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In this paper open-loop three-level Stackelberg strategies in de
terministic, sequential decision-making problems for linear discrete
time descriptor systems and quadratic cost function are studied. Nec
essary conditions for existence of open-loop Stackelberg strategies 
are derived. Open-loop Stackelberg solutions (norm - minimizing) 
are calculated from the necessary conditions and the conditions for 
existence of a unique solution of the necessary conditions are given . 
An example is given to illustrate the results of the paper. 

1. Introduction 

A great deal of attention has been paid to methods of design and analysis of 

Stackelberg strategies in multi-level sequential decision-making problems [1 ,5,8-

10]. During the last 20 years, there has been much interest in studying of 

the descriptor systems [3-4,6-7]. To the best knowledge of the present authors, 

there are no published results for multi-level sequential decision-making prob

lems characterized by descriptor systems. In section 2, multi-level sequential 
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decision-making problems characterized by quadratic cost functions and linear 

time-invariant discrete descriptor systems are considered, and necessary condi

tions for the existence of open-loop Stackelberg strategies are given. In section 

3, open-loop Stackelberg solutions (norm-minimizing) are calculated from the 

necessary conditions and the conditions for existence of a unique solution of the 

necessary conditions are given. An example is given to illustrate the results of 

the paper in section 4. 

2. Problem formulation and derivation of nec

essary conditions 

Consider a tree- level Stackelberg problem for a linear descriptor system 

with associated cost function for each decision maker P; 

K-1 3 

1/ 2 L)x(k)'Qix(k) + L ui (k)' Rij ui (k) ] 
k = O j=l 

+ 1/2x(K)' E'Qi(I<)Ex(I<) i = 1, 2, 3 (2.2) 

where Eisa square matrix with rank (E) = r < n, and det[sE - A] =/= 0 for any 

s E R, x( k) E Rn is a descriptor vector, ui ( k) E Rri is control vector of Pj, the 

usual positive-(semi)definiteness conditions are imposed on Qi, Qi(k ), Rii, i, j = 
1, 2, 3, as in the associated optimal control problem. 

Now let us assume that the decision-making sequence is {P1 , P2 ,Pa}, that 

is, decision maker P3 is the leader and selects his strategy first; P2 is the first 

follower and selects his strategy as the second; and P 1 is the second follower and 

selects his strategy as the last. Consequently, in making his decision, P1 knows 

the control u 2 and u3 of the other decision makers; P2 knows u3 , and he knows 

that P 1 reacts according to declared functions u 2 and u3 ; P3 knows that P2 

reacts according to his declared control u3
, and he must take into account the 

reaction of P 1 to declared controls u 2 and u3 . The simplest problem is solved 

by P 1 (an optimal control problem); a mote complex problem is solved by P2 

(a two-level Stackelberg problem); and the most complex problem is solved by 

Pa (a three-level Stackelberg problem). The complete solution of the problem is 

obtained by the solution of the leader's control problem, since the leader must 

solve problems faced by both P1 and P2 to determine their reactions to a given 
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u3 , in order to select that control which is best with respect to ]a, taking these 

reactions of the followers into account. 

Therefore, in order to solve three-level Stackelberg problem, we must first 

determine the rational reaction of P1 to controls u2 and u3 which are declared by 

P2 and P3 , respectively. Since the underlying information pattern is open-loop, 

the optimization problem faced by P1 is reduced to an optimal control problem 

defined by (2.1) and (2.2), fori = 1, given u 2 and u3 . In order to solve this 

optimization problem we append the constraint (2 .1) to. the c~st function J 1 

using the Lagrange multiplier p1(k): 

where 

h ( u 1 , u 2 , u3
) 1/2x(K)' E'Q 1 (K)Ex(K) 

k - 1 

+ :~_)H1 (k) - p1(k + 1)' Ex(k + 1)] 
k=O 

H 1(k) p1(k + 1)'[Ax(k) + B 1u1 (k) + B 2 u2(k) + B 3 u3 (k) ] 
3 

+ 1/2[x(k)'Q 1x(k) + L:>i(k)' R 1iui(k)] 
j=l 

From the results of (3] or (6], we deduce that the necessary conditions, under 

which u 1 constitutes the rational reaction to given u 2 and u3 , take the form 

E'p1 (k) = Q1 x(k) + A'p1 ~k + 1) . E'p1 (K) = E'Q 1(K)Ex(K) 

0 = R11 u1(k) + B 1'p1(k + 1) 

(2.3b) 

(2.3c) 

Now, let us consider the problem faced by P2. In deciding on the rational 

reaction of the second follower P2 to u3 , the rational reaction of P1 to u 2 and 

u3 must be taken into account. Thus what P2 must do is to minimize the cost 

function (2.2) for i = 2 subject to (2 .3) . Toward this end , by introducing the 

Lagrange multipliers p2(k), n 1(k), m1(k) and n 1(K), one can get 

1/2x(K)' E'Q 2(K)Ex(K) 
+ n1(K)'[E'Q 1(K)Ex(K) - E'p1(K)] 

k-1 

+ l)H2(k) -- p2(k + 1)' Ex(k + 1)- n1(k)' E'p1(k)] 
k=O 
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where 

H2(k) p2(k + l)'[Ax(k) + B1u 1(k) + B2u 2(k) + B 3 u3 (k)] 
3 

+ 1/2[x(k)'Q2x(k) + L ui(k)(R 2iui(k)] 
j=l 

+ n 1(k)'[Q1x(k) + A'p1(k + 1)] 
+ m1(k)'[R11 u1(k) + B 11p1(k + 1)) 

By using the standard variational techniques, the necessary conditions that 

characterize u 2 being the rational reaction of P 2 to u3 are obtained in the form 

(2.4d) 

(2.4e) 

(2.4f) 

0 = R22u2(k) +B2'p2(k + 1) (2.4g) .. 
Finally, consider the problem solved by Pa. Pa minimizes his own function (2.2) 

for i = 3, and at the same time he must take account (2.4) which character

izes the rational reactions of P 1 and P2 to u3 . Now by appending the con

straints (2.4) to the cost function la by means of the Lagrange multipliers 

p3 (k), n 2 (k), n3 (k), q(k), m 2 (k), m 3(k), w(k), n2(K) and n3 (I<), we obtain that 

Ja(u1 , u2 , u3
) = 1/2x(K)' E'Q3 (K)Ex(K) 

+ n2(I<)'[E'Q 1(K)Ex(K)- E'p1(K)] 

+ n3 (I<)' [E'Q2(K)Ex(K) + E'Q1(K)En 1(K)- E'p2 (K)] 
k-1 

+ L[Ha(k)- p3 (k + 1)'Ex(k + 1)- n 2(k)' E'p1(k) 
k:O 

- n3(k)' E'p2(k) - q(k + 1)' En1(k + 1)) 
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where 

H3 (k) = p3 (k + 1)'[Ax(k) + B 1u1(k) + B 2 u2(k) + B3 u3 (k)] 
3 

+ 1/2[x(k)'Q3 x(k) + L ui(k)' R3iui(k)] 
j=l 

+ n2(k)'[Q 1x(k) + A'p1(k + 1)] 
+ n3 (k)'[Q2x(k) + A'p2(k + 1) + Q 1n 1 (k)] 

+ q(k + 1)'[An1(k) + B1m1(k)] 
+ m 2(k)'[R11u1(k) + B 11p1(k + 1)] 

+ w(k)'[R21 u1(k) + B 11p2 (k + 1) + R11 m1(k)] 
+ m 3 (k)'[R22u 2 (k) + B 2'p2(k + 1)] 

Therefore, the necessary conditions for the control u3 constituting the open-loop 

Stackelberg solution of the leader P3 take the form 

Ex(k + 1) = Ax(k) + B 1 v1(k) + B2u2(k) + B3 u3(k) (2.5a) 

E'p1(k) = Q1 x(k) + A'p1(k + 1) E'p1 (K) = E'Q 1(K)Ex(K) (2.5b) 

0 = R11 u 1(k) + B 1'p1(k + 1) (2.5c) 

E'p2(k) = Q2x(k) + A'p2(k + 1) + Q1n1(k) 

E'p2(K) = E'Q2(K)Ex(K) + E'Q1(K)En 1(K) (2.5d) 

En 1(k + 1) = An1(k) + B 1m 1 (k) En1(0) = 0 (2.5e) 

0 = R21 u 1(k) + B 1'p2 (k + 1) + R11 m 1(k) (2.5f) 

0 = R22u2( k) + B 2' p2(k + 1) (2.5g) 

E'p3 (k) = Q3 x(k) + A'p3 (k + 1) + Q1n2(k) + Q2n3 (k) 

E' p3 (K) = E'Q3 (K)Ex(K) + E'Q1(K)En2(K) + E' Q2(K)En3 (K)(2.5h) 

En2(k + 1) = An2(k) + B 1m 2 (k) En2(0) = 0 (2.5i) 

En3 (k + 1) = An3 (k) + B 2m 3 (k) + B 1w(k) En3(0) = 0 (2.5j) 

E'q(k) = Q1n3 (k) + A'q(k + 1) E'q(K) = E'Q1(K)En3 (K) (2.5k) 

0 = R31 u1(k) + B 11p3 (k + 1) + R11 m2 (k) + R21 w(k) (2.51) 

0 = R32u2(k) + Bz'pa(k + 1) + R22m,3(k) 

0 = B 1
' q(k + 1) + R 11 w(k) 

0 = R33u3 (k) + B 3'p3 (k + 1) 

(2.5m) 

(2.5n) 

(2.5o) 
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3. Characterization of the optimal solution 

For any n x n matrix E with rank (E) = r < n, there exist n x n nonsingular 

matrices U and V and the r x r unit matrix I such that 

UEV = [ ~ ~ l (3.la) 

Therefore, for convenience in the later derivation and without loss of gener

ality, let us assume that E has the form (3.la), and A, Bi and Qi have the 

corresponding form 

(3.1 b) 

For facility of notation, we define the following matrices 

[A~,' Azz B'] [~ 
0 

;, l [ 11] RY= Q~2 ;:, -z 
Q~2 

-z (3.2a) Q22 = Bz = 
Bl' 0 0 2 

[ R~' 
flll Bjl 

[: 

0 

Rt] [ 1l] (3.2b) Jl22 = Q~2 R~z 
-3 -3 

B~ = Q22 = Q22 
-2/ 

0 0 E2 

R" = [ R~'' RP DJ] [0 
0 

Rt] Q~2 R~3 
-3 

Q~2 (3 .2c) Q22 = ~ 
-3/ 

0 0 E2 

- 1 2 3 B1 = (0 0 0 0 0 0 0 0 0 0 0 A12 E 1 E 1 E 1) 

- 1 
Ez = (0 0 0 0 0 0 0 0 A12 B 1 0 0 0 0 0) 

B3 = (0 A12 Bi 0 0 0 0 0 0 0 0 0 0 0 0) 

- 1 2 E4 = (0 0 0 0 A12 E 1 E 1 0 0 0 0 0 0 0 0) l~i.~d ~ 

S1 = (A;1 Qi 2 0 0 Qi2 0 0 0 0 0 0 Qf20 0 0) 

Sz = (0 0 0 A;1 Qi 2 0 0 0 0 0 0 0 0 0 0) 

- I 1 
S3 = (0 0 0 0 0 0 0 0 0 0 A21 Q 12 0 0 0) 
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- I 1 2 S4 = (0 0 0 0 0 0 0 A21 Q12 0 0 Q120 0 0) (3.2e) 

u(k)' = (p~(k + 1), n~(k)', m 2(k)', q2(k + 1)', n~(k)', w(k)', 
m3(k)',p~(k + 1)', n~(k)', m1 (k)',p~(k + 1)', x2(k)', (3.2f) 

u1(k)', u2(k)', u3 (k)') 

Using this new notation, the necessary conditions (2.5) can be rewritten as 

follows: 

X1(k + 1) = Aux1(k) + .81 u(k) X1(0) = X1Q 

1 1 - 1 n1(k + 1) = Aun1(k) + B2u(k) n 1(0) = 0 

n~(k + 1) = Aun~(k) + B3u(k) n~(O) = 0 

n~(k + 1) = A11 n~(k) + B4u(k) n~(O) = 0 

p~(k) = Q~ 1 x1(k) + A~ 1p~(k + 1) + S3u(k) 

p~(k) = Q~1 x1(k) + Q~1 n~(k) + A~ 1p~(k + 1) + S4u(k) 

Pi(!<)= Qi1(K)xt(K) + Q~1 (K)n~(K) 

p~(I<) = Q~1 (K)xt(K) + QI1 (K)n~(K) + Q~ 1 (K)ni(K) 

qt(k) = Q} 1 n~(k) + Ai1qt(k + 1) + S2u(k) 
qt(K) = Q} 1 (K)n~(K) 

o = s~x1(k) + s~nHk) + s~ni(k) + S4n~(k) + .B~pHk + 1) 
+ B4Pi(k + 1) + B~p~(k + 1) + B~qt(k + 1) + R33u(k) 

If the following matrices are defined 

A= diag(Au,Au,A11 ,A11 ) R = .R33 

B'- (B' B-, .8' B') - 1 2 3 4 

S' = (S~ s~ s~ 84) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.3d) 

(3.3e) 

(3.3f) 

(3 .3g) 

(3.3h) 

(3.3i) 

(3.4a) 

(3.4b) 

(3.4c) 
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then the system (~.3) can be written in the compact form 

x(k + 1) = Ax(k) + Bu(k) x(O)' = (x~ 0 0 0 0) 

p(k) = Qx(k) + A'p(k + 1) + Su(k) p(K) = Q(K)x(K) 

o = S'x(k) + B'p(k + 1) + iW(k) 

where x(k) and p(k) are defined by 

x(k)' = (x1(k)' , nUk)', ni(k), ni(k)') 

p( k )' =·(pi( k )'' ql ( k )'' p~ ( k )''PI( k )') 

X. Liu a.nd S. Zha.ng 

(3.4d) 

(3.5a) 

(3 .5b) 

(3 .5c) 

(3 .5d) 

(3.5e) 

Now , the two-point boundary value probem (3 .5) is solved in the usual way 

by defining the linear transformation 

p(k) = P(k)x(k) (3.6a) 

then, from (3 .5a), we can get 

p(k + 1) = P(k + 1)Ax(k) + P(k + 1)Bu(.k) (3.6b) 

Substituting this into (3.5c) gives 

[R + B' P(k + 1)B]u(k) = -[S' + B' P(k + 1)A]x(k) (3.6c) 

This equation may not have an exact solution ; however, a least-square (norm

minimizing) solution is 

u(k) = -[R + B' P(k + 1)f3]- 1[S' + B' P(k + 1)A]x(k) (3.7) 

Substituting (3.6) and (3.7) into (3.5b) , and assuming that it is true for x(k) , 
we can obtain that P( k) must satisfy the matrix Riccati equation 

P(k) = Q +A' P(k + 1)A- [S +A' P(k + 1)f3]- 1 [R + B' P(k + 1)B] (3.Sa) 

[S' + B' P(k + 1)A] 

P(K) = Q(K) (3.8b) 
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Substituting (3.7b) into (3.5a) gives 

x(k + 1) = Z(k)x(k) x(O)' = (x~ 0 0 0 0) (3.9a) 

with Z(k) being defined as follows: 

Z(k) =A- B[R + B' P(k + l)Bt 1[S' + B' P(k + l)A] (3 .9b) 

Up to now , norm-minimizing open-loop Stackelberg solutions u 1(k), u2(k) 
and u 3 (k) have been derived , which are 13th, 14th and 15th subvectors of u(k), 

respectively, according to (3 .2f). In fact, if [R+ B' P(k + l)B] is nonsingular for 

k = f{- 1, ]{- 2, . .. , 0, then, from (3.6c) it follows that the solution is unique. 

Now we shall conclude the above discussion with a theorem which gives 

conditions under which the necessary conditions in the section 2 admit a unique 

solution. 

THEOREM 1 Under the assumptions (a) the matrix E has the form (3.1a); (b) 

the matrices L( k) = R + B' P( k + 1 )B are all nonsingular fork = 0, ... , K - 1, 

the necessary conditions (2. 5), i.e . (3. 5), admit a unique solution which is given 

by 

u(k) = -[R + B' P(k + l)BJ - 1[S' + B' P(k + 1)A]x(k) (3.10) 

with P(k) and x(k) being given by (3.8) and (3.9), respectively. 

PROOF: The statement of Theorem 3.1 has already been verified in the discus

sion prior to Theorem 3 .1. 

4. Illustrative example 

Let the system and the cost functions for a three-level Stackelberg problem he 

[ ~ 0 l [ x1(k + 1) l [ 0 1 ] [ x1(k) ] + [ 1 ] ul(k) 
0 X2(k+2) 1 0 X2(k) 1 

+ [ ~ ] u
2
(k) + [ ~ ] u

3
(k) 

lj = L {1/2x(k)'x(k) + 1/2[ui (kW}+ 1/2x(3)'x(3) j = 1, 2, 3 
k=O 
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where x(k)' = [x1(k), x2(k)]. 

After developing .a computer program, the matrices L( k) being invertible .for 

k = 0, 1, 2, and the following results were obtained. 

u1(0) = -x1o 

u 2(0) = 0 
u3 (0) = 0 

u1(1) = 0.2590284:~:1(1) 
u2(1) = 0.1244947:~: 1 (1) 
u3 (1) = -1.383523:~:1(1) 

5. Conclusion 

u1(2) = 3.650466:~:1(2) 
u2(2) = 1.002068x1(2) 

u3 (2) = -5 . 652534:~:1(2) 

This paper develops explicit expressions for three-level open-loop Stackelberg 

strategies for sequential decision making problems characterized by linear dis

crete-time descriptor system and quadratic cost function. The results of the note 
can be extended in a straightforward manner to multi-level Stackelberg prob

lems. But the burden of computing multi-level open-loop Stackelberg strategies 

will be considerably increased, and so will the time of computation. 
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Trzypoziomowe strategie Stackelberga w linio

wo- kwadratowych systemach deskryptorowych 

W artykule rozwija si~ strategie Stackelberga w deterministycznych sekwencyj

nych zadaniach podejmowania decyzji dla liniowych system6w deskryptorowych 

z czasem dyskretnym kwadratow'l: funkcj'l: kosztu . Wyprowadzono warunki ko

nieczne istnienia strategii Stackelberga bez pami~tania. Rozwi'l:zania minimali

zuj C!Ce Stackel berga SC! wyznaczane z _ warunk6w koniecznych i podano warunki 

istnienia jednoznacznego rozwi'l:zania dla warunk6w koniecznych. Przytoczono 

przyklad ilustruj<!:CY wyniki zawarte w artykule. 

TpexypoBHeB&jl cTpaTerujl CTaKenL6epra B nuHe:A

H OKBBAPBTHbiX AeCKpHllTOpHbiX CHCTeM&X 

B cTan,e paccMaTpHBaeTCg cTpaTerHg CTaKeJII.6epra B JI,eTepMHHHpoBaHHbiX 

nOCJie)J,OBaTeJILHbiX 3a)J,a'laX npHH$1TH$1 peweHH$1 )J,JI$1 JIHHe:9HLIX )J,eCKpHn

TOpHLIX CHCTeM, )J,HCKpeTHbiX no BpeMeHH1 C KBaJI,paTH0:9 «i~YHK~He:9 3aTpaT. 

<t>opMyJIHpylOTC$1 He06XO)J,HMLie yCJIOBH$1 Cyni,eCTBOBaHH$1 He3aMKHYT0:9 CTpa

TerHH CTaKeJIL6epra. PeweHH$1 CTaKeJIL6epra no MHHHMH3a~HH onpeJI,eJig

lOTC$1 H3 He06XOJI.HMLIX ycJIOBH:9 H npHBOJI.$1TC$1 ycJIOByg cyw,ecTBOBaHH$1 O)J,

H03Ha'IHOro pemeHH$1 )J.JI$1 Heo6xo)J.HMLIX ycJIOBH:9. ,naeTcg npHMep HJIJiroc

TpHpyrom.Ha pe3yJILTaTLI npiJJ)e)J,eHHLie B CTaTLe. 




