , 7), coefficients are equal to plus one as

are the weights w; (i = 1, 2, ... , 7) also.

For NAND operation, the canonical form is

ABC A+B+C

A(B + B)(C + C)+ B(A + A)(C +C)+ C(A + A)(B +B)

ABC + ABC + ABC + ABC + ABC + ABC + ABC (13)

which means that the f; (i = 0, 1, .. . , 7) cqefficients and thew; (i = 0, 1, . . . 7)

weights are equal to plus one.

For the network shown in Fig. 3 the following algebraic description (similar

to Eqs (2) - (7)) can be obtained

IN [1,A,B,C]

X IN*W 1

where

' [_: 0 0

1 -1
W=

-1 - 1 1
- 1 - 1 - 1

Now

.X <I>(X)

y X*W 2

whcrf'

1 0 0 0

0 1 0 0

0 0 1 0

W2 = 0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

- 1 1

- 1 1
1

0 0

-1 0

-1 0

-1 . 0

1 0

0 1

0 -1

0 - 1

0

1

1
- 1

0

0

0

0

0

-1
1

- 1

0

1

- 1
1

0

0

0

0

0

- 1

-1

1

-~ l
(14)

(15)

(16)

(17)

124

and

y ~(Y)

:z Y*W 3

where

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

W3= 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0
0 0 0 0 -1 1 0 0

0 0 0 0 -1 0 1 0

0 0 0 0 -1 0 0 1

Z = ~(Z)

and finally

OUT= ~(Z * W 4)

where

(W4)T = (wo, WI, W2, W3, W4, Ws, W6, W7]

2.3. A multi-output network

B. MACUKOW, H. ARSENAULT

(18)

(19)

(20)

(21)

As mentioned before another realization of the network functions can be ob­

tained by replacing a single output element by a layer of the 22" outputs ele­

ments. In this case the interconnections to the output layer are fixed, and each

output element corresponds to one logical function. Each element of the secc;md

intermediate slab reacts to only one term of the canonical form (Eq. (1) and

Eq. (11)) of a logical function.

For tlie networks shown in Fig. 2 and Fig. 3 the maximum number of elements

in the output layer is equal to 16 and 256 respectively.

Of course the output value OUT will now be the output vector and the

vector W 3 in Eq. (7) and the vector W 4 in Eq. (21) must be replaced by a

matrix of connections between the second intermediate slab and the output

layer. Equation (8) will give the value of i-th element of the vector OUT and

the weights Wj, (j = 1, 2, 3), have to be replaced by the elements of i- th column

of a matrix W 3
, (w3 (j, i), j = 1, 2, 3).

Logic opera.tion!l with neura.l networks 125

A B

INPUT LAYER

I

INTERMEDIATE SLABS

11

OUTPUT LAYER

AB+AB AB AB+AB
AB+AB AB+AB+AB

Figure 4. A universal logic module with separate outputs for any of seven two

- element logic operations.

A simplified version of the network is shown in Fig. 4, and this network can

perform eight of all 16 two-element logical operations, neglecting only those for

which a total zero input lead to a non-zero output.

The output layer has seven elements and each element realizes the function

indicated at the bottom of Fig. 4. For example, the symbol

f=AB+AB

means that the output of the element is equal to one if the network input is

(A= 1 and B = 0) or (A= 1 and B = 1)

126 B.MACUKOW,H . ARSENAULT

3. Models for n - variables

In Figure 5 the simple model for four-element logic with additional negative

connections (weights are equal to -1) from the fixed input element (shown

white) is presented. These inhibitory connections are applied to each element of

the first intermediate layer (layer I) except the elements with only one positive

and three negative inputs (for n -variables: one positive and n- 1 negative).

The remaining connections between the input layer and the layer I are the same

as for the networks shown in Fig. 2 and Fig. 3. For clearance and legibility of

the drawing only the connections between the input layer and one element of

each kind in the layer I are shown. In general, the element marked with "m"

inside a circle, has m - positive and (n-m)- negative inputs from the elements

(shown black) in the input layer.

The rules of the connections between the first and second intermediate layers

(layers I and 11) and the second and the third intermediate layers (layers 11

and Ill) are determined as follows (for n- variables):

1. The connection between every element (of layer I or II) and the element

placed exactly below (in layer 11 or Ill) is always positive with the weight

of +1 (the lines with the arrowheads). The remaining connections (the

lines without the arrowheads) are negative with the weight of -1.

2. For n > 3 the output of each element in layer I with the three positive and

n - 3 negative inputs from the black elements in the input layer (these

elements are marked with the number 3 inside a circle), is connected to

the similar elements in the layer 11 (with the rules of p. 1).

3. For n > 4, selected elements of the layer I (marked with 3), are connected

with each element (marked with 4) in the layer II. It means, that each

element of the layer II (marked with 4) obtains the inhibitory signals from

the elements (marked with 3 in the layer I) having 2 positive inputs among

4 positive inputs coming to the element placed exactly above it (marked

with 4) .

4. For n > 5, selected elements of the layer I (marked with 4) are connected

with each element (marked with 5) in the layer II. Similarly as in p. 3,

these elements marked with 4 have 3 positive inputs among 5 positive

inputs coming to the element places exactly above the element marked

with 5.

Logic operations with n e ural n~twork s

A

! !
B

1
c
I
t

127

D

!
INPUT

I LAYER

II LAYER

Ill LAYER

OUTPUT

Figure 5. (a) The five-layer logic module programmable for any of the 65536

four - element logic operations.

128 B.MACUKOW,H . ARSENAULT

I LAYER

Figure 5. (b) The magnified part of the network shown in Fig. 5a - marked

with the big circle.

5. For n > 6, selected elements of the layer I (marked with 4) are connected

with each element (marked with 6) in the layer II, etc.

6. The output of each element in the layer II marked with m (m = 4, 5, ... , n -

1) is connected to the similar elements in the layer Ill (with the rules

of p. 1).

7. Every element of the layer 11, marked with 2, 3, ... , n- 1 is connected to

the element marked with n in the layer III.

In the output layer can be either one element, and then the output function

is realized setting the proper values of the weights (zero or plus one) for the

connections between the layer Ill and this single output, or the output layer

can consists the 22
n elements with fixed connections from the layer Ill, and

then every output element corresponds to one logical function (see sec. 2 p. 3).

This model needs a lot of elements (54 for n = 4, 103 for n = 5, 200 for

n = 6 etc., in general 3 · 2n + n + 2 for n 2:: 4) and also many connections. The

total number of connections can be reduced replacing most of the connections

(described in p. 7) by the additional connections between 1st and Ilnd layer.

F'or instaHce , connect. ing the elements marked with 3 in the layer I with the

Logic opera.tiona with neura.l networks 129

element marked with n in the layer 11 removes the connections between the

elements marked with 2,3 and 4 in the layer 11 and element marked with n in

the layer Ill.

The· alternation of the negative connections from the fixed input element

(shown white in Fig. 5 and Fig. 6) yields the further simplification of the model.

For the model shown in Fig. 6, the weights of these connections depend of the

number of positive inputs to the individual elements of the singular intermediate

layer . The inhibitory connection between fixed input and element marked with

"m" has the weight equal to "m- 1" (m- is the number of the positive inputs

to the element, and for m = 1 there is no inhibitory connection). That rule

allows to reduce the number of intermediate layers to only one as well as the

number of elements and connections.

For n - variables the model contains:

- . 2n + n + 2 elements,

- (n + 1)2n - n connections between the input and the intermediate layer,

- 2n connections between the intermediate layer and the output element.

If the network is devoted to perform only the elementary functions (defined

by a single term in the canonical form), the output element is unnecessary

because each element of the intermediate layer reacts to only one term (minterm)

of the canonical form. However, if the network is devoted to perform any of 22
n

different logical functions of n variables, the output layer has to be composed of

22n elements with the 22n+n-l connections between the intermediate layer and

the output layer .

For the network of this type with 3 variables we obtain the following algebraic

description

IN (1,A, B, C] (22)

[_: 0 0 0 -1 -1 -1 -2

l wl 1 -1 -1 1 1 -1 1
(23)

-1 -1 1 -1 1 -1 1 1

-1 -1 -1 1 -1 1 1 1

(W2f [wo, w1, w2, w3, w4, w5, w6, w7] (24)

130

1 A B c D

B. MACUKOW, H. ARSENAULT

INPUT
LAYER

INTERMEDIATE
LAYER

OUTPUT

Figure 6. The three - layer logic module with variable inhibitions for four -

element logic operations.

where W 1 is the matrix of connections between the input layer and the in­

termediate layer,

W 2 is the vector of connection weights between the intermediate layer

and the output element.

Y = if>(IN * W 1
)

and finally

OUT= if> (if>(IN * W 1
) * W 2

)

4. Conclusion

(25)

(26)

Neural networks are finding many areas of applications. Although they are par­

ticularly well-suited for applications related to associative recall such as content
- addressable memories, neural net can be used in many other applications rang­

ing from logic operations to the solution of optimization problems [4] .

Lo,;ic opera.tioal with aeur&J oetworka 131

In our previous papers [4, 5) we described how the basic models can be

trained to accomplish logical operations on input data, and in this paper we

generalized these results to obtain a universal logic ~odule able to accomplish

any logical operations.

It is well known that wit-h two basic logical operations AND and NOT (or

simply a two-input NAND gate) any Boo lean function can be simulated. It
can be exploited to create complex logical nets composed of neuronlike elements

to perform ~ny complex boolean operation.

If the activation is multi-level instead of binary, and if the weights Wi in

Figs 2, 3, and 4 are not confined to zeros and ones, the networks may perform

intermediate logic functions. Of course the basic neuron element characteristic

(type of threshold, function etc.) must also be changed.

The interesting aspect of doing logic operations on neural networks is the

ability to accomplish precise logical operations on highly degraded data.

One may ask whether it is worthwhile to do logic by means of neural nets

when cheap electronic devices are available. This is an open question, but there

are at least five advantages to using neural nets:

1. The logic modules can be integrated into an all - neuron network using

the same k_inds of elements (neurons) as for the rest of the network, thus

avoiding the mixing of different types of elements;

2. The logic'operations can be Jearned, which means that the same modules

can be use,d to do different logical operations;

3 . The univ~rsal logic module can perform any logical operation depending

only of the unit wiring;

4. The outputs of the logic operations can be used as the inputs to other

neural system in order to carry out more complex tasks;

5. The basic modules can be combined with neural network associative mem- .

ories to accomplish complex combinations of data and logic operations on

corrupted data [4,7).

132 B. MACUKOW, H. ARSENAULT

References

[1] HASSOUN M.H., ARRATHOON R., Logical signal processing with optically con­

nected threshold gates, Opt. Eng. 25, (1986), 056-068

[2] MURDOCA M.J., HUANG A., JAHNS J. , STREIBL N., Optical design of pro­

grammable logic arrays, Appl. Opt., 27, {1988), 1651-1660.

[3] GUILFOYLE P.S., WILEY W.J., Combinational logic based digital optical com­

puting architectures, Appl. Opt., 27, {1988), 1661-1673.

[4] ARSENAULT H.H., MACUKOW B., Beyond pattern recognition with neural nets,

Proc. SPIE, 960, {1988), 206-216.

[5] MACUKOW B., ARSENAULT H.H., Neural Networks for Logic Operations, Proc.

SPIE, 1134, {1989), 40-43.

(6] MALEY G.A., EARLE J., The Logic Design of Transistor Digital Computers,

Englewood Clifts, New Jork, 1963.

[7] ARSENAULT H.H., MACUKOW B., Neural Networks Model for Fast Learning and

Retrieval, Opt. Eng. 28, {1989), 506-512.

Operacje logiczne wykonywane za pomoc~ sieci

neuronowych

Wi~kszosc publokacji zwiq,zanych z sieciami neuronowymi skupia si~ na za­

gadnieniach rozpoznawania obraz6w i pami~ciach asocjacyjnych. Ten artykul

ma na celu przedstawienie nowego, lecz obiecujq,cego zastosowania sieci neu­

ronowych w operacjach logicznych. Wykazano, :ie wielowarstwowe systemy

zlo:ione z prostych jednakowych eleinent6w mogq, wykonac dowolnq, prosta, ope­

racj~ boolowska, o dw6ch, trzech lub wi~kszej liczbie argument6w. Ponadto sys­

tem zlo:iony z i sieci CAM mo:ie wykonac dowolna, zlo:iona, operacj~ boolowska,.

JlorH'ICCKHC onepa~HH BblllOJIHJICMbiC C llOMOIII.biO

HeiipOHHbiX CCTC:ii

EonhiiiHHCTBO ny6nHKaiJ.H:R CB.Il3aHHhiX c He:RpoHHhiMH ceT.IlMH cocpe)I.OTO'le­

HO Ha sonpocax pa3ll03HaBaHH.Il o6pa3oB H accon.HaiJ.HOHOit naM.IlTH. ,naHHa.ll

Losic opera.tiona with neura.l networks 133

cTaTLJI npecne.a.yeT n;enL npe.a.cTaBJieHHJI HoBoro, Ho o6e~aro~ero npHMe­

aeHHJI HeA:pOHHbiX CeTeA: B JIOrH\feCKHX onepaD;HJIX. IloK&3&H01 \fTO MHo­

rOCJIO:A:HLie CHCTCMbl1 COCTOJIID;HC H3 npOCTbiX O,[J.HH3KOBbiX 9JICMCHTOB MoryT

BLinOJIH.IITL npoH3BOJILHYIO npocTyro onepan;Hro Eyn.11 c ,D.BJM.II1 TpeM.II H 6onee

apryMeHT&MH. KpoMe 9Toro, CHCTeMa cocTo.ll~a.ll H3 6noKoB ceTH ACY

MO:>KeT peaJIH30BaTL npoH3BOJILayro cno:>Kayro onepan;Hro EynJI.

