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The objective of this paper is to solve a particular fuzzy quadratic 
optimization problem, as a first ai?J?roach to non linear fuzzy opti­
mization. To this purpose we first introduce some properties concern­
ing fuzzy numbers and ,the fuzzy extension of non-fuzzy functions . 
Moreover, we suggest a possible way for solving some constrained 
optimization problems by penalty function. 

1. Introduction 

In the recent past the quantity of new research in fuzzy linear programming 

has been large. None the less non linear fuzzy optimization seems to have been 

considered only by a small number of authors. 

As a first step in this direction we intend to examine a specific case of 

quadratic unconstrained fuzzy optimization problem (section 3), after introduc­

ing some preliminary notions (section 2). 

1 Research financially supported by Italian Ministry of Public Education (60% fund). 



26 E. CANESTRELLI S. GlOVE 

To this purpose, let us consider a function f(x,p), with x E IRn, p E IRm 

and f : JRn+m -+ JR. Let us assume that the following problem: 

min f(x,p) 
X 

may have the vector x0 = g(p) as the unique minimizing solution, where g : 
JRm-+ JRn. 

We can easily get the extension to the fuzzy case of the non-fuzzy functions 

f and g ((4], p. 98). 

The fuzzy number (= f.n.) (xo);, the i-th component of x0 = g(p), has the 

following membership function ( = m .f.): 

fl(:io);(Y) = max {min[f1.1dpl), ... , flr=(Pm)]: Y = g;(p)} 
pEffi.= 

(1) 

where p = (Pl, P2, ... , Pm) and g(p) = (gl (p), Y2(P), ... , Yn(P)). 
Let us assume, further, that the f.n.'s p; (i = 1, ... , m) are noninteractive 

([4], p. 70). 
The purpose of the present paper is to determine 

zo = m_in f(x,p) 
X 

via the following two steps: 
i) xa = g(p), 
ii) zo = f(xa,p), 

under suitable conditions concerning the functions f and g, as well as the m.f. 

of p. 
In computing the f.n. z0 through ii), we have to take into account the relation 

between x0 and p, acco.rding'to i). 

In order to simplify matters, we restrict to study accordiag to the following 

two conditions: 

a) the components of pare f.n.'s (convex normalized fuzzy sets) of L-R type; 

b) the objective function is quadratic-linear with respect to vector x, i.e. 

J(x,p) = ~x'Ax+:P'x. 

In section 4, a possible way for solving some constrained optimization problems 

through the use of penalty functions is suggested. 

In the following we shall represent the L-R type fuzzy number, as the triple 

(c, a 8 , ad), where c is the mean value, while a 8 and ad are the left- and right­
no-negative spreads. 
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2. Some characteristics of the fuzzy numbers 

DEFINITION 1 Given a f. n. x, we define: 

Supp(x) ={a E IR.: p.;;(a) > 0} 

Let us consider the fuzzy extension, i = h(p), of a non-fuzzy function h, 
between a f.n. i and a vector of f.n. p. 

Some computational techniques have been developed for specific operations 

(for example, the sum and the product of two f.n. 's as increasing binary opera­

tion, see [8] p. 14-42), b11t generally their applications are limited to the case in 

which the fuzzy operands are noninteractive. 

Therefore, it is not correct to calculate z = h(a, b) = 0. 2 +ab using the rules 

of summing up of noninteractive f.n.'s (for example, though the procedures 

indicated in [4] p. 42 and following ones), via the steps 

because c and J. are interactive f.n.'s (see also [5] p. 56). 

Given two f.n.'s x and y, let us suppose now that there exists a bidimensional 

m.f. 11-(x,y)(a, b) (see [8] p. 146 and [6]). Likewise dependency and independency 

concepts in probability theory, we say that 

DEFINITION 2 The two f. n. 's x and y are noninteractive iff: 

11-(x,y)(a, b)= min[p.53 (a), p.g(b)] for every a E IR. and bE IR.. (2) 

Otherwise, we say that x and y are interactive, and in general we cannot obtain 

11-(x,y)(a, b) only trough p.a;(a) and p.g(b) ([8] p. 172). 

In particular, we suppose that y = g(x), where g is a fuzzy extension of 

non-fuzzy function defined in Supp(x). 

PROPOSITION 1 For any a E Supp(x), we have to assign to the ordered pair 

(a, g(a)) the same possibility degree as a, i.e. p.;;(a). Furthermore, the possibility 

degree of ordered pair (a, b) is zero, if b =/=- g(a). Hence, 

{ 
p.a;(a) 

fl(x,y)(a, b)= 
0 

ifb=g(a) 

otherwise 
(3) 

We notice that the relation introduced by y = g(x) is a more restrictive 

concept than fuzzy interactivity between y and x. 

In the following , if y = g(x) we'll call linked by g the two f.n .'s y and x. 
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DEFINITION 3 The f. n. 's Pl and P2 are said to be strictly equal if: 

if Pl = P2 

ifp1 # P2· 

We remark that y = g(x) means that the two f.n .'s y and g(x) are strictly 

equal. 

PROPOSITION 2 Fuzzy extensions of no-fuzzy equivalent algebraic expressions 

remain equivalent. 

Therefore, the usual algebraic properties ofnon-f.n.'s keep their validity even 

with Ln.'s. In particular, the two f.n.'s i and w, defined by: 

z = a(b + c) and w = ab + ac, 

are strictly equal (distributive property of product over addition). 

Likewise, the f.n.'s z and w defined by z = (a+ b) 2 and w = a2 + b2 + 2ab 
are strictly equal (the square of a binomial) . 

In particular, we want to stress that the difference between two strictly equal 

f.n.'s is always 0 (fuzzy zero with zero spread). Such a consequence is coherent 

with the intuitive meaning of a f.n., considered as an approximate measure of a 

quantity: if a is the length of an object, whatever its value may be, it is obvious 

that the difference a - a is always zero (crisp zero) . 

The case is different when we take into account the difference between two 

f.n. 's a and b characterized by the same m .f., but associated with measures of 

different quantities (a and b are noninteractive). In such case, the difference 

between a and b is 0 (fuzzy), because all the possible values of a and b must be 

considered, according to the extension principle. 

In fact, in the first case the extension principle reads: 

fla - b(z) = sup {J.l(ii,b)(x, y) : z = x - y} = sup [J.la(x): z = 0), (4) 
(x,y):x - y=O 

and so: 

{ 
0 if z # 0, 

fla - b(z) = 
1 if z = 0. 

On the contrary, in the second case we obtain: 

fla - b(z) = sup{min[J.la(x), J.la(y) ] : z = x - y}. 

(5) 

(6) 
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EXAMPLE. It is possible to calculate z = h(ii, b)= ii 2 +b+iib+a as z = g(ii, b)= 
(a+ b)( a+ 1). 

It is not correct, however, to calculate separately w = a+ b and f; = a+ 1, 

and successively the product wf; using the rule for the multiplication between 

noninteractive f.n. 's, because y and w are linked by y = h( w) = w- b + 1. 

PROPOSITION 3 Given the f.n. a, there exists an unique f.n . b, linked with a by 

b = g(a) = -a. Its m.f. is given by: 

J..L&(Y) = sup [J..La (x): y = -x] = J.la( -y) for any yE lR, 
X 

and the sum of a = ( c, a 3 , ad) and b = ( -c, ad , a 8 ) is the crisp number 0 
(0, 0, 0) (i.e. fuzzy zero with zero spread). 

Let us recall first a simple order relation among f.n.'s. 

(7) 

DEFINITION 4 Given two f. n. 'sa and b we say that a :S b iff a= min(a, b) ({1 0} 
p. 188 and [4] p. 52} . Likewise a~ b iff a = max(a, b). 

The relation a ::; b (a~ b) among f.n. 's is a partial order. 

PROPOSITION 4 Given the f. n. a, there results a < a + i: for any f. n. i: > 0 
(fuzzy ::era with zero spread). 

Such a characteristic, which holds for i: both non- and interactive with a, means 

that -two f.n.'s a and b = a+ x, with x ~ 0 (fuzzy zero with zero spread), are 

always comparable in the relation ":S" defined in clef. 4. 

EXAMPLE. It results a2 ~ 0 (fuzzy zero with zero spread) for any f. n. a (Fig. 

1}. In other words the product ab, with a and b strictly equal, is a f.n. greater 

or equal to crisp number zero. 



30 E. CANESTRE LLI S. GlOVE 

fL 

1 --- -- ---- ' -------_;.- ~----- - -

1 ..... / :\ 

: \ 
' ' \ 
' ' \ 

/ 

Fig .l. 

' ' 

PROPOSITION 5 Let us assume z = f( x, p) as the fuzzy extension of the non­

fuzzy function f : IRn+m -+ IR. Let us suppose again x = g(p), where g is a 

vector of functions, fuzzy extension of the non-fuzzy functions g; : IRm ~ IR. 

Then the m .f. of z = f( x, p) is given by 

( ) 
{ 

maxp { min[{Lp1 (Pl ), · · ·, flftm (Pm)] : Y = f(g(p ); P)} 
flz Y = 

0 if {p: f(g(p) , p) = y} = 0. 
(8) 

PROPOSITION 6 Given a non fuzz y function f : IRn - · IR+ and its fu zzy exten­

sion z = f(x), where x is a vector of f. n. 's, it turns out z ;::: 0 (fuzzy zero with 

zero spread). 

In fact 

(9) 

By assumption, it results y 2: 0 for any x E IRn, and fl z(Y) = 0 if y < 0. Let us 

note, furthermore, that what stated in the example at the end of prop. 4, my 

be easily proved by prop . 6 setting n = 1 and f(x) = x 2
. 

We note that the considerations developed above about calculus with fuzzy 

functions jj = g(x), can be extended to other operators different from max 

and min. For example we can choose a T-norm (-conorm) [3, 6, 9] instead of 

min (max) operator, so characterizing a more general description of uncertain 

phenomena. 
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3. Fuzzy optimizing a quadratic-linear objec­

tive function 

Let us set the following non-fuzzy unco~strained optimization problem: 

mjn z = f(x , b) = ~x' Ax + b'x, (11) 

where x E IRn, b E IRm, f : IRn+m -> IR and A is a symmetric and positive 

definite n x n matrix. 

The minimization of ( 11) provides the minimizing vector 

(12) 

to which in objective function corresponds the minimum 

() 
1,·_1 

zo = f xo, b = - 2b A b. (13) 

Let us consider then 

. - (- -) 1 _, - -,_ 
m1n z = f x, b = 2x Ax + b x (14) 

as a problem similar to (11) in a particular fuzzy case, i.e. assuming that b and 

consequently x are vectors of f.n. 's and i is a f.n . (only A is a matrix of crisp 

number). 

The purpose is to prove that the problem (14), containing the vector off.n.'s 

b, has the same formal solution given by (12) and (13). Moreover , in such case, 

the computation of the minimizing vector x0 is very easy (immediate if the 

components of b are triangular f.n .'s), because 'it is a linear combination of the 

f.n .'s of vector b with crisp coefficients. In fact we can prove the following 

THEOREM . Given any vector b of noninteractive f. n. 's, setting i 0 = - ~b' A - 1 b 

and i = ~x'Ax + b'x, it results i 0 ::; i, with respect to def. 4, for any vector of 

f.n. 's x . Therefore x = -A- 1b is the minimizing vector solving {14) . 

PROOF: Given the problem (14) it follows from prop . 2 that 

i = f(x , b) =: ~(x + A - 1b)'A(x + A- 1b) - ~b'A- 1 b . (15) 

the first term of the sum in (15) is fuzzy quadratic form with symmetric and 

positive definite matrix A of non-f.n . 's. Consequently, from prop . 6, it results 

1 - -
2(x + A- 1b)'A(.i + A - 1b) ~ 0 (fuzzy zero with zero spread) . 



32 E. CANESTRELLI S. GlOVE 

Therefore, from prop. 4, the minimum value of z is obtained at the vector of 

f.n. 's x0 (ifthere exists one) that~ 

x0 + A -I b = 0 (vector of crisp numbers zero). (16) 

From what we have explained in prop. 3, the minimizing vector x0 exists and it 

is given by 

(17) 

The f.n. zo, corresponding to x0 by (15), is 

(18) 

We note that: 

- the computation of x0 from ( 17) is not particularly hard, because it re­

quires a linear combination of noninteractive f.n. 's with non-fuzzy coeffi­

cients; 

- the computation of z0 from (18) rises many problems, because we have to 

sum and multiply linked f.n . 's; 

- if we read (12) as a function of the type x0 = g(b) , from prop. 5 we can 

directly compute the m.f. of z0 by (8), obtaining 

(19) 

Considering that b is a vector of stochastic independent variables instead of a 

noninteractive f.n. 's, we obtain the probabilistic approach to problem (14). It is 

easy to verify that in latter case the vector x 0 is characterized by the following 

p;obability density: 

where C =[bE IR2
: a = - A - 1b], a= [a1 , a2, ... , an], b = [b1 ,b2, ... ,bn] and 

f; ('i = 1, 2, ... ·, n) is the probability density of i-th component of vector b. 
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4. Constrained optimization using penalty 

functions 

33 

In the study of fuzzy constrained optimization the approach generally used is 

due to Bell man and. Zadeh [1], according to which the objective function is 

transformed into a constraint to be satisfied together with others. 

In the present paper we follow a different approach introducing the non­

satisfied const raints into the objective function. It is obvious that the latter 

method cau be followed when the consequent unconstrained fuzzy optimization 

problem can be solved. 

According to the previous section , the ex tension to the fuzzy case of the 

. penalty fun ction method , used for solving constrained optimization problems 

[7], becomes possible in presence of par ticular linear equality constraints. 

Therefore , we consid er t he problem (14) subj ec t to constraints 

(20) 

where G is a k x n dimensional matrix of crisp numbers and q is a vector of k 

noninteractive (neither between each others nor with b) f.n . 's . 

Using t he penalty function method we can reduce the problem (14)-(20) 

to the unconstrained case and so apply the results described in t he previous 

section. 

In this paper one of the simplest approaches to t he penalty fun ctions has 

been taken into account , as a possible suggestion fo r a resolution method. The 

use of more efficient methods - some of which are described in [7] chap. 12 - is 

highly possible and advisable. 

Let us consider the following fuzzy penalty function: 

]( - ) 1 - 'A - b-, _ 1(G - -)'S(G- -·) X = 2x X + X + 2 X - q X - q ( 21 ) 

where S = diag(CJi) is a n x n diagonal matrix of cr isp numbers containing 

the penalties CJi to be applied to the i-th constraint ( CJ; = 0 if the constraint is 

satisfied). 

According to the previous section we can write: 

1 - 1 
J(x ) = 2x'(A + G'SG)x + (b- G'Sq)'x +-;;/Sq. (22) 

The method. here suggested, for the solution of problem ( 14)-(20) consists in the 

minimizatioll .)f (22) for sufficiently hiw;h values of c-;. '- )11Je advices l"> owrc•)dle 

computational problems in the non-fuzzy case mcy Lt 1-:mnd m [2] <'lld i- . 
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Let us note that the unconstrained fuzzy function J(x) in (22) is quadratic­

linear as described in the section 3. 

Therefore, the minimizing vector xo is given by 

xo =-(A+ G'SG)- 1 (b- G'Sq), (23) 

and it is computed as a linear combination of the vectors of f.n. 's b and q with 

non-fuzzy coefficients. Whereas the minimum value is 

z0 = -~(b- G'Sq)'(A + G'SG)- 1(b- G'Sq) + ~q'Sq. (24) 

From (23) and (24) we can see that, ifS= 0, we get (17) and (18), corresponding 

to unconstrained optimization case. 

In order to explain further the above arguments, we present here a numeric 

and willingly simple example having n = k = 1 and symmetric triangular f.n . 's. 

5. A numerical example 

For homogeneity with section 2, a symmetric triangular f.n. is indicated by 

( c, a 5 , ad), where c is the mean value and a5 and ad are left- and right-spreads 

(in this case equal). 

Let us consider the problem (14) subject to 

gx =if 

with: A= a= 3 = (3,0,0) b = (1,2,2) g = 4 = (4,0,0) q = (5, 1, 1). 
The (~constrained) minimizing vector of problem (14), xg, results : 

xg = -(1/a)b = ( -1/3,2/3, 2/3) 

which does not satisfy the constraint (25) . 

We introduce then the penalty function (22): 

J(x) =d /[2(3 + 16a-)Jx2 + (b- 4a-q)x + ~a-q2 , 
2 

and we compute the corresponding minimizinp; value (23) 

xo = -1/(3 + 16o-)(b- 4o-q) 

and the minimum value (24): 

zo = -1/[2(3 + 16o-)](b- 4o-q) 2 + ~a-q2 . 

(25) 

(26) 

(27) 

(28) 

(29) 
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Setting o-at the values 0, 1, 10, 100,1000, 10000 successively, we get the following 

values of the minimum zi and of the minimizing x~ : 

.zg = ( -0.167, 1.333, 0.167) 

16 = (3.000, 2.605, 3.395) 

z5 = (3.525,3.037,4.177) 

.zg = (3 .587' 3.088, 4.270) 

z6 = (3.593, 3.093, 4.280) 

.zg = (3 .594, 3.094 , 4.281) 

xg = ( -0.333, 0.667, 0.667) 

x5 = (I.ooo, 0.316, o.316) 

x5 = (1.221, 0.258, o.258) 

x5 = (1.247, 0.251, o.251) 

x6 = (1.250 , 0.250, o.250) 

xg = (1.250, o.250, o.250) 

As o----+ +oo, xa converges towards the symmetric triangular f.n. (5/4, 1/4, 1/4) , 

while z0 goes to the non-symmetric and non-triangular f.n. (3.594, 3.094, 4.281). 
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Optymalizacja funkcji kwadratowej z rozmytymi 

wspolczynnikami liniowymi 

Celem artykulu jest rozwi~zanie szczeg6lnego zadania rozmytego programowa­

nia kwadratowego , jako wst~pnego kroku w rozmytej optymalizacji nieliniowej. 

N ajpierw wprowadza si~ pewne wlasnosci dotycz~ce liczb rozmytych. Poza tym 

proponujemy moiliwy spos6b rozwi~zania pewnych zadan optymalizacji z ogra­

niczeniami przy pomocy funkcji kary. 

0nTHMH3aiJ.H.SI KBaApaTHO:A «j>yKIJ.HH C pa3MbiTbiMH 

JIHHe:AHbiMH K0.9«j>«j>HIJ.HCHTaMH 

Uenbro cTaTbH HBJIHeTcH perneHHe oco6o:R 3a,U.a'iH pa3MbiTO:R KBa,u.paTHO:R 

OIITHMH3aU.HH, KaK IIpe,U.BapHTeJibHOrO rnara K pa3MbiTO:R HeJIHHe:RHO:R OIITH­

MH3aU.HH. B rrepBJIO O'iepe,U.b BBO,!J.HTCH HeKOTOpbie CBO:RCTBa, KaCalOlll.HeCH · 

pa3MbiTbiX 'iHcen H pa3MbiTOe pacrnHpeHHe Hepa3MbiTbiX <l>YHKU.H:R. KpoMe 

1 9TOrO IIpe,U.JiaraeTCH B03MOJKHbi:R CIIOC06 pellieHHH HeKOTOpbiX 3a,U.a'i OIITH­

MH3ai:r,HH C orpaHH'ieHHHMH C IIOMOlll.blO <i>YHKU.HH IliTpa<Pa. 


