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Elementary submatrix column (row) operations -~ ESCO’s
(ESRQ’s) are defined. They generalize the well known elementary
column (row) operations. The list of ESO’s (ESCO’s and ESRO’s)
and their properties are given. The proposed ESO’s can be useful
in k-th order systems analysis because of their compact expression.

1. Introduction

The elementary column (row) operations on polynomial matrices are a useful
tool in polynomial matrix theory [1], [2], [4], [5], [6], [7], [11]. There are three
fundamental elementary column (row) operations:

(a) multiplication of any column (row) by a non—zero element « € F,

(b) addition to any column (row) of a multiple by any # € F of any other

column (row),
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(¢) interchange of any two columns (rows), where F is the field of coefficients
of the polynomials.

These elementary operations can be used in investigations concerning sys-
tem equivalence [1], [3], [9], [11], standard forms of a matrix [5], [7] where the
desirable resulting form is in general obtained by a combination of the elemen-
tary row and column operations. It seems convenient to group the elementary
operations mentioned above in the manner proposed in this paper.

2. Preliminaries

mxn

Let a polynomial matrix A € R[s]™*" be given, where R[s] isaset of m x n

polynomial matrices of one variable s with real coefficients. Let A be partitioned

as follows
NI ——
&\\ 5 — 0cj
t . A :
Yoi . Vei
AN NN A
= /ﬁ Arj /ﬂ Ao - /% . (1)
where submatrix Au, i € k (k = :b:,z,...,k}) is formezeiout of consecutive

columms Yui, Yoi+1, . . ., Yei of A, submatrix Ay, j € [ of rows g5, opi+1, ..., 0cj
of A and submatrix A;.j; of elements of A being simultaneously elements of A,;
and A,;. For clarity, these submatrices will be denoted as

Aci = Aci(is¥ei)y Vi 27 i€k (2)
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Ari = Arj(osj 0e5)  0ej > FEI . (3)

nrcjs' = Arc_fi(@bj; er:'fbi;')(ej) 1€ &1} El (4)
where subscripts ¢ and r inform that the pairs of numbers in brackets refer to
numbers of extreme columns and rows respectively. The subscript b designates

the first row/column, while e designates the last row/column.
" 1'denotes k x k identity matrix.

3. Elementary submatrix column (row) opera-
tions — ESCO’s (ESRO’s)

In this section definitions of ESCO’s (ESRO’s) are given. These are of three
kinds.

I. Interchange of two submatrices Aci = Aci(75i,7ei) and Ag; = Aci (755, Yej)
.of A where '

Vei = YVoi = Vej — Vojs Yei < Yoj OF Yej < Ybi (5)
denoted by
P[Aci;ncj] =~ P[Hci(‘)'bi:?ei) =+ acj {Tbj:"fej )] (6)

If ¥.; < 75 then this ESCO performed on a matrix A is equivalent to post-
multiplying A by n x n block matrix MRT — MRI[Aca')’ch] — a right elementary
block matrix (REBM).

-I -
Toi I - ‘}‘bs
- Yeij=Tbi+1
MAET — - : S — Yei ™
— Tbj = Ve:— e .
Tbj
I ei—Tbit+l
T‘l Yoit s 72}
L . Iﬂ_"fc_j J
E - 1 T 1)
Yoi Yei Vb Ve

where all remaining submatrices not explicitly shown are zero. This matrix
clearly is unimodular, :

II. Postmultiplication’ of a submatrix Ay = Agi(7si,Yei) by a nonzero (ye; —
Ybi + 1) X (Yei — ¥pi + 1) polynomial unimodular submatrix C(s). This ESCO
will be denoted by Pors , '

—— N

- -
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P[As; x €] = P[Asi(7si,7ei) x C] (8)

and is equivalent to postmultiplication of A by n xn block matrix M7 (REBM)

I'rau'—l — Vi
MRff — C ' € Rls nxn )
© "y 8 ©)
In_'Te.f
) 1
Toi Yei
such that C™1(s) € R[s](Yei=7i+1)X(Yei=mi+1) g0 that

(MRH)—I c R[slnxn ' (10)

ITI. For j # i addition to a submatrix Ac = Aci(7si,Yei) of another submatrix
Ac; = Acj(755,7e;) postmultiplied by a polynomial (yej — 755 +1) X (Yei —73i +1)
submatrix C(s) € R[s](Yes =7 +1)X(Yei=7i+1) This ESCO will be denoted

P[Ag +Ac x C] = P[Rci(7si,Yei) + Aci (135, 7e5) X C] - (11)

and is equivalent to postmultiplication of A by n x n block matrix

I
MRIII = (12)
YogE =
=
) C(S) In—k
Yej = =
ej
T 1
Toi Yei

where ve; <k < 7; if 7ei <)

and ve; <k <y i vej > i (13)
Elementary submatrix row operations — ESRO’s are similarly defined. One

should replace “column” by “row” and “postmultiplication” by “premultiplica-

tion”. Thus the ESRO’s analogous to those of (6), (8), (11) are as follows

L L[Ai,Arj] = L[Ari(osi, 0ei) < Arj(bj, 0ej)] (14)

where gej — 0bj = Oei — 0biy Cei < @bj OT Qej < Qbi (15)

II. LIC x A;] = L[C x Ao, 98,')] (16)
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e L[Ar; + C x Arj] = L[Ari(0bi, 0ei) + C X Arj(0bj, 0c5)]

where g.; < 0y; oF 0ej < 0bi- . (17)
The above ESRO’s are equivalent to premultiplication of A by left elementary
block matrices — LEBM’s MY, MET METHT created analogously to REBMs.

Some obvious properties of ESCO’s (ESRO’s) will be stated.

4. Main properties of the elementary subma-

trix operations

1° Any ESCO (ESRO) is a finile product of elementary column (row) oper-

ations.

This follows immediately from the fact that the REBM (LEBM) related
-to the ESCO (ESRO) is unimodular and hence a finite product of right
(left) elementary matrices [1] which is equivalent to ESCO (ESRO) being
a finite product of elementary column (row) operations.

2° Any elementary operdlion is a special case of ESO.

Any column (row) a.; (a;) of A can be treated as an m x 1 (1 x n)
submatrix of A and in proposed notation a. (ar;) can be expressed as
follows ac; = As(vei, i), (@ri = Avi(oi1,0i1)). Thus any elementary
column (row) operation is an ESCO (ESRO).

3° FEach ESO 1s invertible.

For every ESCO (ESRO) there exists an inverse ESCO (ESRO) which
neutralizes its application. A product of REBM’s (LEBM’s) corresponding
to them is equal to a unity matrix.

4° For m = n, each ESO is reversible.

If m = n, for every ESCO (ESRO) there exists a reverse ESRO (ESCO)
such that the product of their EBM’s is equal to a unity matrix.

5° A polynomial matriz is unimodular if and only if it is a finile product of
EBMs.

6° The ESO performed on a polynomial malriz does not change ils normal

rank.
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The statements 4°, 5°, 6° are simple consequence of 1°.
The ESO’s will be applied to derive some properties concerning the multi-
variable k-th order type linear systems [9]. :

5. The k—th order type linear systems

By the definition, [9], an m-input/m-output strictly proper system S described
by the m x m transfer function matrix Go(s) is said to be a multivariable k—th
order type system if and only if
det Go(s) £ 0 ' (18)
Gol(s) = Amp+8 Ankor+...+5Rm1 +Amo (19)

where det A, x # O, Ap, i i € k are real, constant m x m matrices.
This system can be described by the state-space equations of the form [6],

9], [11] '

&(t) = Aoz(t)+Bou(t) (20)
y(t) = Co=(t) (21)
where .
i 0 bn 0 3] i
s} o In o
0o o (s} o
Ry, = ]
s} o o I
&
o
0
Bo = = > (22)
8)
| PGy |
C = [1, 0 0 ... 0]'

It is assumed that:

1) det{G;'(s)} has only distinct eigenvalues
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2) There.are two m x m unimodular matrices L, P such that LG;!(s)P =
So(s), where So(s) has the Smith canonical form [1], [2], [5].

Let A® =sl,, — Ay =

[ sl ~ln 0o 0o
0 sl I 0
o (8] sl (]
= (23)
0 0 0 —In
| AZLARe AZL AR ALL AR sl + AL Am -1 |
be the mk x mk characteristic matrix of Ag partitioned as follows
0
A
0 ]
A= [ | AQ | ve) AGY] =] 2 (24)
Al
r,k

where REO,), Af_:?, i,j € k are mk x m and m x mk matrices, respectively. For

convenience it is assumed that

AQH = Bo, Af- z+1 =Go (25)
and the following notation is introduced. For any matrix EC-D 1=1,2,...
E(""l)
B0 = [0 | G | ... ERY] =
a block matrix E®)
1
. E |
%= [0 | 8l | ol B =] (26)
EQ)
r.k

denotes EU~Y) after I-th ESO.

Now the ESO’s will provide a nice way of deriving some basic properties of
the system S.

a) The system S is controllable.

The system S is controllable if and only if the controllability matrix W of
a pair {Ao,Bo}
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wO = [aQ | AQ | ... 1 AQ | ALY, (27)

is of full rank for every s [7].
The following ESCO’s

P [AGD + A% x (-Amic)] 1€k (28)

Peas [ASy1 % (~Ame)] (29)

P [ng;;;z_; +AlZ s, x (sl,,.)] lek+2,k+3,...,2k+1 (30)
bring the matrix W(® to the form

WEHD) Z [0 | = 1] (31)

which is of full rank for every s, thns the system S is controllable.
b) The Smith canonical form of A equals to

diag {lm(x-1), So(s)} (32)
The following ESO’s

PR+ A ()] tek=1

L [A%D +AGY, % (8 i+ s E AT A

ot AT Am ki) =k 2k -2

Loty [A ™ x (Anp)]

b [Aift_-lgkﬂ = ’qgr:l:gkw] I =2k,...,3k—2

j 2 [Ai’l,‘_‘gm x (-|m)] I=3k=1,... 46~3"

Pyr—2 [Afff =t (P)]

La-1 [A2 x (L)) (33)

performed on the matrix A(®) lead to the form (32).
¢) For a given matrix polynomial equation G5 (s) = 0 there exist k solution
matrices T; such that

A i T 4+ Ampc i TE 4 4+ A T4+ Ano=0 i€k (34)
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where the matrices T ;
Tij=T:i-T; i#j ij€k (35)
are nonsingular [4], [6]. Then the transformation matrix T(®)
L In ]
T T Tk
© - | 7o 7 |-
Lo 13t T
- Ts.og o
Rl
= (@199 | TE (36)
L Tr,l‘. J
is nonsingular and
-1
[T(u)] A[)T(o) = dlﬂ.g {Tl: TZ; ey Tk} (37)
" The following ESO’s performed on T©©
LTG0 +TED x (T tek=1
Py [Tg.z__l:Zn T x (—Im)] l=k,...,2k—2 (38)
BT x (Tikagn)]  1=2k.., 303
e
Tr 2 -
i B e e o I b ]
L 'Tr,k - 4
[1,|] © o ]
o In In
-l o] T L (39)
| o | (@ L (Tt
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where
=TT Tgi =2k
and the matrices T; ;
T, =T-T, i#j, i,j€2...,k (40)

are nonsingular [2]. Continuing this procedure one easily proves that T(® is
nonsingular. Therefore state-variable transformation matrix T(®) is obtained
giving convenient parallel submatrix realization of S.

6. Conclusions

ESO’s proposed in this paper as a generalization of elementary operations can
be helpful in investigations concerning block matrices [3], [4], [8], [10], [12].

It should be noted that in performing any elementary column (row) operation
on selected column (row) of A in general one can change desirably only one entry
of this column (row) when all remaining ones alternate out of control. And so
it is in the ESO case. Influencing any submatrix A,.j; of A,; (A) by ESCO
(ESRO) one changes all remaining submatrices of A,; (As).
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Elementarne przeksztalcenia macierzowe na ma-
cierzach wielomianowych i ich zastosowanie do
analizy systemow k—tego rzedu

Zdefiniowano elementarne przeksztalcenia macierzowe ESCO (ESRO) na kolum-
nach (rzedach) macierzy. Uogélniaja one znane elementarne przeksztalcenia na
kolumnach (rzedach). Okreslono przeksztalcenia ESO (tzn. ESCO i ESRO)
oraz podano ich wlasciwosci. Zaproponowane przeksztalcenia moga byé uzy-
teczne w analizie systeméw k-tego rzedu. '

dleMeHTapHble MATPUYHbIEe NpeoOpa3oBaHUA Ha
MHOI'OYJIEHHBIX MaTpPHIaX U UX IIPUMeHeHHe

K aHanu3y k-oro nopsaagka

Omnpepenensl aNleMeHTapHBIe MaTpruHbIe npeobpasosarnus ESCO (ESRO) va
cronbuax (pspax) Matpunbl. OHm 06061Ial0T M3BECTHEIE SIEMEHTapHEIE
npeobpasoBanus Ha cronbuax (pamax). Ompenenenst mpeobpasosanus ESO
(r.e. ESCO 1 ESRO), a Takxke NpMBENEHBI WX CBOMCTBA. IIpeIosKeHHEIE
npeo6pasoBaHus MOI'YyT GBITE IOJIe3HEIME B aHAJIA3€ CHCTeM k-Or'o IopAnKa.













