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-1. Introduction 

In this work we obtain the asymptotic optimality of the non-stationary value 

iteration (NVI) adaptive policy, for a partially observed (PO) Markovian re­

placement process, when the performance index is the long-run average cost . 

The same ideas however, could be used in several other applications (see [20] 

for some examples) which share many of the general properties of the model to 

be described in .the next section. 

The NVI adaptive policy has been used in e.g., [8] and [11] in the discounted 

cost case (with complete separable metric state space), and in e.g., [1] and [13] 

in the average cost case (with denumerable state space). Below we describe 

the NVI adaptive policy for a PO production/replacement problem, the one 

considered by [18] and [22], when the performance index is the average cost, and 

prove its optimality. The proof follows the approach in [1], but the extension to 

the problem under study relies on some results obtained in [6] and [2] for the 

replacement problem. The NVI policy has also been considered for the general 

Bore! state space case , and with the average cost criterion, in [9]. The proof of 

the optimality of the NVI policy in that case however , relies on several ergodicity 

conditions, some of which (e.g., [9, Ergodicity condition 3.1( 4)]) are not satisfied 

in several applications (see [20]), including the replacement problem considered 

in this work (see also Remark 4.2 below) . 

This work is organized as follows . The replaeement problem is described 

in Section 2. In Section 3 we present a brief review of the parameter estimation 

algorithm developed in [21], [19], and to be used in the specification of the 

adaptive policy. Section 4 contains the main result of this work : it describes the 

NVI policy for the replacement problem, and shows its optimality. Section 5 

contains some conclusions. 

2 . A Markovian Replacement Model 

Consider the following production/replacement process. A machine that pro­

duces items at the beginning of distinct time periods t =.. 0, 1, 2, .. . , can be in 

one of two states, according to its working condition. Let {x1 , t = 0, 1, 2, . . . } 

denote the state of the machine . Xt takes values in X = {0, 1} = {good, bad}. 
The quality of the item produced is a function of the underlying state, and it is 

assumed that the machine deteriorates with operation. The state of the machine 
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is only partially observed, and the decision maker has two actions available in 

order to control the machine. Denote by {Ut, t = 0, 1, 2, .. . } the control process. 

Ut takes values in U = {produce , replace} = { 0, 1} . There is a cost associated 

with each of these actions, as follows : the cost of the item produced is 0 if the 

machine is in the good state, and C if the machine is in the bad state; the cost 

of replacement , R, is assumed independent of the underlying state. Further, it 

is assumed that 0 < C < R < oo . Let c(ut) = (c(O,ut), c( 1,ut))', Ut E U, where 

c: X x U -r IR , is the cost accrued when the machine is in state Xt, and action 

Ut is selected; 1 denotes transpose. The ,observation process {Yt, t = 1, 2, 3, . .. } 

takes vatues in Y = {0, 1}. 

At the beginning of each time period a decision has to be made , based on 

the observations , on whether to replace the machine or not. If the machine is 

replaced, it will be in the good state at the end of the same period. It is further 

assumed that no item is produced during this period . 

Assume for the moment that there is an underlying probability space (rl,B,P); 

it will be specified below. The state process evolves according to the transition 

probabilities Px,x,+ 1 (ut) defined by Pij(v) = P{xt+1 = ilxt = i,ut = v}. The 

transition probability matrices P( Ut), Ut E U, with entries Px,x,+ 1 (Ut), are given 

by: 

P(1) = [ 1-IJ I} l ' 
. 1 -I} I} 

(1) 

where IJ , the unknown parameter , is the probability of machine failure in one 

time step, IJ E 8, with 8 the parameter space (see Remark 4.1 below). The 

observation process is related to the state and the control processes by means of 

the conditional probabilities Qx,y,+, (ut), defined by Qik(v) = P{Yt+1 = klxt = 
i, Ut = v }. These probabilities are characterized by Qv E (0.5, 1.0), v = 0, 1, 

where Qv is the probability of making a correct observation when the action 

selected is v. 

Let Pt/t = (p~~~, p~~~) = (1 - Pt/t , Pt;t) be the conditional probability dis­

tribution of the two states given the past observations and controls (the initial 

probabilities Po;o = Po = (P{xo = 0} , P{xo = 1}) are assumed given). That is, 

Pt/t is defined as: 

Pt/t = P{xt = 1IYt, .. . , Y1, Ut-1, .. . , uo} fort~ 1, 

d - - (1) 
an Po;o = Po = Po · (2) 
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Using B_ayes' rule one can obtain an expression for the updated conditional 

probability Pt+l/t+l, given Yt+l, Ut and .prior distribution Pt/t. In our case, and 
for t 2: 0, the updated conditional probability is given by: 

Pt+l/t+l = T(O, Ptft, Ut)· (1- Yt+t) + T(1, Ptft, Ut); Yt+l 

where 

and 

T(O,p, 0) 

T(1, p, 0) 

((1- p)Bqo + p(1- qo))/((1- p)qo + p(1- qo)), 

((1- p)B(1- qo) + pqo)/((1- p)(1- qo) + pqo) 

T(O, p, 1) = T(1, p, 1) =B. 

(3) 

(4) 

(5) 

T( k, p, v) is the updated conditional probability that the machine is in the bad 

state, given observation k, action v and prior distribution p. 

Define n = (X X u X Y) 00 to be the canonical sample path space with 

elements in X x U x Y, and let B be the Borel a--algebra· obtained by endowing 

n with the discrete topology. We are interested in the infinite horizon case. Let 

hn+l, n 2: 0, represent a generic element of Hn+t, the "history space" at time n, 
defined recursively by Hn+l = Hn X U x Y, Ho= {p E R2 :pC1) = 1- p,pC 2) = 
p, 0 ~ p ~ 1}. From [4) recall that a stochastic kernel Jln (·I ·) on U, given H n, is a 
collection of probability distributions {J.tn( ·lhn), hn E Hn} on U. An admissible 

control policy, denoted by g, is a sequence of stochastic kernels {J.ttCI·)}tENu{o}, 
and if Jlt (·I·) = J.t( ·I·) for all t, g is called stationary. The objective of the control 
problem is to find an optimal policy among the admissible policies, such that it 

minimizes the expected long-run average cost, given by: 

(6) 

Here the expectation is taken with respect to the unique probability measure 

PJ
010

, on B, induced by Po;o and a control policy g ([4, p. 140-144]). In the 
sequel it is understood that whenever a (given) control policy is under effect, 

the expectations and limits are taken with respect to (the appropriate marginal 

of) PJ
010

• Similarly, the expressibns in (1)-(5) are also interpreted with respect 

to PJoto '' 
Furthermore, from [6) and [2), one has that when the parameters of the 

model are known, the optimal policies for this replacement problem can be 
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characterized in terms of Ptjt, t ~ 0, by a so calleg control-limit p*, 0 ~ p* ~ 1, 

such that for "all values of Pt!t ~ p*, it is always optimal to let the machine 

produce , but for Pt/t > p*, it is optimal to replace the machine". 

Finally, let tk> k ~ 1, be the kth replacement time (i.e., the kth time when the 

machine is replaced). The process evolves in regenerative cycles, and since for the 

model considered, if replaced at the beginning of period tk> k ~ 1, the machine 

will be in the good state at the end of that period ([8, p. 587]), it follows that th~ 
observations {Yt.+th::>:t are irrelevant in the sense that the state ofthe machine 

is perfectly known at times tk + 1, k ~ 1. Thus, PJ
010 

{Yt.+l = 1} = 1 - qo and 

PJ
010 

{Yt.+l = 0} = qo do not depend on e, meaning that the sequence of ob­

servations {Ytk+th::>:l provides no information about the unknown parameter e. 
This property of the model was taken into account in the specification of the 

parameter estimation algorithms (see [21], [19] for details). 

3. The Parameter Estimation Algorithm 

Denote by e0 the (unknown) true value of the parameter. It is assumed that 80 

is constant and that Bo E 8. The estimation algorithm to be shown below is 

based on the minimization of the expected value of the square of the prediction 

error, and so it will be referred to as the pe algorithm. It takes into account 

an arbitrary (random) number of observations made in each of the regenerative 

cycles. 

The pe algorithm, for n ~ 1, is specified by (see [21), [19]): 

7rEJ { Bn + n ~ 1 R~~l ·1/Jn(Bn) · En(Bn)}, (7) 

1 [ ' ' ] Rn + n + 
1 

1/Jn(en) ·1/J~(en)- Rn , (8) 

{Jl E e, Rl = 1, where: En(-) is the prediction error at the nth replacement time, 

defined as the difference between the vector of observations available in the nth 

regenerative cycle, and its expected value; 1/J( ·) is defined as the negative of the 

partial derivative of the prediction error with respect to the unknown paramefer. 

That is, the search for the true value of the parameter is in the direction of the 

negative gradient of the prediction error, and the step size is proportional to 

the magnitude of this error. The gains Rn, n ~ 1, minimize the variance of 

the estimates (see [3, Remark 3, p. 643], or [17, Remark 3.3, p. 150]); 1re is a 

projection operator that takes into account that e is a probability. 
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In [21], [19], by means of the ODE method (see e.g., [16]), it was shown 

that the pe algorithm converges w.p.1 (with respect to the unique probability 

measure induced by a given admissible policy) to Ba. It is also shown in [21) and 

[19) that B0 is the unique, globally asymptotically stable limit point associated 

with the pe algorithm. We refer the reader to [21), [19) for details. In the sequel 

we will use the pe algorithm to specify the NVI adaptive policy associated with 

the replacement problem under consideration. 

4. NVI Adaptive Policy 

We let c(p, u, B) :::: p · c(u) = (1 - p, p) · c(u) to show not only that these 

costs are functions of p (recall that we are using the fact that p is completely 

characterized by p, and so the optimization problem (6) reduces to a scalar 

one), but also that they could be explicit functions of e. Although that is not 

the case for the particular model of the replacement problem that we have been 

considering, the results to be presented also apply when the immediate costs 

depend on e. Thus, from now on, we work under this new asumption. 

In order to describe an "iteration" of the NVI adaptive policy for the re­

placement problem of Section 2, we introduce the functions ht: [0, 1) X e-+ IR, 

t 2': 0, as follows: 

ho(p, B) min{ c(p, u , B)} 
uEU 

1 

h1+1 (p,B) = min{c(p,u,B) + LD(k,p,u,B)h1(T(k,p,u,e),e)}, (9) 
uEU k=O 

fort= 0, 1,2, ... , where D(k,p,u,B) is, for each e E 0, the probability that 

the next observation will be k, given the probability distribution p and control 

action u. Also, dehne the seqt:ence of functions Vt: [0 , 1) X e-+ U, t;::: 0, by: 

va(p, e) arg min{ c(p, u, e)} 
uEU 

1 

Vt+l(P, B) arg min{ c(p, u, B)+ L D(k, p, u, B)ht(TO· , p, u, e) , e)} ' (10) 
uEU k=O 

fort=0,1,2, . . .. 

Observe that since U is finite , there is no problem guaranteeing the existence 

of the functions { Vt(P, B) }t~o. The policy YNVI = { Vt(Ptft , Bt)} t~O (also denoted 

YNv1(p, B)) , with {vt}t~o given by (10), {p 1 ; 1 }t~o a sequence of estimates of the 
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conditional probability that the machine is in the bad state" at timet given past 

observations and actions, and {Bt} 1 ~ 1 a sequence of estimates converging w.p.1 

to (the true value of the parameter) ea, is called an NVI adaptive policy. 

An "iteration" of the NVI adaptive policy, for the replacement problem of 

Section 2, can be described as follows. Let Bk and Pt,ft,, be given from the 

previous iteration; (.Ot./t• is an estimate of the conditional probability that the 

machine is in the bad state at time tk, given past observations and actions, 

computed using the parameter estimates { Bk} k ~ 1 as if they were, for each k, 

the true value of the parameter; see equation (11) below). Using observation 

Yt. +1 one updates Pt.+1/t•+1 by means of: 

Pt. +1/td1 = T(O, Pt./tk, Utk, Bk) ·U-Yt.+1 )+ T( 1, Pt./tk' Ut~, Bk) ·.Yt.+ 1 (11) 

(this is equation (3) with Bk taken as the true value of the parameter) . Next, one 

computes ht,+1 (p, e) and Vt.+1 (p , e) using equations (9) and (10) respectively~ 

The control action at time tk + 1 is Ut.+1 = Vt.+1 (p, e). If Ut.+1 = 0, the time 

counter is increased and the iterative process is repeated with the same value 

of the parameter estimate . If Ut,+l = 1, one uses the parameter estimation 

algorithm to update the estimate, and after the time counter is increased, the 
iterative procedure is repeated, now with Bk+l as the true value of the parameter . 

REMARK 4 .1 In order for the procedure described above to work, one has to 

guarantee that the process will replace infinitely often (i.o.) for otherwise, if the 

parameter estimate reaches a value for which the solution of the optimization 

problem is to "produce for all values of p", then convergence will not be obtained. 

Since for this replacement problem it is known (see [2, Lemma 4.1]) that under 

adaptive control policies (parametrized by e), regeneration (i.e ., replacement of 

failed machines) occurs i.o., we assume the following to hold throughout this 

work: 

AssUMPTION. Replacement occurs i.o., and after each replacement the machine 

is in the good state. 

This assumption is satisfied if the parameter space is given by 

8 = [8,min{1 - 8, R~ C - 8}], 

8 > '0 (cf. [2, Theorem 3.2]). This remark also applies in the case of the certainty 

equivalent adaptive policy. (see [2]). 
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In order to prove the average cost optimality of the NVI adaptive policy, 

we need to consider the sequence of functions { et(P, O)}t~o, p E [0, 1], 0 E 0, 
defined by: 

et(P, 0) =: ht(P, 0)- t · V(O) - h(p, 0), t = 0, 1, .. . , (12) 

where V(·) and h(·, ·)are, respectively, the constant and the mapping satisfying 

the average cost optimality equation for the replacement problem of Section 2 

(see equation (13) below), and the functions ht(-, ·), t = 0, 1, ... , are those 

computed using equation (9). 

For each 0 E 0, the sequence { et(P, O)}t~o, p E [0, 1] converges to a unique, 

finite limit point, which is independent of p. This follows from the work in [12], 

because for the replacement problem considered here, despite the fact that the 

number of possible states is uncountably infinite, the set of possible next states 

is finite since Y and U are both finite sets. Thus, the results in [12], obtained 

for the denumerable state space problem, apply to our replacement problem as 

well. We now show this explicitly. 

The remainder of this section is organized as follows. First, we prove that for 

each 0 E e the sequence defined in equation (12) is bounded for all p E [0, 1] and 

t ~ 0. Next, we show that for each 0 E 0 the sequence {et(p, O)}t~o, p E (0, 1], 

has a finite limit point, which is independent of p E [0, 1]. In order to prove this 

last statement, we will recall some of the results obtained in [6] for PO Markov 

decision models . Finally, the above results, together with some additional results 

obtained in [11] and [2] for the replacement problem considered in this work, 

will be used to show the optimality of the NVI adaptive policy. 

Observe that : 

(Cl) For the replacement problem considered in this work, there exist (for 

each 0 E 0) a bounded constant V(O) and a bounded (measurable) function 

h(p, 0), p E [0, 1], satisfying: 

1 

V(O) + h(p, 0) = min{c(p, u, 0) + L D(k, p, u, O)h(T(k, p, u, 0), B)}, (13) 
uEU k = O 

(cf. [5, Theorem 3.1], [6 , Theorem 4.2]). Furthermore, 

(C2) Since for each 0 E e the immediate costs c(xt, Ut) are uniformly 

bounded for Xt E X, Ut E U and t ~ 0, then h0 (-, ·), defined in equation 

(9), is finite. 

Thus we have the following result. 
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LEMMA 4.1 Consider the sequence {et (p, B) }t:;::o-; p E [0 , 1], I} E 0, defined in 
equation (12). Then there exists a constant M ( 8) < oo, such that for each I} E 0, 

iet(P, 8)1 S M(8), for all p E [0, 1] and t 2: 0. 

PROOF: The proof of this lemma closely follows that of [12, Lemma 1]. Because 

of results (Cl) and (C2) mentioned above, for each 8 E 0 there is a finite 

number M(B) such that for all p E [0 , 1], e0 (p, 8) is bounded by M(8). Assume 

that let(p, B) I :<; M(8) for all p E [0, 1]. Also, let g8 be an average cost optimal 

policy (i.e., one that minimizes the right hand side of equation (13)), and let gf 
be a policy minimizing the right hand side of equation(~). Then, from (9): 

1 

ht+I(P, B)::; c(p, g8(p), 8)+ :L D(k, p, g8(p), B)ht(T(k, p, g8(p), 8), B). (14) 
k=O 

Now, subtract h(p, B) and (t + l)V(B) from both sides of (14), to obtain: 

1 

et+1(p,B) ::; c(p,g8(p),B)+ LD(k,p,g8(p),8)ht(T(k,p,g8(p),B),B) 
k=O 

-tV(B)- V(8)- h(p, B) 
1 

L D(k, p, g8(p), B)ht(T(k, p, g8(p), B), B)- tV(B) 
k=O 

1 

- LD(k,p,g8(p),B)h(T(k,p,g8 (p),B),B), (15) 
k=O 

where the equality follows because g8 satisfies (13). That is, we obtain: 

1 

et+1 (p, 8) :<; L D(k, p, g8(p), B)et(T(k, p, g8(p), 8), B). (16) 
k=O 

Similarly, from (9): 

1 

ht+l (p, B) = c(p, gf (p ), B)+ L D( k, p, gf (p), B)ht(T( k, p, gf (p ), B), B), (17) 
k=O 

since gf minimizes the right hand side of (9) at the (t + l)st iteration. Following 

the same procedure we just did to obtain (16), one obtains from (17) that: 

1 

et+l(p, B)= L D(k, p, gf(p), B)et(T(k,p, gf(p), 8), 8). (18) 
k=D 
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As in [12], from equations (16), (18) and the induction hypothesis, one ob­

tains that for each G E 8, let(P, G) I :S M(G) < oo, for all p E [0, 1], completing 

the proof. • 

.·We note that the proof of Lemma 4.1 requires fewer assumptions than that 

of([12, Lemma 1]) since the summations in equations (14) through (18) are 

finite, due to the finiteness of the set of possible next states . 

We recall from [6] the following definitions and results , to be used in the 

proof of the optimality of the NVI adaptive policy: 

• ([6, Definition 4.1]) For each p E [0, 1], the sets of ancestors, descendents 

and relatives of p are defined recursively as follows: 

Ap {sE (0, 1]: 3n EN U {0}, yn+l := {y1 , ... , Yn+I} ~ Y, 

un := { Vo , .. . , lln} ~ U, for which p = T(yn+l, s , vn)}, 

Dp {sE (0, 1]: 3n EN U {0}, yn+l := {y1, . .. , Yn+I} ~ Y, 

un := { llo, ... , 1tn} ~ U, for which s = T(yn+l, p, un)}, 

R~1 ) ApU{p}UDp, 

where the maps used in these definitions are obtained by using the maps 

given in (4), and are computed recursively as follows: 

T(yl, ·, uo) 

T(yn+l, ·, un) 

T(y1 , ·,uo), 

T(Yn+l> T(yn, ·, un-l), un) · 

• ([6, Definition 4.2]) For p E [0, 1], define its genealogical tree GTp as 
GTp = UnENR~n), where the sets R~n) are defned recursively by R~n+l) = 

(1) 
UsER1"lRs ,nEN. 

• ([6, Section 6]) For the replacement problem considered in this work, the 

maps T(y,·,O) are injective for yE Y, and since T(y,·,1) = G, then for 

all p E [0, 1], GTp is a countable set. Also (see [6, Section 4.1]), GTp is 

the smallest invariant set containing p (a set B contained in the Bore! 

CT-algebra generated by [0, 1], B([O, 1]) , is called invariant if Dp ~ B and 

A p ~ B for all p E B; see [6 , Definition 4.3]). Furthermore ([6, Section 

4]), the sequence of conditional probabilit ies {Pt;th;:::o , defined by equa­
tion (3) , remains in the part icular subset GTp containing the given init ial 

distribution p . 
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• Finally, recall result (Cl) mentioned above, namely, that under the uni­

form boundedness condition there is, for each B E 8, a bounded solution 

to the average cost optimality equation (13) on each invariant set GTp, 
for all p E [0, 1]. Furthermore, the same average cost is attained on each 

invariant set GTp, for all p E [0, 1]. 

These results suggest that the proof that the sequence { et(p, B)}t~o, p E 

[0 , 1], defined in (12), has a finite limit point independent of p, for each BE 8, 
follows from the results obtained in [12] for the denumerable state space case. 

This is so, provided that the following conditions are satisfied: 

(C3) For each B E 8 , and for any stationary policy, the Markov chain re­

stricted to GTp , for all p E [0, 1], is non-dissipative. 

(C4) For each B E 8, and for any average cost optimal policy it holds that 

each state in GTp, for all p E [0, 1], which is positive recurrent under this average 

cost optimal policy, is also aperiodic. 

(C5) For each BE 8, and for any average cost optimal stationary policy the 

associated Markov chain in GTp, for all p E [0 , 1], has no two disjoint closed 

sets. 

(conditions (C3), (C4) and (C5) correspond to assumptions 3, 4 and 5 respec­

tively, in [12], assumptions 1 and 2 in [12] correspond to results (Cl) and (C2), 

which we already mentioned, hold for the problem considered in this work). 

For each BE 8, let m(p, B):::::: lim inf et(P, B) and M(p, B):::::: lim sup et(P, B). 
t-+oo t-+oo 

By Lemma 4.1 the functions m(-,·) and M(-, ·) are bounded. Consider the fol-

lowing condition, weaker than condition (C3): 

(C3') For each B E 8, and for any stationary policy which minimizes the 

right hand side of equation (9), or the right hand side of 

1 

m(p, B) > min{c(p, v, B)- V(e) + """"D(k ,p,v,e)h(T(k,p,v,e),e) 
vEU L 

k =O 
1 

-h(p,e) + LD(k,p,v,e)m(T(k,p,v ,B),e)}, 
k = O 

or the right hand side of 

1 

M(p,e) < rnin{c(p, v, ()) - V(())+"""" D(k, p, V, ())h(T(k, p, v, e),()) 
vEU L 

k=CI 
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---------------------------------------------

1 

-h(p,O) + LD(k , p, v,O)M(T(k,p ,v ,e),e)}, 
k=O 

the Markov chain specified by GTp. for all p E [0, 1), is non-dissipative. 

From the proofs in [12] it follows that if the Markov chain has a non-empty 

set of recurrent states under the policies specified in (C3') , then (C3') (as 

opposed to ( C3)) suffices for obtaining the results in [12]. This can be con­

cluded by simply following the proofs in [12]: cf. , [12 , p. 300, proof of Lemma 

1] and [1 2, p. 304, proof of Theorem 2]; in all the other cases in which the 

non-dissipativeness assumption is used in [12], it is associated with average cost 

optimal policies: e.g ., [12, p. 301, proof of Theorem 1] , [12, p. 502, proof of 

Lemma 3]. 

In our case, ( C3 ') and a non-empty set of recurrent states under the policies 

specified in (C3 ') is all that is needed because, .as remarked above, the adaptive 

policy will only work under the assumption that the process replaces i.o. (cf. 
Remark 4.1), and so we do not need to consider arbitrary stationary policies. 

We now verify that conditions (C3'), (C4) and (C5) are satisfied for the PO 

replacement problem considered in this work . 

First, observe that due to the regenerative structure of the replacement pro­

cess being considered, the zero state in GTp, for all p E [0, 1], is recurrent. Now , 

the replacement process starts in a state that may not be reached from the zero 

state (recall that the set of next states is finite due to the finiteness of Y and 

U). However, after the first replacement, and for each 0 E 0, the Markov chain 

restricted to GTo specifies a recurrent class. This is the case because zero is a 

recurrent state and recurrence is an equivalence relation. Also , note that from 

the results in [6] we have that after the first replacement the Markov chain al­

ways lives in GTo, which as mentioned before, is a countable set. In addition , 

since we are considering the long-run average cost problem, the early behaviour 

of the process (i.e., that up to the first replacement), does not affect the optimal 

expected average cost. 

From the above discussion we have that GT0 does not contain two disjoint 

closed subsets , because: (a) GTo specifies a recurrent class, and so it does not 

contain transient states, and (b) GT0 is the smallest invariant set containing 0 

(the zero state). 

Furthermore, if we denote by Pij the probabilities associated with the Markov 

chain restricted to GTo , with i, j E GTo, then L:f=l Pij --+ 1 uniformly in i as 

N --+ ' oo (simply because GT0 specifies a single class) . This in turn implies, 
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by [7, Theorem 3) , that for each e E 0 the Mar.kov chain restricted to GT0 is 

non- dissipative. 

Finally, from [15, Chapter 6, page 145), recall that if for a denumerable 

recurrent Markov chain with period d, one defines the relation R on the states 

of the Markov chain by: "iRj if and only if starting at i the process can reach 

j in md steps , for some m E N", then R is an equivalence relation, and it 

partitions the states into cyclic (or periodic) subclasses . The important point 

here is that if one observes the chain after every d steps, the resulting process 

is again a Markov chain, with noncyclic (or aperiodic, or periodic with period 

1) behaviour. Thus a recurrent Markov chain with period d > 1 is really d 

separate recurrent aperiodic classes . It follows for the replacement problem we 

are studying that since for each e E 0, GT0 is the smallest invariant set, then 

GT0 specifies a recurrent aperiodic chain. In fact, since the Markov chain is 

non-dissipative, it follows from [15, Definition 6.2, page 131) that this chain 

is ergodic. This fact, together with the recurrent and aperiodic behaviour (and 

denoting again by P;j the probabilities associated with the countable state space 

specified by GTo, with i, j E GTo) implies that limn-+oo P;~n) exists and is strictly 

positive for all i in the class GTo . Thus for each e E 0 GT0 specifies a positive 

recurrent (or strongly ergodic) Markov chain (see [14, page 85]). 

The previous discussion implies that assumptions 1, 2, 4 and 5 in [12), and the 

weaker condition (C3') given above, are satisfied for the replacement problem 

considered in this work. This, together with Lemma 4.1, enables the conclusion 

of [12, Theorem 2). We state this result precisely in the following lemma. 

LEMMA 4.2 For each 8 E 0, the sequence { et(P, B)}t~o, p E [0, 1), defined in 

equation {12}, converges to a finite limit point as t -+ oo, for all p E [0, 1). 
Furthermore, this limit is independent of p. 

REMARK 4.2 In [1) and [9), the proofs of the optimality of the NVI policy use 

the fact that sequences analogous to that defined in (12), can be bounded for 

each t = 0, 1, 2, ... , by M· (1 - J1)t, with M< oo and 0 < 11 < 1. This is not t_he 

case for the replacement problem of Section 2. 

Recall from [11, Lemma 3.1 and Example in page 238), that for the PO 
replacement problem considered in this work we have that: 

sup Jc(p, u, Bo) - c(p, u, Bt) l -+ 0 as t-+ oo , (19) 
P,l-' 
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and 

sup IlD(-, p, u, Bo)- DC, p, u , Bt)llv ----> 0 as t----> oo (20) 
p,J.L 

(with ll·llv the total variation norm for signed measures; cf. [11, p . 237]). With 

these results we can state the following lemma, the proof of which follows from 

[1 , Lemma 3.0]. 

LEMMA 4.3 For all p E [0 , 1], the functions ht(P, ·): 8 ----> IR, t 2: 0, defined in 

equation (9 ), are continuous. 

We can now state the main result of this work. 

THEOREM Consider the replacement problem described in Section 2, with U = 
{product, replace}, and Qv E (0.5, 1.0), v = 0, 1. Let { Bt}t?: 1 be a sequence of 

estimates that converges w.p.l (with respect to the unique probability measure 

induced by the NVI adaptive policy, say PP9 
N;[I, since po eompletely characterizes 

0 ,llQ 

Po;o) to Bo. Then, the NVI adaptive policy ffNvr is average cost optimal. 

PROOF. The reasoning of this proof parallels that in [1]. Define for each p E [0, 1] 

and u E U, the function: 

ci>(p, u, B0 )::::::: c(p, u, Bo)+ 
1 

+ L D(k, p, u, B0 )h(T(k, p, u, B0 ), Bo)- h(p, B0 )- V(Bo) (21) 
k=O 

with B0 the true (unknown) value of the parameter. 

Note that since h(·r ·) and V(-) are bounded, so is cl>(-,·,·). Furthermore, it 

satisfies (see e.g., [10, Theorem 3.2] or [1 , Theorem 3.2]). 

ci>(Ptft, Ut, Bo) = E~:'.'B~ [c(Ptft, ut, Bo) + h(Pt+l/t+l, Bo) 

-h(Pt/t , Bo)IPt/t• Ut] - V(Bo) (22) 

for each t = 0, 1, 2, . ... Next: (i) sum both sides of (22) from t = 0 to t = !; 
(ii) take expectation (with respect to P~o~B~) on both sides of the resulting 

expression (this gets rid of the conditional expectation); and (iii) multiply both 

sides of the resulting expression by 1/(l + 1), to obtain: 

1 ~ 1 E~o~B~ [~<I>(Pt /t,ut,Bo)] = 1 ~ 1 E~a~B~ [~ c( Pt ;t,ut,Bo)] 
-V(Bo) + l ~ l E~;}~[h(Pij,. Bu)- h(po, 80 )]. (:23) 
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Since h(- , ·)is bounded (cf. [5 , Theorem 3.1]), the last term in (23) vanishes 

as l---+ oo. Therefore, for the NVI adaptive policy g NVI> we will have that: 

V(Bo) = limsup -[ 
1 

1 E~o~B~ [t c(Ptjt, Ut, Bo)] , 
n-oo + t=O 

(24) 

meaning that g NVI is average cost optimal, if we can show that, under g NVI> 

the left hand side of (23) goes to zero as l ---+ oo. 

In order to prove this last statement, let, as before, { B}t~ 1 be a sequence 

of estimates that converges w.p .1 to 00 , and let Pt/t be an estimate of the 

conditional probability that the machine is in the bad state at timet, computed 

using the estimate 01 . Then (cf. [1]) 

if>(Pt/t > vt(Pt/t > Bt), Bo) = ii>(f5t;t, vt(Pt/t> Bt), Bo) 

- (ht(Pt;t,Bt) - ht(Po,Bt)) + (ht(Ptit,Bt)- ht(Po,Bt)) (25) 

c(Pt/t> Vt(Pt/t> Bt), Bo)- ht(Ptjt, Bo)- V(Bo) 
1 

+ L D(k, Pt;t, Vt(Pt;t, Bt), Bo)h(T(k, Pt;t, Vt(Ptft, Bt), Bo), Bo) 
k=O 

- [c(p~;t , vt(Pt;t , Bt), Bt)- ht(Po, Bt) 

+ t, D(k, Pt/t> Vt(Pt/t> Bt), Bt)ht-1(T(k, Pt;t, Vt(Pt;t, Bt), Bt), Bt)l 

+ ( ht (f5t;t, et) - ht (Po, et)) , (26) 

where: the first four terms in (26) correspond to the definition of if>(-,·, ·) in (21); 

the terms in square brackets come from the definition of h1(-, ·) in (9) and the 

third term in (25); and the terms in parentheses are those in (25) . Now, we add 

and subtract h(po , Bo) and h1 _ 1 (po , B1 ) in the right hand side of equation ( 26) , 

and rewrite it as follows : 

= [c(f5t;t , vt(Pt;t, Bt), Bo)- c(Pt;t, vt(Pt;t, Bt), Bt)] 

+ [t D(k , Pt/t , Vt(Pt/t > Bt) , Bo) 
k=O 

· ( h(T(k , Pt;t , vt(Pt;t , Bt) , Bo), Bo)- h(po, Bo) ) 

1 

- LD(k , /Jt;t,vt(Pt;t,iJt),IJt) 
k=O 
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· (ht-1(T(k,fit;t,vt(Pt;t,{)t),iJt),Bt)- ht-1(Po,Bt))] 

+ [ht(Ptft , Bt)- ht(Po, Bt) + h(po, Bo)- ht(Ptft, Ba)] 

+ [ht(Po,Bt)- ht-1(Po,Bt)- V(Bo)]. (27) 

We want to show that each term in square brackets in equation (27) goes 

to 0 as t -+ oo . This will complete the proof of the theorem. 

The first term in brackets in equation (27) vanishes as t -+ oo because of 

(19). For simplicity in the presentation, we consider first the last two terms in 

brackets in (27). Rewrite the third term in brackets in (27) as: 

ht(Ptft' Bt)- ht(Po, Bt) + ht(Po, Bo)- ht(Ptft, Bo) (28) 

= ( ht(Ptft, Bt)-t · V(Bo) -ht (Ptft, Bo))- ( ht(Po, Bt)-t · V(Bo)-ht (po, Bo)), 

and similarly, rewrite the fourth term in brackets in (27) as: 

ht(po, Bt)- ht-1(Po, Bt)- V(Bo) = ( ht(Po, Bt)- t · V(Bo)- h(po, Bo)) 

- (ht-1(po,Bt)- (t -1) · V(Bo)- h(po,Bo)). (29) 

Since: (i) Bt -+ Bo w.p.1 as t-+ oo; (ii) ht(P, ·) are continuous functions (cf. 

Lemma 4.3); and (iii) for each 8 E 8, the sequences {et(P, B)}t>o, p E (0, 1], 

converge to the same limit independent of p, we obtain that equations (28) and 

(29) converge to zero as t -+ oo. 

For the second term in brackets in equation (27) we write, after "adding 

zero" to the second summation, the following: 

1 

L D( k, Pt/t, llt(Pt/t, Bt), Bo) ( h(T( k, Ptft, llt(Ptft, Bt), Bo), Bo) - h(po, Bo)) 
k=O 

1 

- LD(k, Pt;t, llt(Ptft, Bt), Bt){ ht-1(T(k,fit;t, llt(Ptft, Bt), Bt), Bt) 
k=O 

-ht-1 (po, Bt) + h(T( k, Pt/t, llt(Ptft, Bt), Bt), Bo) 

-h(T(k , Ptft, vt(Pt-;t, Bt), Bt), Bo) + h(po, Bo)- h(po, Bo) 

+(t- 1) · V(Bo)- (t- 1) · V(Bo)}. (30) 

The expression in (30) can be rewritten as follows: 
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+ (- t,D(k,Pt;t,vt(Ptft,Ot),Ot) 

· [ { ht-l(T(k, Ptft, Vt(Ptft, Ot), Ot), Ot)- (t- 1) · V(Bo) 

-h(T(k, Ptft, Vt(Ptft, Ot), Ot), Bo)} 

- { ht-l(po, Ot)- (t- 1) · V(Bo) + h(po, Bo)}]) 

+ (t D(k, Ptft, Vt(Ptft, Bt), Bo)h(T(k, Ptft, Vt(Ptft, Ot), Bo), Bo) 
k=O 
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~ t, D( k, Ptft, Vt(Ptft, Ot), Ot)h(T(k, Pt/t, Vt(Ptft, Bt), Ot), Bo)) . (31) 

Thus, we have that: (i) the first term in parentheses in (31) vanishes as 

t --+ oo because of equation (20), since h(·, ·) is bounded; (ii) the second term 

. in parentheses in (31) goes to zero as t--+ oo because the summation is finite, 

and the terms in brackets cancel each other, where the reasmiing is identical to 

that used to cancel the third and fourth terms in equation (27); and (iii) since 

h(p, ·)converges uniformly (cf. [2, Theorem A.1]), the last term in parentheses 

in (31) goes to zero as t--+ oo because of equation (20). 

Therefore, the left hand side of equation (23) goes to zero as t --+ oo. Thus, 

the NVI adaptive policy gNVI is average cost optimal. • 

5. Conclusions 

In this work we gave sufficient conditions for the optimality of the NVI adaptive 

policy for a particular production/replacement problem, but the main ideas can 

be readily put to use in many other applications, and with more general models 

(see [20] for examples) . 

Future areas of research should include the effect that "better" (for exam.­

ple in the sense of [21]) parameter estimation algorithms have on the adaptive 

control policies. Also, from the point of view of implementation, it is important 

to investigate the behaviour of the adaptive policies for finite time horizons: the 
results in [19, Chapter 7] tell us that the performance of the adaptive policies 

differ significantly for finite time. 
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Optymalnosc adaptacyjnych polityk z niestacjo­

narnymi iteracyjnymi wartosciami dla cz~sciowo 

obserwowanych decyzyjnych modeli Markowa 

W artykule podano warunki wystarczaj'):ce optymalnosci asymptotycznej adap­

tacyjnych polityk niestacjonarnych iteracji wartosci dla cz~sciowo obserwowa­

nego markowowskiego modelu wymiany przy funkcji jakosci odzwierciedlaj'):cej 

sredni koszt w dluzszym okresie czasu. Uzyto podejscia zaproponowanego w [1) 

i rozszerzono wyniki z tej pracy na przypaclek rozwazany w artykule posluguj'l:c 

si« pewnymi rezult.atami uzyskanymi w [6] i [2] dla zagadnienia wymiany. 
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OnTnMaJibHOCTb a)I.aDTHBHoii noJIHTHKH c uecTau.uo­

uapHbiMH HTepau.nHMH 3uaqeuu:R )I.JI.H qacTnquo ua-

6JIIO)I.aeMbiX MapKOBCKHX MO)I.eJieii npHHHTHH pe­

IIICHHii 

B cTaTI:.e )J.aiOTC.R: )J.OCTaTO'IHhie ycnoBH.R: acHMIITOTHl.lecKo:A: orrTHMaJihHOCTH 

3)1.3IITHBHO:A: IIOJIHTHKH HeCT3II;HOH3pHbiX HTepan;H:A: 3Hal.leHH:A: )J.JI.R: '13CTH'IHO 

Ha6JIIO)J.aeMO:A: MapKOBCKO:A: MO)J.eJIH o6MeHa IlpH cpyHKII;HH Kal.leCTBa OTpa­

:>K3IOlll,e:A: cpe)J.HHe 33Tp3Tbl 33 )J.JIHTeJihHhi:A: rrepHO)J. BpeMeHH. J.1CIIOJih3YeTCH 

IIO)J.XO)J. rrpe)J.JIO:>KeHHbi:A: B rra6oTe [1], peayJihT3Tbl KOTOpo:A: o6o6lll,eHbl Ha 

cnyqa:A: paCCM3TpH6aeMbi:A: B )1.3HHO:A: CT3Tbe Ha OCHOBHe pa60T [2] H [6] )J.JI.R: 

aa)J.a'IH o6MeHa. 


