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In this paper open-loop three-level Stackelberg strategies in de-
terministic, sequential decision-making problems for linear discrete-
time descriptor systems and quadratic cost function are studied. Nec-
essary conditions for existence of open-loop Stackelberg strategies
are derived. Open-loop Stackelberg solutions (norm — minimizing)
are calculated from the necessary conditions and the conditions for
existence of a unique solution of the necessary conditions are given.
An example is given to illustrate the results of the paper.

1. Introduction

A great deal of attention has been paid to methods of design and analysis of
Stackelberg strategies in multi-level sequential decision-making problems [1,5,8-
10]. During the last 20 years, there has been much interest in studying of
the descriptor systems [3-4,6-7]. To the best knowledge of the present authors,
there are no published results for multi-level sequential decision-making prob-
lems characterized by descriptor systems. In section 2, multi-level sequential
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decision-making problems characterized by quadratic cost functions and linear
time-invariant discrete descriptor systems are considered, and necessary condi-
tions for the existence of open-loop Stackelberg strategies are given. In section
3, open-loop Stackelberg solutions (norm-minimizing) are calculated from the
necessary conditions and the conditions for existence of a unique solution of the
necessary conditions are given. An example is given to illustrate the results of
the paper in section 4. '

2. Problem formulation and derivation of nec-
essary conditions
Consider a tree-level Stackelberg problem for a linear descriptor system
Ez(k+ 1) = Az(k) + B'u'(k) + B®u*(k) + B%*(k) Ez(0) = Ezo (2.1)

with associated cost function for each decision maker P;

K-1 3
Ji(ut,u? ) = 1/2 Z[z(k)'@‘::(k)+Zuj(k)’R.ijuj(k)]
k=0 i=1
+ 1/22(K)E'Q'(K)Ez(K) i=1,2,3 (2.2)

where F is a square matrix with rank (E) = r < n, and det[sE — A] # 0 for any
s € R,z(k) € R" is a descriptor vector, u/ (k) € R™ is control vector of P;, the
usual positive-(semi)definiteness conditions are imposed on Q*, Q'(k), R¥,i,j =
1,2,3, as in the associated optimal control problem.

Now let us assume that the decision-making sequence is {Py, Py, P}, that
is, decision maker Pj is the leader and selects his strategy first; P is the first
follower and selects his strategy as the second; and P; is the second follower and
selects his strategy as the last. Consequently, in making his decision, P; knows
the control u? and u® of the other decision makers; P> knows u®, and he knows
that P, reacts according to declared functions u? and u®; P knows that P,
reacts according to his declared control 42, and he must take into account the
reaction of P; to declared controls u? and u3. The simplest problem is solved
by P; (an optimal control problem); a more complex problem is solved by Ps
(a two-level Stackelberg problem); and the most complex problem is solved by
Ps (a three-level Stackelberg problem). The complete solution of the problem is
obtained by the solution of the leader’s control problem, since the leader must
solve problems faced by both P; and P; to determine their reactions to a given
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u3, in order to select that control which is best with respect to J3, taking these

reactions of the followers into account.

Therefore, in order to solve three-level Stackelberg problem, we must first
determine the rational reaction of P; to controls u? and u® which are declared by
Py and Ps, respectively. Since the underlying information pattern is open-loop,
the optimization problem faced by P; is reduced to an optimal control problem
defined by (2.1) and (2.2), for i = 1, given u* and u®. In order to solve this
optimization problem we append the constraint (2.1) to,the cost function J;
using the Lagrange multiplier p*(k):

Ji(ul,utu?) = 1/22(K)E'QY(K)Ez(K)
k-1
+ S[Hu(F) - p(k + 1) Ez(k +1)]
k=0

where
Hi(k) = pl(k+1)[Az(k)+ Blul(k) + B2u?(k) + B3u®(k))

b 1/2e(kYQe(k) + 3w (kY RV (k)]
ji=1
From the results of [3] or [6], we deduce that the necessary conditions, under
which u! constitutes the rational reaction to given u? and u3, take the form

Ez(k + 1) = Az(k) 4+ B*u' (k) + B*u*(k) + B>u®*(k) Ez(0) = Ezo (2.3a)

E'p'(k) = Q'z(k) + A'p'(k+1) E'p'(K)=E'Q(K)Ez(K)  (2.3b)

H

0 = RMul(k) + BYp'(k +1) (2.3¢)

Now, let us consider the problem faced by Ps. In deciding on the rational
reaction of the second follower Py to u®, the rational reaction of P; to u? and
u3 must be taken into account. Thus what P, must do is to minimize the cost
function (2.2) for i = 2 subject to (2.3). Toward this end, by introducing the

Lagrange multipliers p?(k), n!(k), m'(k) and n'(K), one can get

Jo(ul, u?, u3) 1/2z(K)YE'Q*(K)Ez(K)

n(K)[E'Q (K)Ex(K) — E'p (K)]

> [Ha(k) - p*(k + 1) Bz(k + 1) — n' (k) E'p! (k)]
k=0

+ +
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where
Ha(k) = p*(k+1)[Ax(k)+ B'ul(k) + B*u?(k) + B2u®(k)] -
3
+ 1720 (k) Q%2(k) + Y w (k) R v (k)]
+ ni(k)[Q (k) + AP (k+1)]
+ m!(kY[R"u!(k) + BYp' (k + 1)]

By using the standard variational techniques, the necessary conditions that
characterize u? being the rational reaction of P, to u3 are obtained in the form

Ex(k+ 1) = Az(k) + B*ul(k) + B?u*(k) + B%u®(k) Ez(0) = Ezq (2.4a)
E'pH(k) = Q'z(k) + A'p'(k +1) E'pY(K)=E'Q'(K)Ez(K)  (2.4b)
0= R u!(k)+ BYp'(k+ 1) (2.4c)

E'p(k) = Q*x(k) + A'p*(k + 1) + Q'n' (k)

E'p*(K) = E'Q¥(K)Ez(K) + E'Q*(K)En'(K) (2.4d)
En'(k +1) = An'(k) + B'm'(k) En'(0)=0 (2.4e)
0 = R*u!(k) + BYp*(k + 1) + R m! (k) (2.4f)
0= R*u*(k) + B¥p*(k + 1) (2.4g)

Finally, consider the problem solved by P;. P; minimizes his own function (2.2)
for i = 3, and at the same time he must take account (2.4) which character-
izes the rational reactions of P; and P, to u®. Now by appending the con-
straints (2.4) to the cost function Js by means of the Lagrange multipliers
p3(k), n%(k), n3(k), g(k), m*(k), m3(k), w(k), n?(K) and n3(K), we obtain that

Ja(ut, u?, u®) 1/22(K)E'Q*(K)Ez(K)

n*(KY[E'Q'(K)Ez(K) — E'p*(K)]
n®(K)'[E'Q*(K)Ez(K) + E'Q'(K)En!(K) — E'p*(K)]
Y [Hs(k) — p(k + 1) Ez(k + 1) — n*(k) E'p (k)

— n3(k) E'p*(k) — q(k + 1) En'(k + 1)]

+ o+ 40
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where -
H3(k)

p3(k + 1) [Az(k) + B ul (k) + B*u(k) + B3u3(k)]
3
1/2[z(k) Qx(k) + ) u! (k) R¥ v (k)]

j=1
n?(k)'[Q'z(k) + A'p'(k + 1)]
n3(k)'[Q%z(k) + A'p*(k + 1) + Q'n' (k)]
q(k + 1)[An' (k) + B'm! (k)]
m? (k)[R u! (k) + BYp' (k + 1)]
w(k) [R*'ul(k) + BYp?(k + 1) + R m* (k)]
m3 (k) [R**u*(k) + B¥p*(k + 1)]

+ 4+ + 4+ ++ +

Therefore, the necessary conditions for the control u® constituting the open-loop
Stackelberg solution of the leader p3 take the form

Ez(k + 1) = Az(k) + B ul(k) + B2u*(k) + B3u3(k) . (2.5a)
E'p(k) = Q*z(k)+ A'p'(k+1) E'p'(K)=E'Q'(K)Ex(K)  (2.5b)
0 = R™ul(k) + BYp'(k + 1) (2.5¢)
E'p*(k) = Q*z(k) + A'p°(k+ 1) + Q'n' (k)

E'P*(K) = E'Q*(K)Ez(K) + E'Q"(K)En*(K) (2.5d)
En'(k+1) = An'(k) + B'm!(k) En'(0)=0 (2-5€)
0 = R?* (k) + BYp*(k + 1) + R m! (k) (2.5f)
0 = R*?u*(k) + B*p*(k + 1) (2.5g)

E'p’(k) = Q@z(k) + A'p’(k + 1) + Q'n?(k) + Q°n®(k)
E'p*(K) = E'Q*(K)Ez(K)+ E'Q'(K)En*(K)+ E'Q*(K)En®(K)(2.5h)

En*(k+1) = An®(k) + B'm?*(k) En%(0)=0 (2.51)
En®(k+1) = An®(k) + B*m3(k) + B'w(k) En3(0)=0 (2.5)
E'q(k) = Q'n®(k) + A'q(k +1) E'q(K) = E'Q'(K)En®(K) (2.5k)
0 = R34 (k) + BYp3(k + 1) + R"'m?*(k) + R w(k) (2.51)
0 = R3%u*(k) + B¥p*(k + 1) + R2m3(k) (2.5m)
0= BYg(k+ 1) + R w(k) (2.5n)

0 = R¥3u3(k) + B¥pP(k + 1) (2.50)
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3. Characterization of the optimal solution

For any n x n matrix E with rank (E) = r < n, there exist n x n nonsingular
matrices U and V and the r x r unit matrix I such that

I0
0 U] (3.1a)

UEV =

Therefore, for convenience in the later derivation and without loss of gener-
ality, let us assume that E has the form (3.1a), and A, B’ and @’ have the
corresponding form

— A A Bl J J
{A|IB|Q'} = 8o L Qi iz (3.1b)
Az Ap B, (Q12) Qs
For facility of notation, we define the following matrices
i [ 0 Ay B ) [0 0 0] ) [ B2
RU= |4 Qh 0| Qh=[0 Q% o Bi=|0]| 320
| B’ 0 RY 0 0 R [ 0
[0 R1! B2] [0 0 0] [ B3]
R2=|RY Q% o0 2,=10 @3, o Bi=| 0| (3.2b)
| BY 0 R*¥ [0 0 R%| | 0
[0 R2 B3] [0 0 0]
R®=|R? @3 0| Qh=[0 @} 0 (3.2¢)
| B o0 R%® [0 0 R%

By =(00000000000 Ay Bf B BY)
By=(00000000A;2B,00000)
Bs=(0A12 B} 000000000000)

By=(0000A;2 B B200000000) (3.24)
S1=(A% Q1,00Q},000000Q3,000)
S;=(000 A% Q1,0000000000)

S3=(0000000000 A% Qi,000)
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S4=(0000000 4% Q5 00Q3000) (3.2¢)
a(k) = (p3(k+1),n3(k),m?(k), qa(k + 1), n3(k)', w(k),
m3(k), p3(k + 1), nd(k), m (k) pd(k + 1Y, zo(k),  (3.26)
ul(k)', u?(k), v*(k)')

Using this new notation, the necessary conditions (2.5) can be rewritten as

follows: _
z1(k+1) = Anzi(k) + Bra(k) 21(0) = 210 (3.3a)
ni(k+1) = Aunj(k) + Baa(k) ni(0)=0 (3.3b)
ni(k + 1) = Ayni(k) + Bsu(k) ni(0)=0 (3.3¢)
nd(k + 1) = Aynd(k) + Bsa(k) n3(0)=0 (3.3d)

pi(k) = Qnyz1(k) + A1ypi (k + 1) + Ssi(k)

pi(K) = Qi (K)z1(K) (3.3¢)
pi(k) = QF z1(k) + Qiyni(k) + A%y p3(k + 1) + Sat(k)

PI(K) = Q1 1(K)z1(K) + Q11 (K)ni(K) (3.3f)
pi(k) = Q%121(k) + Q1ini(k) + QT ni(k) + ALyp3(k + 1) + Sra(k)

P (K) = Q11(K)z1(K) + Q1 (K)ni(K) + Q1 (K)ni(K) (3-3g)

a1 (k) = Q1ind(k) + Alyqa(k + 1) + Sau(k)

3.3h)
a(K) = Q%I(K}n?(}'{) (
0 = Sizi(k)+ Shni(k) + Syni(k) + Sini(k) + Bypi(k + 1) :
R/ .2 =7} =] P33 - (3'31)
+ Bipi(k+1)+ Bipi(k + 1) + Byqi(k + 1) + R*a(k)
If the following matrices are defined
A = diag(A11, An1, A1, An) R=R® (3.4a)
B = (B, B, B, B} . (3.4b)

§ = (3 3 5 5, (3.4¢)
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1 2
Q?l Qll Qll

Q= Qoh g g él (3.4d)
Qh @ 0 0
then the system (3.3) can be written in the compact form
Z(k + 1) = Az(k) + Ba(k) #(0) = (2}, 00 0) (3.5a)
(k) = Q&(k) + A'p(k + 1) + Su(k) p(K) = Q(K)z(K) (3.5b)
0= 5'z(k) + B'p(k + 1) + Ra(k) (3.5¢)

where z(k) and p(k) are defined by
(k) = (z1(k)', ni(k)', ni(k), ni(k)") (3.5d)
(k) =(p(k), qa(k), pi(k)', pi(k)') (3.5€)

Now, the two-point boundary value probem (3.5) is solved in the usual way
by defining the linear transformation

B(k) = P(k)z(k) (3.60)
then, from (3.5a), we can get
p(k +1) = P(k+ 1)Az(k) + P(k + 1)Bu(k) (3.6b)
Substituting this into (3.5¢) gives
[R+ B'P(k + 1)Bla(k) = —[S' + B'P(k + 1) A)z(k) (3.6¢)
This equation may not have an exact solution; however, a least-square (norm-
minimizing) solution is
a(k) = —=[R+ B'P(k+1)B]"'[S' + B'P(k + 1) A)z(k) (3.7)
Substituting (3.6) and (3.7) into (3.5b), and assuming that it is true for Z(k),
we can obtain that P(k) must satisfy the matrix Riccati equation
P(k)=Q+APk+1)A-[S+A'P(k+1)B]"}[R+ B'P(k +1)B] (

(S + B'P(k + 1)4] 59

P(K) = Q(K) (3.8b)
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Substituting (3.7b) into (3.5a) gives

2k +1) = Z(k)z(k) 2(0) = (2} 000) (3.9a)
with Z(k) being defined as follows:

Z(k)=A— B[R+ B'P(k+1)B]"'[S'+ B'P(k + 1)A] (3.9b)

Up to now, norm-minimizing open-loop Stackelberg solutions ul(k), u?(k)
and ©®(k) have been derived, which are 13th, 14th and 15th subvectors of a(k),
respectively, according to (3.2f). In fact, if [R+ B’ P(k+ 1)B] is nonsingular for
k=K-—-1,K—2,...,0, then, from (3.6¢) it follows that the solution is unique.

Now we shall conclude the above discussion with a theorem which gives
conditions under which the necessary conditions in the section 2 admit a unique
solution.

THEOREM 1 Under the assumptions (a) the matriz E has the form (3.1a); (b)
the matrices L(k) = R+ B'P(k+ 1)B are all nonsingular fork=0,...,K -1,
the necessary conditions (2.5), i.e. (3.5), admit a unique solution which is given
by

u(k) = —[R+ B'P(k+ 1)B]"'[S' + B'P(k + 1)A)z(k) (3.10)
with P(k) and (k) being given by (3.8) and (3.9), respectively.

Proor: The statement of Theorem 3.1 has already been verified in the discus-
sion prior to Theorem 3.1.

4. Illustrative example

Let the system and the cost functions for a three-level Stackelberg problem he

10 zi(k+1) | [0 1 z1(k) LYok
{0 0][:C2{k+2) _{1 OHza(k)}L 1} .

+ [ jll } u?(k) + l i ] us(k)

z1(0) = 210

J; = i{l/?x(k)’x(k) + 172 (k)]*} + 1/22(3)'2(3) j=1,2,3
k=0
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where z(k)' = [z1(k), z2(k)].
After developing a computer program, the matrices L(k) being invertible for
k =0,1,2, and the following results were obtained.

ul(0) = —z10  u'(1) =0.2590284z1(1)  u!(2) = 3.650466z1(2)
u2(0) = 0 w?(1) = 0124494721 (1)  u?(2) = 1.002068z1(2)
w3(0) =0 u3(1) = —1.383523z1(1)  u3(2) = —5.6525342;(2)

5. Conclusion

This paper develops explicit expressions for three-level open-loop Stackelberg
strategies for sequential decision making problems characterized by linear dis-
crete—time descriptor system and quadratic cost function. The results of the note
can be extended in a straightforward manner to multi-level Stackelberg prob-
lems. But the burden of computing multi-level open-loop Stackelberg strategies
will be considerably increased, and so will the time of computation.
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Trzypoziomowe strategie Stackelberga w linio-
wo—kwadratowych systemach deskryptorowych

W artykule rozwija sie strategie Stackelberga w deterministycznych sekwencyj-
nych zadaniach podejmowania decyzji dla liniowych systeméw deskryptorowych
z czasem dyskretnym kwadratowa funkcja kosztu. Wyprowadzono warunki ko-
nieczne istnienia strategii Stackelberga bez pamietania. Rozwiazania minimali-
zujace Stackeiberga sa wyznaczane z warunkéw koniecznych i podano warunki
istnienia jednoznacznego rozwigzania dla warunkéw koniecznych. Przytoczono
przyklad ilustrujacy wyniki zawarte w artykule.

TpexyposueBas crpaterus Crakennbepra B InHel-

HOKBaJPaATHBIX NECKPHIITOPHBIX CHCTEMaX

B cTaTre paccMaTpHBaeTcH cTpaTerns Crakensbepra B leTepMHHEPOBAHHBIX
nocnefoBaTeIbHBIX 3afa4YaX NPUHATHSA pelleHUA [JIf JHHEHAHEIX [eCKpHI-
TOPHBIX CHCTEM, IUCKPETHBIX IO BpEMEHH, ¢ KBaipaTHON QyHKIMeH! 3aTpaT.
DopMmynupyloTcs HeobXOAMMEIE YCIOBHSA CYLIeCTBOBAHUA HE3aMKHYTOM’ CTpa-
Terun Crakennbepra. Pemennsa Crakennbepra no MUHAMHM3aOUK onpenens-
0TCH B3 HeoGXOAMMEIX YCIOBHI X IPUBOAATCH YCIOBYSA CYLIECTBOBaHMSA Of-
HO3HAYHOIO pellleHus ANd HeoOXomMMEIX ycimoBuit., [laeTcs mpuMep HIIIOC-
TPUPYIOLMI pe3yNbTaThl IPUABEJEeHHEIE B CTAThE,







