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The objective of this paper is to solve a particular fuzzy quadratic
optimization problem, as a first approach to non linear fuzzy opti-
mization. To this purpose we first introduce some properties concern-
ing fuzzy numbers and the fuzzy extension of non-fuzzy functions.
Moreover, we suggest a possible way for solving some constrained
optimization problems by penalty function.

1. Introduction

In the recent ﬁast the quantity of new research in fuzzy linear programming
has been large. None the less non linear fuzzy optimization seems to have been
considered only by a small number of authors.

As a first step in this direction we intend to examine a specific case of
quadratic unconstrained fuzzy optimization problem (section 3), after introduc-
ing some preliminary notions (section 2).
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To this purpose, let us consider a function f(z,p), with z € R", p € R™
and f:IR"*™ — IR. Let us assume that the following problem:

min f(z,p)
may have the vector zo = g(p) as the unique minimizing solution, where g :
R™ — R"
We can easily get the extension to the fuzzy case of the non-fuzzy functions

f and g ([4], p. 98). ,
The fuzzy number (= f.n.) ()i, the i-th component of Zo = g(p), has the
following membership function (= m.f.):

H(zo):(¥) = Prggag{min[ﬂm (P1) s 5 (Pm)] 1 ¥ = 9i(P)} : (1)
where p = (p1,p2,...,Pm) and g(p) = (91(p), 92(p). - - -, 9n ().
Let us assume, further, that the f.n.’s p; (i = 1,...,m) are noninteractive
(4], p. 70).

The purpose of the present paper is to determine
ED = mjn f(iiﬁ)
E

via the following two steps:
i)  Zo=g(p),
i)  Zo = f(Z0,D),
under suitable conditions concerning the functions f and g, as well as the m.f.
of p.
In computing the f.n. Z; through ii), we have to take into account the relation
between &y and p, according 'to 1).
In order to simplify matters, we restrict to study according to the following
two conditions:

a) the components of p are f.n.’s (convex normalized fuzzy sets) of L-R type;

b) the objective function is quadratic-linear with respect to vector Z, i.e.
f(%,p) = 3&' A% + p'&.

In section 4, a possible way for solving some constrained optimization problems
through the use of penalty functions is suggested.

In the following we shall represent the L-R type fuzzy number, as the triple
(¢, as,aq), where ¢ is the mean value, while a, and a4 are the left- and right-
no-negative spreads.
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2. Some characteristics of the fuzzy numbers

DEFINITION 1 Given a fon. 2, we define:
Supp(z) = {a € IR : pz(a) > 0}

Let us consider the fuzzy extension, 7 = h(p), of a non-fuzzy function h,
between a f.n. Z and a vector of f.n. p.

Some computational techniques have been developed for specific operations
(for example, the sum and the product of two f.n.’s as increasing binary opera-
tion, see [8] p. 14-42), but generally their applications are limited to the case in
which the fuzzy operands are noninteractive.

Therefore, it is not correct to calculate 7 = h(a, b) = a + ab using the rules
of summing up of noninteractive f.n.’s (for example, though the procedures
indicated in [4] p. 42 and following ones), via the steps

t=a* d=ab; z=¢+d,
because ¢ and d are interactive f.n.’s (see also [5] p. 56).

Given two f.n.’s Z and g, let us suppose now that there exists a bidimensional
m.f. pi(z4y(a,b) (see [8] p. 146 and [6]). Likewise dependency and independency
concepts in probability theory, we say that

DEFINITION 2 The two f.n.’s & and § are noninteractive ff:
wz,5)(a,b) = minfpz(a), py(b)] for every a € IR and b € R. (2)

Otherwise, we say that & and § are interactive, and in general we cannot obtain
pz,5)(a, b) only trough pz(a) and pg(d) ([8] p. 172).

In particular, we suppose that § = g(Z), where g is a fuzzy extension of
non-fuzzy function defined in Supp(z).

ProPOSITION 1 For any a € Supp(&), we have to assign to the ordered pair
(a, g(a)) the same possibility degree as a, i.e. pz(a). Furthermore, the possibility
degree of ordered pair (a,b) is zero, if b # g(a). Hence,

pz(a) ifb=g(a)
s (@, b) = ) 3
Hza)(a:0) { 0 otherwise (3)
We notice that the relation introduced by y = g¢(&) is a more restrictive
concept than fuzzy interactivily between g and z.
In the following, if § = g(&) we’ll call linked by g the two f.n.’s § and Z.
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DEFINITION 3 The f.n.’s py and py are said to be strictly equal if:
1) 5, (P) = pp,(p) for any p € R,

B, (p1)  if p1 = p2
0 if p1 # p2-

We remark that § = g(#) means that the two f.n.’s § and g(&) are strictly

i) p(p,,5,)(P1sP2) = {

equal.

PROPOSITION 2 Fuzzy extensions of no-fuzzy equivalent algebraic expressions
remain equivalent.

Therefore, the usual algebraic properties of non-f.n.’s keep their validity even
with fn.’s. In particular, the two f.n.’s 7 and @, defined by:

f=a(b+¢) and @ =ab+ag
are strictly equal (distributive property of product over addition).

Likewise, the f.n.’s 7 and & defined by Z = (@ + b)? and w = a2 + b2 + 2ab
are strictly equal (the square of a binomial).

In particular, we want to stress that the difference between two strictly equal
f.n.’s is always 0 (fuzzy zero with zero spread). Such a consequence is coherent
with the intuitive meaning of a f.n., considered as an approximate measure of a
quantity: if a is the length of an object, whatever its value may be, it is obvious
that the difference a — a is always zero (crisp zero).

The case is different when we take into account the difference between two
f.n.’s @ and b characterized by the same m.f., but associated with measures of
different quantities (@ and b are noninteractive). In such case, the difference
between @ and b is 0 (fuzzy), because all the possible values of @ and b must be
considered, according to the extension principle.

In fact, in the first case the extension principle reads:

ra3(z) = sup  {pgp(2,y) 2 =2 -y} =suplpa(z) :2=0], (4)
(z,y)z—y=0
and so:
e 0 ifz#0,
pa_3(2) = { i =i, (5)

On the contrary, in the second case we obtain:

Hs-3(2) = sup{min[pa(z), pa(y)] : z = = — y}. (6)
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EXAMPLE. It is possible to calculate = h(a,b) = a®+b+ab+a as 7 = g(a,b) =
(a+b)a+1).

It is not correct, however, to calculate separately @ = @+ b and § = @ + 1,
and successively the product @y using the rule for the multiplication between
noninteractive f.n.’s, because § and w are linked by § = h(w) = —b+ 1.

ProrosITION 3 Given the f.n. a, there exists an unique f.n. 3, linked with a by
b=g(a) = —a. s m.f. is given by:

pi(y) = sup [na(z) 1y = —2] = pa(—y) for any y € R, (7)

and the sum of @ = (c,as,aq) and b = (—c,aq,a;) is the crisp number 0 =
(0,0,0) (i.e. fuzzy zero with zero spread).

Let us recall first a simple order relation among f.n.’s.

DEFINITION 4 Given two f.n.’s & and b we say that
p. 188 and [{] p. 52). Likewise @ > b iff & = max(a,

The relation @ < b (@ > b) among f.n.’s is a partial order.

PROPOSITION 4 Given the fin. @, there results @ < a+ & for any fn. & > 0
(fuzzy zero with zero spread).

Such a characteristic, which holds for # both non- and interactive with @, means
that-two f.n.’s @ and b = & + &, with & > 0 (fuzzy zero with zero spread), are
always comparable in the relation ”<” defined in def. 4.

EXAMPLE. It results a* > 0 (fuzzy zero with zero spread) for any fn. @ (Fig.
1). In other words the product ab, with @ and b strictly equal, is a f.n. greater

or equal to crisp number zero.
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-
max(af , a)

Figl. g — a2 -

PROPOSITION 5 Let us assume Z = f(&,p) as the fuzzy extension of the non-

fuzzy function f : R™™ — IR. Let us suppose again & = g(p), where g is a

vector of functions, fuzzy extension of the non-fuzzy functions g; : R™ — IR.
Then the m.f. of Z = f(&,P) is given by

oy — ) maxp{min(up, (p1), .., 5, (Pm)] : ¥ = F(9(p); P)}
- {0 if {p: F(s(p),p) = y} =0. ®)

PROPOSITION 6 Given a non fuzzy function f:IR" — IRy and ils fuzzy exten-
sion z = f(&),where & is a vector of f.n.’s, it turns out 2 > 0 (fuzzy zero with
zero spread).

In fact

. . sup{min[uz, (z1),..., s, (2zn)] : y = f(2)}
ﬂs(y) = { 0 if f'l(y) -0 (9)

By assumption, it results y > 0 for any 2 € IR", and p;(y) = 0if y < 0. Let us
note, furthermore, that what stated in the example at the end of prop. 4, my
be easily proved by prop. 6 setting n = 1 and f(z) = %

We note that the considerations developed above about caleulus with fuzzy
functions § = g(Z), can be extended to other operators different from max
and min. For example we can choose a T-norm (-conorm) [3, 6, 9] instead of
min (max) operator, so characterizing a more general description of uncertain
phenomena.
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3. Fuzzy optimizing a quadratic-linear objec-
tive function
Let us set the following non-fuzzy unconstrained optimization problem:
m:in z= f(z,b0) = %:B'A;': + bz, (11)

where z € IR", b € R™, f : R™™ — IR and A is a symmetric and positive
definite n x n matrix.
The minimization of (11) provides the minimizing vector

2o = —A"1b (12)

to which in objective function corresponds the minimum
1 -

20 = f(z‘n,b) = —Eb'A—“b. (13)
Let us consider then
min % = f(,b) = %é’:’A:E + b (14)

as a problem similar to (11) in a particular fuzzy case, i.e. assuming that b and
consequently ¥ are vectors of f.n.’s and Z is a f.n. (only A is a matrix of crisp
number).

The purpose is to prove that the problem (14), containing the vector of f.n.’s
b, has the same formal solution given by (12) and (13). Moreover, in such case,
the computation of the minimizing vector #; is very easy (immediate if the
components of b are triangular f.n.’s), because it is a linear combination of the
f.n.’s of vector b with crisp coefficients. In fact we can prove the following

THEOREM. Given any vector b of noninteractive f.n.’s, setting Zy = —%B’A'lg
and z = %E:'Ai + b'Z, it results 7o < Z, with respect to def. 4, for any vector of
fn.’s &. Therefore = —A~1b is the minimizing vector solving (14).

Proor: Given the problem (14) it follows from prop. 2 that
= f(&b) = %(5 + A7) A(F + A1) — %E’A‘IE‘ (15)

the first term of the sum in (15) is fuzzy quadratic form with symmetric and
positive definite matrix A of non-f.n.'s. Consequently, from prop. 6, it results

%(i + A7) A(Z+ A7'b) > 0 (fuzzy zero with zero spread).
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Therefore, from prop. 4, the minimum value of Z is obtained at the vector of
f.n.’s &¢ (if there exists one) that:

Zo+ A"'b =0 (vector of crisp numbers zero). (16)

From what we have explained in prop. 3, the minimizing vector g exists and it
is given by

g9 = —A"1b. (17)
The f.n. Zy, corresponding to &y by (15), is
Zo=—=bA"1h. (18)

We note that:

- the computation of &y from (17) is not particularly hard, because it re-
quires a linear combination of noninteractive f.n.’s with non-fuzzy coeffi-

cients;

- the computation of Z, from (18) rises many problems, because we have to
sum and multiply linked f.n.’s;

- if we read (12) as a function of the type &y = g(B), from prop. 5 we can
directly compute the m.f. of Zy by (8), obtaining

paa(y) = max{minlyg, (01), ..., iy ()] -9 = =50/ A~} (19

Considering that b is a vector of stochastic independent variables instead of a
noninteractive f.n.’s, we obtain the probabilistic approach to problem (14). It is
easy to verify that in latter case the vector zg is characterized by the following
probability density:

Foo() 2 fp F1(61)fa(B2) .- Fa(Ba)db,

where C = [b € IR? : a = —A~1b], a = [a1,a2,...,ap], b = [by,b2,...,b,] and
fi (i=1,2,...,n) is the probability density of i-th component of vector b.
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4. Constrained optimization using penalty

functions

In the study of fuzzy constrained optimization the approach generally used is
due to Bellman and Zadeh [1], according to which the objective function is
transformed into a constraint to be satisfied together with others.

In the present paper we follow a different approach introducing the non-
satisfied constraints into the objective function. It is obvious that the latter
method can be followed when the consequent unconstrained fuzzy optimization
problem can be solved.

According to the previous section, the extension to the fuzzy case of the
penalty function method, used for solving constrained optimization problems
[7], becomes possible in presence of particular linear equality constraints.

Therefore, we consider the problem (14) subject to constraints

Gi=§ (20)

where G is a k x n dimensional matrix of crisp numbers and § is a vector of k
noninteractive (neither between each others nor with &) fn.’s.

Using the penalty function method we can reduce the problem (14)-(20)
to the unconstrained case and so apply the results described in the previous
section.

In this paper one of the simplest approaches to the penalty functions has
been taken into account, as a possible suggestion for a resolution method. The
use of more efficient methods — some of which are described in [7] chap. 12 - is
highly possible and advisable.

Let us consider the following fuzzy penalty function:
1 - 1
J(E) = 5.{-"4;i'+b'i’+ E(G'E —-§)S(GE —q) (21)

where § = diag(o;) is a n x n diagonal matrix of crisp numbers containing
the penalties o; to be applied to the i-th constraint (¢; = 0 if the constraint is
satisfied).
According to the previous section we can write:
J(5) = (A4 G'SC)5 + (b—G'S5)5 + 11; i'5§. (99)
The method, here suggested, for the solution of problem (14)-(20) consists in the

G111 at e croblemnts i.h \on-tuzey ras
putational | i ] 1 Lle non } bl
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Let us note that the unconstrained fuzzy function J(&) in (22) is quadratic-
linear as described in the section 3.
Therefore, the minimizing vector &g is given by

iy =—(A+G'SG)" (b - G'Sq), (23)

and it is computed as a linear combination of the vectors of f.n.’s b and § with
non-fuzzy coefficients. Whereas the minimum value is

gy _%(5 ~ G/ (A +G'SG) (b~ G'Si) + 50'ST. (24)

From (23) and (24) we can see that, if S = 0, we get (17) and (18), corresponding
to unconstrained optimization case.

In order to explain further the above arguments, we present here a numeric
and willingly simple example having n = k = 1 and symmetric triangular f.n.’s.

5. A numerical example

For homogeneity with section 2, a symmetric triangular f.n. is indicated by
(¢, as,aq), where ¢ is the mean value and a; and a4 are left- and right-spreads
(in this case equal).

Let us consider the problem (14) subject to

g =q (25)

(5,1,1).

with: A=a=3=(3,0,000=(1,2,2) g=4=(4,0,0)§=
14), &3, results:

The (uhconstrained) minimizing vector of problem (
3= —(1/a)b = (~1/3,2/3,2/3) (26)

which does not satisfy the constraint (25).
We introduce then the penalty function (22):

= 1
J(%) =.1/[2(3 + 160)])3% + (b — 40§)% + 50'62‘ (27)
and we compute the corresponding minimizing value (23)
&0 = —1/(3+ 160)(b — 40§) (28)

and the minimum value (24):

%o = —1/[2(3+ 160)|(6 — 400)" + 500 (29)
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Setting o at the values 0, 1, 10, 100, 1000, 10000 successively, we get the following
values of the minimum 2§ and of the minimizing &5

79 = (—0.167,1.333,0.167) 33 = (—0.333,0.667,0.667)
21 = (3.000,2.605,3.395) &} = (1.000,0.316,0.316)
72 = (3.525,3.037,4.177) &2 = (1.221,0.258,0.258)
3 = (3.587,3.088,4.270) &3 = (1.247,0.251,0.251)
74 = (3.593,3.093,4.280) &3 = (1.250,0.250,0.250)
5 = (3.594,3.004,4.281) 5 = (1.250,0.250,0.250)

As 0 — 400, Zg converges towards the symmetric triangular f.n. (5/4,1/4, 1/4),
while Z; goes to the non-symmetric and non-triangular f.n. (3.594, 3.094, 4.281).
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Optymalizacja funkcji kwadratowej z rozmytymi
wspolczynnikami liniowymi

Celem artykulu jest rozwiazanie szczegdlnego zadania rozmytego programowa-
nia kwadratowego, jako wstepnego kroku w rozmytej optymalizacji nieliniowej.
Najpierw wprowadza sie pewne wlasnosci dotyczace liczb rozmytych. Poza tym
proponujemy mozliwy sposéb rozwiazania pewnych zadan optymalizacji z ogra-
niczeniami przy pomocy funkeji kary.

OnTuMH3anusg KBAAPAaTHOW QYKIHUH C Pa3sMBITBIMHU

AUHENHBIMHA KoddduIHeHTaMU

Ilensio cTaThu sBAsfeTcH pelleHue ocobol 3amaydy pasMbITON KBagpaTHOM
ONTHMHU3AN WK, KAK IPEBapUTEILHOIO LIara K Pa3MbITON HeTHHEeHHON O TH-
MHU3aOHH. B IepByro ouyepenk BBOAATCA HEKOTOPHIE CBOMCTBA, KaCaKoIHecs
Pa3MEITHIX YMCeJ W Pa3MEITOE paclIMpeHHe HepasMBITEIX ¢yHkOuit. Kpome
' 3TOro MIpeJiaraeTcs BO3MOXKHBIN crlocob pellleHUa HEKOTODLIX 3a/a4 OITH-
MH3aO¥H C OPPaHUYEHHSIMHE ¢ HOMOLEI0 GYHKIOKHA WTpada.



