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Bargaining models define a special class of strategic games. In 
the first part we investigate bargaining games with unique and mul
tiple equilibria as well as with and without incomplete information. 
It is argued that the more natural bargaining models are typically 
games with incomplete information and multiple equilibria. The sec
ond part of our paper is devoted to a special bargaining problem, 
namely how to sell a lemon, i.e. a used car of bad quality. We anal
yse the game of asymmetric incomplete information by using the 
concept of uniformly perfect equilibria in pure and mixed strategies. 
It is shown that the multiplicity of uniformly perfect equilibria is a 
generic phenomenon. 

Part 1. Game theoretic analysis of bargaining 

models 

1. Introduction 

Bargaining theory can be partitioned into a normative and a descriptive dis

cipline. Descriptive bargaining theories are designed to explain experimentally 
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observed or field data. Here we will consider such attempts only occasionally 

and concentrate on normative bargaining theory which tries to determine 

the individually rational bargaining behavior. Now every bargaining situation 

involves at least two strategically interacting bargaining parties with at least 

partially divergent interests, i.e. bargaining problems form a special class of 

strategic game. Since game theory tries to define the individually rational 

decision behavior in games, we mainly apply game theory to games which 

describe essential aspects of bargaining problems. 

In former times bargaining models were often represented by their character

istic function which assigns to every subgroup of bargaining parties the set 

of feasible payoff vectors which this subgroup can guarantee its members by an 

appropriate binding agreement. This assumes that every bargaining party can 

commit itself to every possible future behavior, i.e. unilateral deviations from 

an agreement can be excluded. 

Bargaining situations where all interacting parties have unrestricted commit

ment power form a rather special class of bargaining problems. In general, 

some moves can be decided in advance and others not. Furthermore, it may 

very well depend on the institutional aspects of a certain party, e.g. it may 

be an organization or an individual, whether binding commitments are possible 

or not. This is the reason why we restrict ourselves to strategic bargain

ing games which do not require unrestricted commitment power but allow for 

all possible degrees of self commitment, which furthermore, may vary between 

bargaining parties. The analysis of strategic bargaining games is sometimes 

called ·the noncooperative approach to bargaining. Here 'noncooperative' sim

ply means that all strategic moves, regardless whether they are cooperative acts 
or not, are individual decisions. 

From a game theoretic point of view there is no need to develop a special 

bargaining theory, i.e. a theory of individually rational decision behavior in 

bargaining games. On the contrary, every ad hoc-theory for a special class 

of games may rely on rationality requirements which does not make sense for 

other classes of games. Denying the need to develop a special theory for strategic 

bargaining games means, of course, that bargaining theory has essentially two 

major tasks, to model bargaining situations as strategic games and to apply 

game theory in order to derive the individually rational bargaining behavior. A 
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strategic bargaining game should try to capture all strategically relevant aspects 

of the actual situation. Whereas purely analytic studies of classes of bargaining 

games try to incorporate such aspects in the simplest possible way, numerically 

specified bargaining games can be of a more complex nature. Due to recent 

developments in computer software one can hope to study also more complex 

bargaining games analytically. 

The following three chapters of the first part of our paper study different classes 

of bargaining games. Bargaining games with unique sub game perfect equilibria, 

which received a-lot of attention in the literature (see, for instance, Osborne 

and Rubinstein, 1990, Part I, Bester, 1989 and Rubinstein, 1982), are discussed 

in Section 2 whereas in Section 3 it is argued and demonstrated that bargaining 

games with more than one equilibrium may appear more natural. In Section 4 

we consider bargaining games with incomplete or private information where 

at least one bargaining party is not sure about the ofhers' types, i.e. one has to 

bargain with somebody without knowing for sure what he is trying to achieve, 

which strategies he can choose etc. 

In the second part of our paper we describe a situation where an owner of a used 

car which may be of poor quality, i.e. a lemon, is bargaining with somebody 

interested in buying this car and where the quality of this car is only known 

to its owner. Due to the sequential decision process for this bargaining game 

with private information one can distinguish pooling equilibria, meaning that 

the owner of a good car and the one of a bad car behave in the same way, and 
signaling equilibria with decisions revealing the true quality of the car. In 

our Conclusions we summarize our results and indicate some of its limitations. 

2. Bargaining models with a unique equilib-
. 

num 

In reality one cannot vary a decision variable continuously. Furthermore, all 

action spaces are bounded. In a game a player can therefore choose only among 

finitely many possibilities. As a consequence a bargaining game can be respre

sented by a game tree, i.e. a connected graph consisting of nodes and branches 

without loops and with a special node o, called the origine of the game tree. To 
illustrate this we consider a simple bargaining game with two bargaining par

ties or players 1 and 2 who can distribute a positive monetary amount c among 
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themselves. The rules are those of ultimatum bargaining, i.e. one party, 

e.g. player 1, can propose how to divide c wh<'reas the other party, player 2, 

can either accept this proposal or not. An obvious discrete version for such a 

situation will allow for all possible demands d1 by player 1 which satisfy 

d1 = mg with m E N and 0 ~ d1 ~ c, (2 .1) 

I.e. all possible demands d1 are integer multiples of a positive smallest money 

unit g. For our graphical illustration we assume that d1 can assume only three 

values, namely d1 = g, d1 = c/2, and d1 = c- g, where it is implicitly assumed 

that c is an even integer multiple of g. 

If player 2 accepts player 1 's proposal, player 1 receives d1 and player 2 gets the 

residual amount c- d1 , i.e. (dlt c ~ dt) is the payoff vector for the play starting 

with the proposal d1 which then is accepted by player 2. In case that 2 rejects 

player 1's demand for d1 , both players receive 0-payoffs since they did not agree 

on how to divide c. Thus player 2 is confronted with the ultimatum either to 

accept the proposal ( d1, c- dt) or to choose conflict with 0-payoffs. 

g c-g 

I c-: I I ~ I I 
c/2 I 
c/ 2 I ~ I I c-: I I ~ I 

Figure 2.1. An ultimatum bargaining game with three possible demands 

For the special case of just three possible demands d1 = g, c/2, and c- g the 

game is graphically visualized in Figure 2 . ~. A play starts at the top decision 



Ga.me Theoretic An&lysis ... 189 

node o, which is the origine of the game tree, with player 1's move d1 = g, 

c/2, or c- g. Knowing d1 , what is graphically illustrated by encircling every 

decision node of player 2 following d1 , player 2 can accept d1 , these are the 

moves a, a, or A, or reject d1 , these are the moves a, a, or A. Since a play is 

a sequence of moves from o to an end point (a node without downward pointing 

branches), evalutation of plays can be specified by attaching a payoff vector 

to every end point, i.e. to every lowest node of the game tree. The upper (lower) 

component of a payoff vector is player 1 's (2's) payoff for this respective play. 

A strategy Si of player i must define a move for every information set of player i, 
i.e. in the graphical illustration for every set of encircled decision nodes of player 

i. For an ultimatum bargaining game s1 is simply player 1 's demand d1 whereas 

a strategy s2 of player 2 has to state for all possible demands d1 whether 2 will 

accept them or not. In the game of Figure 2.1 player 1 has three strategies s1 , 

whereas player 2 has 8 = 23 possible strategies s2 . 

A strategy vector s = (s1, ... , sn) of an n-person game is an equilibrium if 

no player i can gain by unilaterally deviating from s, i.e. every equilibrium 

strategy Si is a best reply to the equilibrium strategies Sj ot the other players 

j # i. Since every non-equilibrium expectation s = (s 1, ... , sn) by its very 

definition induces at least one player to deviate from s, only ~quilibria quality 

as selfstabilizing behavioral expectations. The solution of a bargaining game 

therefore has to be an equilibrium. 

A subgame of a game is a subtree of the game tree which is informatically 

closed, i.e. every information set, which contains a decision node of this sub tree, 

contains only such decision nodes. Since a strategy Si specifies a move for all 

information sets of player i, a strategy s; induces a strategy s~ for every sub game 

T' of a given bargaining game. Similarly, a strategy vector s of T induces a 

strategy vectors' forT'. An equilibrium s = (sn, . .. ,, sn) of then-person game 

T is called sub game perfect if for all sub games T' of T the induced strategy 
• 

combination s' is an equilibrium ofT'. If a subgame T' would be reached, all 

players will want to rely on an equilibrium s' of T'. Sub game perfectness thus 

requires behavioral plans for subgames which are self- enforcing. Every non

subgame perfect equilibrium s = ( s1, ... , sn) is unreliable since there exists at 

least one subgame T' and at least one player who will want to deviate from the 

induced strategy combination s' when T' is really reached in the course of the 
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game. If a bargaining game has only one subgame perfect equilibrium we will 

say that its equilibrium solution is unique. 

In the game of Figure 2.1 there exists just one subgame perfect equilibrium, 
namely the strategy vector 

(c- g, (a, a, A)), (2.2) 

according to which player 2 accepts all ultimatum offers and player 1 asks for 

d1 = c - g. A non-subgame perfect equilibrium would be, for instance, the 

strategy combination (g, (a, a, .A)) according to which player 2 accepts only the 

actual demand d1 = g by player 1 and threatens not to accept any other pro

posal. Obviously, such a behavior can hardly be qualified as rational since non

acceptance of d1 = c/2 means to choose a payoff of 0 instead of the f>Ositive 

amount c/2. 

If also the demand d1 = c is possible there is a minor ambiguity since player 2 is 

indifferent between accepting and rejecting d1 = c. If one assumes that all best 

replies are chosen with the same probability, the unique ·solution is the strategy 

vector 

(c- g, 2 accepts all d1 < c and rejects d1 = c 

with probability ~). (2.3) 

Another way to justify d1 = c - g as the only solution demand is to rely on 

lexicographic preferences of the form that player 2 primarily cares for his mon

etary payoff and is only secondarily interested in punishing player 2 in case of 

a greedy demand d1 . 

Now one might object that ultimatum bargaining is a very extreme form of 

bargaining assuming either that only one party can commit itself to a certain 

demand or that one party can precede the other in making its commitment . In 

our view, this does not mean that ultimatum bargaining is practically irrelevant. 

One often faces situations where one can either accept a given proposal or 

have no agreement at all. Many shops treat their customers this way, usually 

we just do not consider such situations as bargaining games. One can easily 

generalize the ultimatum bargaining game to the w.ell-known alternating bid
bargaining games studied by Stahl (1972), Krelle (1975), and Rubinstein 

(1982). In alternating bid-bargaining first player 1 determines his demand d1 
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with 0 :::; d1 :::; c1 which then player 2 can accept or reject. If he accepts, the 

game ends with the payoff result (dlt c1- d1). Here" c1 is the monetary reward 

which can be distributed if an agreement is reached immediately. If not, the 

second round of bargaining starts with player 2's demand d2 with 0 :::; d2 .$ c2 

where c2-is the monetary reward which can be distributed in round 2. Knowing 

d2 player 1 can accept this proposal what yields the payoff vector (c2- d2, d2) 

or reject it. In general , player 1 determines d, if t is odd whereas player 2 is the 

demanding player in all even periods t . 

If there exists a finite final round T for reacning an agreement, the rules for 

period T are exactly the OJ1es of ultimatum bargai~ing since non-acceptance' 

of dT means that no agreement can be reached. Assume that the monetary 

amounts Ct are a decreasing function oft , i.e. 

Since 

(dT = CT- g, 2 accepts dT < CT and rejects dT = CT 

with probability ~) 

(2.4) 

(2.5) 

is the solution for every subgame starting in round T, the demanding player 
in period T- 1 must leave at least CT - g for the other party, i.e. his optimal 

demand is 

(2.6) 

where we again implicitly assume that . a player would use all optimal options 

with equal probabilities. Proceeding in this way yields 

if T is even 

(2.7) 
if r is odd 

or 
T 

dT-T = L(-1)"-kCT-k- (1- (-1)"+ 1 )~. 
k=O 

(2.7') 

Furthermore, any demand dt !)atisfying 

(2.8) 
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will be accepted whereas all lower demands will be rejected (in case of Ct -

dt = dt+l with probability 1/2). This shows that all alternating bid-bargaining 

games with T < oo and shrinking 'cakes' Ct according to condition (2.4) have 

an essentially unique equilibrium solution. 

In the special case with 

Ct = 6t-1
c 1 with c1 > 0 and 0 < 6 < 1, (2.9) 

which can be justified as discounting with the same constant discount factor 6 

for both players, the solution payoff vector (d1, C1 - dt) according to (2 .7') is 

determined by 

T-1 . 
d1 = C1 I)-1r-k6T-1-k- (1- (-1r+1)~. 

k=O 

(2.10) 

Neglecting the second term on the right hand-side of (2.10), which vanishes for 

g-+ 0, one derives the solution share dtfc1 of player 1 as 

T-1 
dtfct = ~)-1)T-1-k6T-1-k, (2.11) 

k=O 

respectively as 

(2.11') 

It is interesting to explore the limit of dtfct for 6-+ 1 and 6-+ 0. Because 

of 

l. d / { 1 if T is odd 
lm 1 Ct = 

o-.t 0 if T is even 
(2.12) 

alternating bid-bargaining with a finite horizon implies the same extreme dis

tribution as ultimatum bargaining if both players are very patient. The party, 

which is the last one to propose, can exploit, its ultimatum bargaining power. If 

both parties are completely impatient in the sense of 6 -+ 0, the first proposer 

has all the bargaining power as it is clearly demonstrated by 

(2.13) 

One can also approach the infinite time horizon. Since for 6 < 1 
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lim di/c1 = -
1

1 
,, 

T-+oo + u 
(2.14) 

both players receive nearly the same share if 6 is close to 1. For 6 < 1 the 

first proposer, player 1, gets more than player 2. Obviously, this analysis can be 

easily generalized to situations with different discount factors 61 and 62 satisfying 
0 < 61 , 62 < 1. In case of T = oo one cannot solve alternating bid-bargaining 

models by backward induction as we have demonstrated it above for the case 

ofT < oo and shrinking 'cakes' c1 . Furthermore, one has to define payoff 

vectors for all plays which do not lead to an agreement after a finite number 

of proposals. It seems natural (see Rubinstein, 1982) to assign the vector (0,0) 

of conflict payoffs· to all such bargaining plays. In his well-known alternating 

bid-bargaining model with T = oo Rubinstein (1982) assumes that there is a 

constant amount to be divided but that both players have to discount their 

monetary incomes if an agreement is not reached immediately. 

Let 61 and 62 with 0 < 61 , 62 < 1 denote player 1 's, respectively 2's, discount 

factor . Let, furthermore, dt denote the relative sha,re of the constant amount 

which the demanding player wants to get in round t . With the help of this 

notation the payoff of player i = 1, 2 c.an be written as 

d-1d 
Uj = U; t (2.15) 

if i is the demanding player in period t and if this demand is the first accepted 

one and 

(2.16) 

if player i is the accepting player in t and if d1 is the first accepted demand. Here 

we have normalized the payoff's or utilities by setting u; = 1 if the whole amount 
would be given immediately to player i = 1, 2. Unlike in our previous version 

of ultimatum bargaining Rubinstein relies on continuous strategy sets, i.e: the 

possible demands are all real numbers d1 E [ 0, 1] and assumes that among two 

b_est replies a player will prefer the one yielding an earlier agreement. 

Let player i be the demanding player in period t, t + 2, ... and assume that 

the play has reached period t. Obviously, player i will either want to make 

a proposal dt which will . be accepted by the other player j or plans to accept 
player j' s next proposal dt+l since in period t + 2 he 'faces the same situation as 

in period t except for the fact that the shares of the constant inonetary amount 
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have to be discounted. Observe that such a discounting is nothing else than a 

renormalisation of payoff's which should not affect the solution of a game. But 

if player i wants to accept dt+l he might as well choose a proposal dt which 

makes player j indifferent between receiving dt+l in round t + 1 and Ct - dt in 
round t, i.e. 

(2.17) 

Similarly; player j can deinand in period t +1 a share dt+l which makes player i 

indifferent between his own demand dt+2 in t + 2 and getting the residual share 

1 - dt+ 1 in period t + 1, i.e. 

(2.18) 

Since the game situation in t + 2 is strategically equivalent to the one in period t 
(discounting is just a positive affine transformation of utilities), the solution 

behavior should be stationary in the sense of 

dt+2 = dt for all periods t = 1, 2, .. . (2.19) 

Condition (2.19) can be formally derived by imposing subgame perfect and 

consistent equilibria in the way it has been done by Giith, Leininger, and 

Stephan (1991). Consistency requires the sa,me solution for strategically equiva

lent games. For the case at hand, for instance, all subgames starting in odd and 

all subgames starting in even periods are strategically equivalent. The initial 

demands in those subgames therefore have to be identical-as required by (2.19). 

We thus obtain two equations, namely (2.17) and 

(2.18') 

whose unique solution is given by 

1- 6· d; ::::: 1 _ b;~i for t = 1, 2, ... (2.20) 

where i, respectively j, is the in period t demanding, respectively accepting 

player. 

As shown by Rubinstein (1982) the alternating bid-bargaining game with T = 
oo and constant discount factors has a · unique sub game perfect equilibrium 

whose demand behavior is described by equation (2.20) and which requires to 
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accept only demands dt ~ d; in round t = 1, ... ,T. Here it is, of course, 

essential that Rubinstein assumes that all demanded shares d1 with 0 ~ d1 ~ 1 

are possible, i.e. that the monetary amount is completely divisible. As shown 

by van Damme, Selten, and Winter (1990) the alternating bid- bargaining model 

with realistic discount factors has quite a large set of sub game perfect equilibria 

even when the smallest positive money unit g is small compared to the amount 

which can be distributed. 

Also for ultimatum bargaining games, i.e. in case ofT = 1, Rubinstein 's as

sumptions imply a unique solution, namely di = c and acceptance of all demands 

dl . 

An advantage of the Rubinstein-model of alternating bids is that it can be 
approximated by solutions of games with T < oo which can be computed by 

backward induction. The infinite horizon game is thus a reasonable approxima

tion for large, but finite horizon games,. In our view, this is the most important 

reason for studying infinite horizon games. Furthermore, Rubinstein's analysis 
is certainly one of the most elegant and inspiring studies in bargaining theory . . 

If, however, the wide acceptance of the Rubinstein- model is mainly due to 

its. unique subgame perfect equilibrium solution, this is a rather weak support 

since uniqueness of its equilibrium solution is purely a pathology of the highly 

unrealistic assumption that money is completely divisible. Furthermore, we 
have shown that there are lots of alternating bid-bargaining games with unique 

equilibrium solutions if money is completely divisiole, e.g. all alternating bid 

bargaining games with shrinking cakes and T < oo . It therefore seems justified 

to say that uniqueness of the equilibrium solution cannot be the decisive reason 

why the Rubinstein-model has received such a lot of attention in the bargaining 

literature. 

Another reason for the prominence of the Rubinstein- model could be that al

ternating bids are seen as a typical aspect of real bargaining situations. Un

fortunately, the solution play of the Rubinstein-model does not correspond to 

such an empirical support since the first proposal, the demand di according to 
equation (2.20), is already accepted. Iil. our view, alternating moves are much 
more typical for bargaining situations with incomplete information where par

ties try to demonstrate their strength by risking conflict (see Giith and Selten, 
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1991, who show that one can signal bargaining strength by risking conflict in a 
bargaining game which allows for alternating concessions). 

Another weakness of the Rubinstein-model is that its solution relies on a del

icate choice between two indifferent options, a property which is typical for 

alternating bid-bargaining games with continuous action spaces . According to 

equations (2.17) and (2.18) both players are indifferent between accepting the 

other player's offer and waiting for the next round for which one expects ac

ceptance of the own offer. Nevertheless, the Rubinstein-model assumes that 

both players choose the earlier agreement ,with probability 1 . Observe that 

this cannot be justified by a lexicographic preference with a secondary interest 

for short plays since time preferences are explicitly taken into account by the 
two discount factors. In other words, all the gains by reaching an agreement in 

period t instead of one in period t + 1 go to the player who demands in period t. 
This shows that alternating bids are ultimatum games where ultimatum power 

is restricted to the gains of an earlier agreement. 

To demonstrate that this restricted form of ultimatum power can be dra

matic assume 61 = 62 = 6 so that (2.20) implies 

d; = 
1 
~ 

6 
for t = 1, 2, ... (2.21) 

Clearly, d; _, 1 for 6 -> 0, i.e. the demanding player receives nearly all the 'cake' 
if both players are very impatient. Actually, the situation of ultimatum bargain
ing, respectively T = 1, can be viewed as the limit case of the Rubinstein-model 

for 61 = 62 = 6 _, 0. Due to 

(2.22) 

the extreme result d; = 1 can be also approximated by making the demanding 

player very patient in the sense of 6; -> 1. It therefore seems justifed to say that 

the Rubinstein-model generalizes ultimatum bargaining games by allowing to 
vary ultimatum power continously. 

Although we concentrate on individually rational bargaining behavior, we would 

like to mention the fllany experiments which have been performed with ulti

matum bargaining games and alternating bid- bargaining models with various 

horizon parameters T and discount factors (see Giith and Tietz, 1990, for a 
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rather recent survey). The experimental observations clearly indicate system

atic deviations from the equilibrium solution according to monetary incentives. 

Accepting players, faced with greedy demands, are willing to sacrifice consider

able amounts of money to punish the demanding player. There can be no doubt 

that bargainers are not only guided by monetary incentives, but also by norms 

of distributive justice which determine their aspirations and thereby their 

· frustrations when these aspirations cannot be fulfilled due to a greedy demand. 

We also should indicate that the batgaining games, discussed ahove, are prob

ably the most well-known bargaining games with unique equilibrium solutions 

but by no means the only ones. Actually every non-degenerate bargaining game 
with perfect information (i.e. all information sets contain just one decision node) 

has a unique equilibrium solution since in a non-degenerate game no player will 

be indifferent between two different plays. To judge which bargaining model 

is most suitable to represent real bargaining situations would require a lot of 

field research to explore the rules of bargaining. In our view, differenY bargain

ing situations will often rely on different rules and we do not see any empirical 

support for the hypothesis that these rules determine bargaining games with 

unique equilibrium solutions. 

" 
3. Models with a multiplicity of equilibrium so-

lution 

The major weakness of most bargaining games with unique equilibrium solu

tions is the asymmetry of bargaining positions which is true for all bargaining 

games which have been explicitly taken into account in Section 2. We do not 

deny that bargaining situations in real life are rarely symmetric. But typically 

such asymmetries result from different evaluations of results, private informa

tion etc. and are not due to a bargaining procedure which, without any further 

justifcation, assigns more powerful bargaining positions to some parties and less 

powerful ones to others. 

In our view, this weakness cannot be avoided by an initial chance move which 

implies the same chances for all parties to assume a certain position in a bargain
ing game. If this would be true, all injustice of the world could be justified by 

referring to an initial chance move implying equal a priori-expectations for all 
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individuals in the society, i.e. a so-called veil of igno~ance (see Harsanyi, 1955). 

As random dictatorship in social choice we do not view randomly determined 

asymmetric bargaining rules as an acceptable al.'ocation procedure. 

Furthermore, the equilibrium results of all bargaining games, explicitly consid

ered in Section 2, will be usually inefficient if we apply them to situations 

where a proposal does not completely determine all the results but leaves some 

freedom of choice for the accepting player. If, for instance, ultimatum bargain

ing concerns bilateral trade, a proposal d1 by player 1 may not be a vector of net 

trades, but simply a price vector p leaving player 2 the choice of the amounts 
he is willing to trade at this price vector p. In such a case player 1 will choose 

the price vector p* which determines his optimal vector of net trades given that 

player 2 adjusts optimally to a given price vector. 

In Figure 3.1 we have graphically illustrated this situation by the well-known 

trade box-diagramm for the special case of two commodities and two consumers, 

namely player 1 and 2. For players j = 1, 2, and both commodities i = 1, 2 the 

amount ei is player j's endowment with commodity i. Thus e1 = (eL e~), 
respectively e2 = (ei, e~), would be the allocation result with no trade. x* 2(p) 

2 
is player 2's offer curve assigning his optimal net trade vector ; (p)- e2 to 

every price vector p = (p1 , p2). Anticipating that 2 will choose a net trade 

vector on his offer curve, player 1 will set the price vector p* which determines 

the point x* 2(p*) on player 2's offer curve where his indifference curve J 1 is 

tangent to x* 2 (p). For all points x* 2(p) =f. e2 this means that in x* 2(p*) the 

indifference curve J 1 of player 1 and the indifference curve of player 2 through 
2 

; (p*) intersect, i.e. the allocation result is inefficient. 

In the following we will briefly sketch some bargaining models where at least 

the bargaining procedure as such assigns no special roles to certain bargaining 
parties. Typically such bargaining games will have many subgame perfect equi

libria. It is therefore important to discuss game theoretic concepts which allow 

to select one of these equilibria as the only bargaining solution. 

Th~ most simple symmetric bargaining procedure is the one of unanimity bar

gaining. Assume again that a constant monetary reward. c has to be allocated 

among n (2: 2) bargainingparties or player~ 1, ... , n. In unanimity bargaining 



Game Theoretic Analysis . 

X 1 
1 

199 

Figure 3.1. Bilateral trade when ultimatum bargaining power is restricted to 

choosing the price vector 

every party i = 1, ... , n independently commits itself to a demand d; (2:: 0). 

If for the demand vector d = ( d1 , ... , dn) with d; 2:: 0 for i = 1, ... , n condition 

n 

(3.1) 

holds, we say that the demands are inconsistent. In case of inconsistent de

·. mands conflict results with 0-payoffs for all bargaining parties. If, however, 

d~mands are consistent, we have to distinguish two cases: 

(3.2) 

and 

n 

(3.3) 

In case of (3.2) the whole 'cake' c is distributed and every player i receives 

his demand d;. In case of (3.3) we speak of an anti-conflict since one can 

distribute more than demanded. One may simply assign the conflict payoffs to 

the case of anti-conflict or allow for another round of unanimity bargaining now 

for the residual share 
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n 

(3.4) 

Since the latter rule may lead to the absurd phenomenon of an infinite sequence 

of anti-conflicts, we assume that in case of (3.3) bargaining ends in conflict, i.e. 

there is only one round of unanimity bargaining. In equilibrium one will not 

observe an anti-conflict since every player j could increase his demand by (3.4). 

Clearly, every demand vector d satisfying (3.2) is an equilibrium of the unanimity 

bargaining game. Since this game has no proper subgames, every such demand 

vector is, furthermore, subgame perfect, i.e. unanimity bargaining has a vast 

multiplicity of bargaining solutions if the smallest positive money unit g is small 

compared to c and even more if money is completely divisible. 

In his famous article Nash (1950 and 1953) proposed an ingenious solution to 

resolve this troublesome non- uniqueness of the bargaining solution. The so

called cooperative Nash-solution maximizes the product of dividends, i.e. 

the agreement payoffs minus the conflict payoffs. Since in our example conflict 

payoffs are assumed to be 0, what can always be achieved by an appropriate 

renormalization of utilities, the dividend is just player i's demand d;. Maxi

mization of 

with respect to dj yields 

n 

IT d; =A for j = 1, .. :, n. 
i=l,i~j 

Thus the cooperative Nash-solution is given by 

dj = cfn for j = 1, ... , n. 

(3.5) 

(3.6) 

(3.7) 

Nash (1953) justifies this solution by a convincing set of axioms as well as 

by a constructive ad hoc-selection procedure for unanimity bargaining. Here 

we do not describe Nash's familiar arguments. There are also new axiomatic 

characterizations of the cooperative Nash-solution which support and clarify 

his bargaining solution (Lensberg, 1982). 

Let us consider the same bargaining situation, i.e. there is a positive amount c 

of money to be distributed and all parties receive 0 in case of conflict, but with 
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parties making concessions Ci instead of demands. More specifically assume 

that there are T (~ 1) rounds of concession making according to the following 

rules: In every round t = 1, ... , T, if it is reached, all parties i = 1, ... , n must 

independently choose to make a concession c~ meaning that it is willing to give 

up c~ of the cake. Since we assume that a concession is binding, it is reasonable 

to require 

c~ ~ c[ for all t > r and i = 1, ... , n, (3.8) 

where we assume that all previous concessions are always known. Bargaining 

stops with an agreement in period t if 

n n 

L) c - cD = ne- L c~ :::; c, (3.9) 
i = 1 i=1 

i.e. if the total concession 2.:::?= 1 c; is large enough to satisfy all demands. In 

such a case party i receives c- d, i.e. what it has not conceded to the others. 
Observe that this implicitly assumes that the positive residual amount 

n 

L:c~ - (n -1)c (3.10) 
i=1 

in case of an anticonflict in period t is lost for the players. 

If•no agreement is reached in round t, i.e. if (3.9) is not satisfied, bargaining 

stops, in round t with conflict if in round t no player i has made a further 

concession in the sense of c! > c~- 1 . For t = 1 the corresponding condition is 

cf > 0 for at least one party i. Otherwise bargaining continues with t + 1 as 

long as t + 1 :S T . In round T conflict results if (3.9) is not satisfied. 

It is assumed that there exists a positive smallest money unit g and that all 

concessions as well as c are integer multiples of g. We refer to this model as a 

concession bargaining game with T possible rounds of concession making. 

Except for the different rules for the case of anticonflicts concession bargaining 

for T = 1 is identical to unanimity bargaining. Thus in the last round T the 

cooperative Nash-solution implies 

T n - 1 
cj =-n-e, 

if for all players i the following condition is fulfilled: 

(3.11) 
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T -1 n - 1. 
c. < - - c 

J - n , 
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(3.12) 

Condition (3.12) essentially states that player i has not yet precluded the co

operative Nash-solution demand cfn for unanimity bargaining by his previous 

concessions. Anticipating this result for all subgames starting in period T one 

can look at a subgame starting in period T-1 with concessions cf- 2
, ..• , c?;- 2 . 

According to (3. 12) a player j receives a lower payoff in period T if his concession 

cJ- 1 is larger than (n- 1)cfn. Consequently, player j will either w~nt to make 

the minimal positive concession cJ- 1 = cJ- 2 + g in order to prevent conflict 

or no concession, i.e. cJ- 1 = cJ~ 2 , if he expects others to prevent conflict by 

positive concessions. Similar results are true for all earli~r periods t < T- 1. 

Thus concession bargaining leads to minimal concessions till the very last period 

T where the situation is similar to that one of unanimity bargaining. 

For the limit g --+ 0, i.e. when the positive smallest money unit becomes in

finitely small, the final round T is reached with no concession so that the bar

gaining parties are dividing c in round T as in unanimity bargaining. This shoes 

that unanimity bargaining can be viewed as the limiting case of concession bar

gaining for all finite time horizons T < oo if money becomes more and more 

divisible. Thus unanimity bargaining is far more realistic than it might look at 

first sight . 

Similar to the Rubinstein-model with alternating bids one can, of course, m

traduce time costs of bargaining, e.g. a certain positive utility K; (> 0) which 

respresent player i's cost of delaying the agreement by one period. These bar

gaining costs are sunk if a player incurs the cost (t- 1)K; of bargaining fort 

periods even when bargaining ends in period t = 2, ... , T with no agreement. 

A less realistic assumption would be that the cost (t- 1)K; of bargaining for t 

periods are only due if in period t an agreement is reached. In the latter case it 

is possible that in later rounds the bargaining parties have lost all their interest 

in reaching an agreement. If, for instance, 

n 

(t - 1) L K; > c, (3.12) 
i =1 

bargaining costs would exceed what can be distributed. 

If bargaining costs are sunk and the final round T is reached , the solution 

eT = (cf, . .. , c'[.) of all subgames in round T is determined by (3.11) as for 
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the case of no bargaining costs. But unlike in the situation of no such costs, a 

player j in period T- 1 can be interested in achieving an early agreement. If, 

for instance, 

n 

0 < L ( c - cf -l) - c < J{i , (3.13) 
i=l 

it would have been better for player j to concede the amount between the 

inequality signs of (3.13), i.e. to choose 

n 

cJ-1 = L (c - cf- 1) , (3.14) 
i=l,i;tj 

than to delay the agreement what causes the additional bargaining cost Kj. 

4. Incomplete information 

In bargaining situations we can distinguish three kinds of information deficits: 

Stochastic uncertainty results from stochastic events with given objective or 

subjective probabilities. Game theory takes care of stochastic uncertainty by 

relying on cardinal utility functions which allow to evaluate lotteries. Strategic 

uncertainty expresses that bargainers are not sure about the future behavior 

of their opponents. We resolve strategic uncertainty by applying game theoretic 

solution concepts as, for instance, the subgame perfect equilibrium in Section 1. 

Incomplete information, in general, means that at least one bargaining party 
is not sure ab0ut the bargaining rules as expressed by the game tree, respec

tively the extensive form. In his ingenious article Harsanyi (1967 /8, Part I, 

II , Ill) showed that all information deficits about the rules of a game can be 

reinterpreted as information deficits concerning other players' utility functions. 

We refer to the expected utility or payoff functions of player i as to player i's 

possible types. 

The essential trick to resolve incomplete information is to transform it into 

strategically equivalent stochastic uncertainty by assuming a fictitious initial 

chance move determining the types of all players (Harsanyi, 1967/8, Parts I, II, 

Ill). We want to illustrate this with the help of the simple concession bargaining 

game with c = 1, two players, i.e. n = 2, T = 2, and two possible concessions, 

namely 0 and ~, for both parties. Incomplete information concerns the (sunk) 

cost of bargaining which both players expect to be either 0 or t. We denote 



204 W.GiiTH a.ud P.OCKENFELS 

by p the probability by which 2 expects /{ t = 0 and by q player 1 's probability 

for K2 = 0 where 0 < p, q < 1. With the complementary probability a player 

expects bargaining cost of 1/4 for his opponent. 

The game is graphically illustrated in Figure 4.1. A play starts at the origine o 

with the fictitious initial chance move determining the possible vectors (Kt,/{ 2) 

with /{i E {0, U fori E {1, 2}. The probabilities for the four chance moves are 

attached in brackets to the respective branches. According to the information 

sets, as graphically illustrated by encircli1ig the decision nodes among which the 

deciding player cannot distinguish, player 1 knows only his own bargaining cost 

Kt when choosing between his two possible concessions c} = 0 and c} = 1/2. 

Player 2 is neither aware of K1, nor of c~ when he decides between c~ = 0 

and c~ = 1/2. This shows that both information deficits concerning the other's 

bargaining cost are well represented. Since, furthermore, player 1's conditional 

probability for K 2 = 0 is q regardless whether his own type is !(1 = 0 or 

Kt = 1/4, player 1's beliefs concerning I<2 correspond to the probabilities of 

the fictitious chance move. A similar statement holds for player 2's beliefs about 

Kt. 

Since the rules of the game in Figure 4.1 are assumed to be commonly known, 

i.e. the game is one with complete information, one can say that by introducing 

the fictitious initial chance move we have transformend incomplete intormation, 

i.e. informations deficits concerning the rules of bargaining, into strategically 
equivalent stochastic uncertainty resulting from partially unobservable chance 

moves. 

We call a strategy s; of player i dominated if player i has another strategy s; 
which for all possible behavioral constellations of i's eo-players is never worse 

and at least for one such behavioral constellation better; i.e. whatever his 

coplayers do, player i will never prefer Si to Si ,whereas the opposite statement 

is· wrong. Repeated elimination of dominated strategies requires to elimi

nate simultaneously for all players all dominated strategies. Since in the reduced 

game new strategies can be dominated, this step may have to repeated. At least 

in bargaining games where all parties have only finitely many strategies, this 

procedure must stop after finitely many steps with a reduced game in which 

no player has a dominated strategy. Observe that an equilibrium point of the 

reduced game is also one in the original game since in the original game there 
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can be no better reply to the strategy combinations of the reduced game than 

in the reduced game itself. 

Figure 4.1. .A simple concession bargaining game with incomplete 

information about bargaining costs 

It is intuitively clear why players want to avoid dominated strategies. If there 

is the slighest doubt whether a given strategy of another player will be chosen 

or not, one can simply avoid the risk of making a false decision by relying 

on undominated strategies. Repeated elimination of dominated strategies can 
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be applied by repeating this argument where it is, of course, essential that all 

players rely on the same reasoning process. One might object that doubts about 

the decisions of others should be reflected formally, e.g. by a bargaining model 

where one explicitly takes into account that a strategy may be chosen by small, 

but positive mistake probabilities (Selten, 1975). For the game of Figure 4.1 

the result is the same regardless whether one assumes that every move must be 

chosen with a small positive mistake probability or not. We therefore rely on 

repeated elimination of dominated strategies, as described above, when solving 

the bargaining game of Figure 4.1. 

To simplify our terminology we say that a player has conceded if he has chosen 

the concession 1/2 instead of 0. The lower information sets of a player are 

reached if his opponent conceded in round 1 but if he himself did not. Obviously, 

both players will want to concede in round 2 after such a unilateral concession 

by their opponent in round 1. Eliminating all strategies which prescribe not to 

concede in round 2 yields a reduced game in which not conceding (in round 1) 

is again dominated. Thus repeated elimination of dominated strategies implies 

that both players always concede, i.e. they reach an agreement to split the 'cake' 

c = 1 evenly already in round 1 regardless of the type constellation (K1 , K 2 ) 

chosen by the initial fictitious chance move. 

The bargaining game of Figure 4.1 is very simple and should only demonstrate 

how one can graphically visualize bargaining games with incomplete informa

tion. Observe that player i with given bargaining cost J{i = 0 has to determine 

also how he would decide as the type J(i = 1/4 which has coplayer expects. 

This is due to the fictitious initial chance move which can select all expected 

type constellations so that, when solving th~ game, it ,does not matter which 

type constellation is the true one. Only when deriving the actual solution play 

one will rely on the type constellation whic~ is actually present. 

More complex bargaining games with incomplete information usually cannot be 

solved by repeated elimination of dominated strategies. Typically the reduced 

game after applying this procedure still contains a multiplicity of equilibrium 

solutions. Games in which ·:>ther players observe decisions of opponents, whose 

type they do not know, before deciding themselves are called signaling games. 

The equilibria of such games can be signaling equilibria, i.e. they reveal the 

types of players, or pooling equilibria, i.e. one cannot infer the true type of a 
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player by observing his behavior. It is, of course, also possible to have partially 

revealing equilibria which signal some type characteristics and conceal others. 

Here we do not discuss such equilibria since they will be explicitly considered 

in the second part of our paper where we study in great detail a bargaining 

game with incompl~te information. General eharacteristics of bargaining with 

incomplete information are also discussed by Giith and Selten (1991). 

Part 2. How to sell a lemmon 

Instead of continuing our rather abstract discussion of bargaining models we 

want to consider now a specific problem, namely how to sell a lemon. A lemon 

is a bad used car whose quality is known to the seller hut not necessarily to the 

potential buyer (see Akerlof, 1970). As suggested by,Akerlof (1970, Section Ill) 

many other markets are similar to markets of used cars whose true quality is 

known to the sellers, but not to the buyers. According to AKERLOF (1970) 

good and bad used cars have to be sold at the same price, i.e. he precludes 

signaling a car's quality. From this he concludes that owners of good used cars 

must keep their cars so that only lemons will be traded. 

Akerlof (1970) does not specify the market decision process. He implicitly seems 

to rely on simultaneous bids of many buyers and many sellers like in one shot

double oral auctions. As for Akerlof (1970) asymmetry of information is the 

crucial aspect of our game model: Whereas a seller knows the true quality 

of his car, a buyer has only probabilistic beliefs concerning this car's quality. 

Compared to Akerlof (1970) we assume a sequential decision process allowing 

to signal a car's quality and bilateral bargaining between just one seller and one 

potential buyer of a used car. 

The bargaining model is a signaling game since the potential buyer might 
infer from a previous decision of the car owner whether the car is good or 

bad. We therefore discuss the conditions for signaling, i.e. type revealing, and 

pooling, i.e. non-revealing, equilibria. To limit the set of equilibria we rely on 

the concept of uniformly perfect equilibria (see Harsanyi and Selten,1988, 

who implicitly define this concept, and Giith and van Damme, 199la and b, for 

previous applications). 

A game without inferior or duplicate strategies (see Harsanyi and Selten, 
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1988) is E -uniformly perturbed if every choice has to be used with the same 

small positive minimum probability c. An equilibrum q of the unperturbed 

game is called uniformly perfect if there exists a sequence t:1 , t: 2 , .. . of mistake 

probabilities Ek with Ek -> 0 for k -> oo and equilibria qk of its fk-uniformly 

perturbed games with qk -> q for k --> oo. In other words: A uniformly perfect 

equilibrium is stable against small uniform perturbations of the game. 

In the following we will first describe the game model and then discuss its 

uniformly perfect signaling and pooling equilibria. In our Conclusions we will 

summarize our results and indicate the use of equilibrium selection by which 

one can derive an unique prediction if signaling and pooling equilibria coexist. 

We also will try to relate .our analysis to the rather general discussion in the 

first part of our paper. 

5. The game model 

Let V, respectively V* , be the owner of 'a bad, respectively good, used car 

which he wants to sell. His potential customer is denoted by /{ . Customer /{ 

expects the car to be a lemon, i.e. a bad quality car, with probability w and a 

good car with the complimentary probability 1- w where 0 < w < 1. These 

expectations are assumed to be known to the seller. Thus according to our 

discussion in Section 4 of the first part I<'s incomplete information about the 

car's quality is adequately taken into account by an fictitious initial chance move 

as graphically represented in Figure 5.1. Since only the owner learns about the 

car's quality, K's uncertainty is preserved, i.e. K's incomplete information is 

transformed into stochastic uncertainty resulting from a partially unobservable 

chance move. 

After learning whether the car is a lemon, what happens with probability w, 

or a good car, an event with probability 1 - w, the owner V, respectively V*, 

of the car must decide between P and P, if the car is a lemon, and between 

P* and P• if not. The decision P, respectively P* , can be interpreted as a 

warranty certificate (which the owner must buy from a garage) or as a repair 

which is cheaper for V* than for V . In case of P, respectively P•, the car is 

offered for sale without such a repair. For the sake of simplicity and to allow an 

easy graphical illustration as by Figure 5. (we assume that there are only two 

prices for which the car can be offered, namely H and L where C > H > L > 1. 
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Here C is the value of the good car for K and 1 the one for V*. A lemon is 

assumed to have 0-value for V and K. The decision for the high price H is 

denoted by H for V after P, by h for V after P and by H*, respectively h*, for 

V* after p•, respectively P•. The low price moves are indicated by the letter 

'n ' in a similar way. 

A z a z a Z A 

I~ I I~ I 
/l-z,,N_,, ., Ill 
-1/ -N -H I

ll- '!I I 
C-H 

Figure 5.1. The bargaining model for selling a lemon 

Customer /{ learns about the price and whether the car has been repaired or 

not, but not about its quality. Knowing this he must choose between buying 

(the decisions with the letter 'z') and not buying (denoted by 'a') . 

. The payoff vectors are attached to the' endpoints of the game tree. The upper 

component is the owner's payoff, the lower the one of K. Since we only give two 



210 W.GUTH ~nd P .OCKENFELS 

payoffs, we rely on the usual convention that the payoff of a non-existing type 

is the same as the one of its existing type. For the case at hand this means that 

both, V and V*, evaluate all end points in the same way, namely according to 

the upper component of the payoff vector. 

The positive parameter x, respectively y ( < x), is the cost which the repair 

implies for V, respectively V*. All other parameters have been described above. 

If the car is sold, the owner receives the price, H or N, from which he must 

deduct his repair cost x or y in <;ase of a repair. For K the payoff is C minus 

the"price if the car is the good one and 0 minus the price if not. If the car is not 

sold, K's payoff is zero whereas the owner''l payoff is determined by the value 

of the car, 0 or 1, minus the repair cost x or y in case of a repair. 

We consider all games satisfying the following parameter restrictions: 

0 < w < 1, 0 < y <X< H, y < H- 1, 

1 < N < H < C, H ::f (1- w)C ::f N (5.1) 

The assumptions x < H and y < H - 1 are imposed to avoid dominated and 

thereby inferior strategies. By the conditions H ::f (1 - w)C ::f N we exclude 

border cases where in the unperturbed game the buyer could be indifferent 

between buying or not. Since (1-w)C is the expected value of the car according 

to K's a priori expectations, we exclude prices which are as high as the expected 

value of the car for buyer K. 

When deriving the solution it will be convenient to have an easy notation 

for the various agents of customer K, i.e. for customer K in his four different 

information sets of Figure 5.1. J'he potential buyer who has to decide between 

z and ii is denoted by K 1 , whereas K 2 decides between Z and A, K3 between z 

and k, and K4 between Z and A. This shorthand is indicated in Figure 5.1 by 

giving the subscripts of K in brackets. In the same way we also distinguish the 

three agents of V and V* in Figure 5.1. 

6. Uniformly perfect equilibria in pure strate-
. 

g1es 

In the following t:: is always a small positive number and a perturbed game 

always an ~;:-uniformly perturbed game of the game in Figure 5.1 which is the 
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unperturbed game. According to our shorthand a mixed strategy vector q can 

be written as 

with 

and 

qA = (qv, qv•) 

qv= (qvl, qv2, qv3) 

qv• = (qvt, qv2•, qv;) 

Since all choices are binary choices, mixed strategies are completely described 

by specifying one probability. So qK.(Z) = 1 - f would mean, for instance, 

that /{4 accepts with m~ximal probability in the f- uniformly perturbed game. 

We do not distinguish between the pure strategy Z and the mixed strategy 

qK. ( Z) = 1. So q can also be a pure strategy vector. 

We first concentrate on uniformly perfect equilibria of the unperturbed game in 

pure strategies. Although· our game model is rather simple, it has 210 = 1024 

possible pure strategy combinations. Fortunately, many of them can be exeluded 

with the help of the following propositions: 

Proposition 6.1 In a uniformly perfect equilibrium {in pure strategies) the 

choice of the low price by Vj and Vj* and its acceptance implies non- acceptance 

of the high price, i.e . if V3 and V3* ask for the low price and I< 1 chooses z, then 

K2 has to choose A; ifV2 and V2* ask for the low price and I<3 chooses z, then 

/{4 has to use A. 

Proof Assume the contrary. Then the respective se~ler could increase his price 

from N to H and still sell his car. He thus has a profitable deviation. • 

Proposition 6.2 In a uniformly perfect equilibrium {in pure strategies) the two 

seller agents Vj and Vj* with j = 2, 3 choose the high price if the two buyer agents 

responding to them choose the same move, i.e. they both accept or reject. 
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Proof If both buyer agents accept with maximal probability 1 - f in an E

uniformly perturbed game the seller earns a revenue of (1 - E)H by choosing 

H(H*), whereas N(N*) yields only (1-E)N. Similarly, H(H*) yields EH instead 

of EN, implied by N(N*), if both buyer agents reject with maximal probability . 

• 
If the two buyer agents responding to the high or low price of the same seller 

agents, decide differently in an uniformly perfect equilibrium in pure strategies, 

Proposition 6.1 implies that the low (high) price must be the accepted (rejected) 

one. The only possibilities for different decisions of two buyer agents responding 

to the same seller agent are therefore (z, A) and (z, A). This implies 

Proposition 6.3 In a uniformly perfect equilibrium {in pure strategies) Vj and 

Vj* choose the low price if both buyer agents responding to them use "different 

moves. 

Proof Since only the low price will be accepted according to (z,A) or (z,A), it 

is better to choose the low price. • 

Proposition 6.4 In a uniformly perfect pooling equilibrium {in pure strategies), 

i.e. Vj and Vj* for j = 1, 2, 3 take the same choice, the buyer agents responding 

to them accept both prices if(1- w)C > H, reject both prices if N > (1- w)C, 

and accept {reject) the low {high) price if H > (1- w)C > N. 

Proof Consider an E-uniformly perturbed game and a buyer agent who has to 

decide between accepting or rejecting an offer. If both sellers Vj and V* choose 

the same strategy his conditional probability that the car is a lemon is the a 

priori probability w regardless whether he faces the actually chosen price or not. 

This is a simple consequence of Bayes-rule and the factthat the actually chosen 

price is realised with maximal probability l- f in every perturbed game. • 

Proposition 6.5 If V2 and V2* as well as V3 and V3 choose the same price .in 

a uniformly perfect equilibrium in pure strategies, then vl must choose p and 

Vt his move P• . 

Proof. Because of Proposition 6.4 the buyer decisions depend on whether 

(1 - w)C > H, or H > (1 - w)C > N, or N > (1 - w)C. In the first case 
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both prices are accepted, i.e. all seller agents deciding on the price will choose 

the high price. Similarly, the low price is chosen in case of H > (1- tp)C > N, 

whereas in case of N > (1- w)C the high price is chosen since both prices are 

rejected . As neither the price proposals, nor buyer's behavior are influenced by 

the repair decision, it is obviously better not to invest in a costly repair. • 

With the help of Proposition 6.1 to 6.5 we are now able to determine .all uni

formly perfect equilibria in pure strategies. In Table 6.1 we consider all16 pure 

strategies SK of the buyer and determine with the help of Proposition 6.1 to 6.5 

together with some minor additional calculations the best reply qA to SK. There 

are only three strategies SK where the strategy combination (qA, SK) with qA 

being the best reply to SK is cons~stent with Proposition 6.4, namely s_k, s~, 

and s}t. In all other cases the buyer's behavior is not as predicted by Propo

sition 6.4 when we assume that the seller's behavior is the best reply to SK: If 

the best reply qA to SK satisfies the assumptions of Proposition 6.4, the buyer's 

behavior should only depend on which of the three conditions in Proposition 

6.4 is true. Nevertheless the strategies sfK with j f 1, 6, and 16 introduce addi

tional dependencies although the best reply qA to sfK satisfies the conditions of 

Proposition 6.4. This proves 

Proposition 6.6 If (qA, SK) is a uniformly perfect equilibrium {in pure strate

gies), then SK zs either the pure strategy sk-, s'k, or s}t described in Table 

6.1. 

For ,siK sk-, sk, and s}t not only qA listed in Table 6.1 is a best reply to 
,siK, but it is also true that siK is a best response to qK. Since according to 

all three best responses qA the seller always c~ooses the same price, the buyer's 

behavior is predicted by Proposition 6.4 which implies the behavior described by 

sfK. This shows that in every f-uniformly perturbed game it is an equilibrium 

point to choose. the moves in line sk-, sk, or s}t of Table 6.1 with maximal 

probability. Consequently, the pure strategy vectors in line sk-, sk, and s}t are 
the only uniformly perfect equilibria in pure strategies. 

Theorem 6.6 The game described by Figure 5.1 has only three uniformly per

fect equilibria in pure strategies, namely the strategy vectors s1 , s6 , and s10 , 

listed in Table 6.2, which also describes the parameter region for which the cor

responding equilibrium exists. 

It is an interesting result of Theorem 6.6 that there is a unique uniformly perfect 

equilibrium in pure strategies for all parameter constellations satisfying our 
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Name of excluded by 

pure SJ( the best reply qA to SI< Proposition 6.4 

strategy qv qv• or 

SJ( qJ(l qJ(2 qK, qg4 qvt qv2 qv, qv• 
·1 

qv; qv,• equilibrium in 

the range 

sk- z z z z p H h p• H* h* (1- w)C > H 
sJ( z z z A p N h p• N* h* ~ 

si( z z a z p H h p• H* h* ~ 

Sk z z a A p H h p• H* h* ~ 

S~( z A z z -- H n - H* n• !6 

S~( z A z A p N n p• N* n• H > (1- w)C > N 
sj( z A a z -- H n - H* n• ~ 

s~ z A a A p li n p• n· n• !6 

S~( a z z z p H h p • JI* h* !6 

s~ a z z A p N h .P• N* h* !6 

s}~ a z a z p li h p• II* h* 111 

812 
j( a z a A p H h p• n· h* 111 

s~ a A z z p H h p• H* h* !6 

s}i a A z A -·- N h - N* h* 111 

815 
]( a A a z p H h p• II* h* !6 

s~ a A a A p li h p• JI* h* N >(I- w)C 

Table 6.1. The 16 possible pure strategies SK and the best replies qA to SK (a 

parameter condition gives the range where the strategy combination (qA, SK) 

is consistent with Proposition 6.4, the symbol '0' indicates that this range is 

empty; '--' indicates that the best reply is not uniquely determined by our 

parameter restrictions) 

parameter restrictions (5.1) . Although the model of Figure 5.1 is a signaling 

game, none of the three equilibria s1 , s6 and s 16 of Table 6.2 is a signaling 

equilibrium, i.e. the buyer never learns about the true type of the car before 

buying or not buying. This also explains why no seller type V1 or Vi* invests 

in a costly repair. A repair would only pay if it would signal a better quality 

of the car. The pooling equilibria s 1 , s6 and s16 therefore exclude that a seller 

type invests into a costly repair. 

Whether the car is sold or not and at which price is purely determined by its 

a priori-expected value (1 - ~)C for the potential buyer. If this value exceeds 
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Na.me of 
uniformly per- qA qK Pa.ra.meter 

feet equilibrium qv qv• restrictions 
in pure qv, qv~ qv. qy~ qv~· qv3• qK, qK~ qK3 qK• 

strategies 

81 p H h p• n· h* z z z z (1- w)C > H 

86 p N n p• N* n• z A z A H > (1- w)C > N 

816 p H h p• H* h* ii A a A N>(1-w)C 

Table 6.2. The uniformly perfect equilibria in pure strategies of the game in 

Figure 5.1 

the high price, this is the price at which it is bought. If this value is between 

both prices, it is sold at the low price. The car cannot be sold if its expected 

value ( 1 - w )C is even smaller than the low price N. 

Although the car is never sold for N > (1- w)C, we nevertheless can predict 

the prices chosen by the various seller agents. In the same way we also know the 

prices and acceptance decisions of all seller, respectively buyer agents, even of 

those who never have to decide according to the actual play. Since all strategy 

vectors of Table 6.2 exclude a repair, the seller agents V2 and V2* as well as the 

buyer agents K3 and K4 are never asked to move. Nevertheless we know how 

they would decide since we have solved the unperturbed game via its uniformly 

perturbed games in which all agents are asked to move with positive proba

bility. This clearly indicates how the concept of uniformly perfect equilibria 

limits speculation on beliefs in· unreached informat,ion sets and induces local 

rationality. 

Although our model assumes only two possible sales prices, the high price H 
and the low price N, our results allow us to speculate what would happen if 

prices could be chosen more freely. Obviously in a uniformly perfect equilibrium 

in pure strategies the seller will not ask for prices exceeding the expected value 

(1- w)C of the car. If there are many possible prices smaller than (1- w)C, 

he will ask for the highest one. Observe, furthermore, that a uniformly perfect 

equilibrium excludes positive sales prices smallet: than 1. Since V* would never 

sell at a price smaller than 1, the buyer would infer that the car is a .lemon 

and therefore prefer not to buy. If there exists a positive smallest money unit g 



216 W .OUTH and P.OCKENFELS 

and if all integer multiples of g can be chosen as prices, the highest price in the · 

interval from 1 to (1- w)C will be chosen. If this interval is empty, no trade 

will take place since the expected value of the car for the potential buyer K is 

smaller than 1, i.e. the value of the good car for the seller. This is the situation 
envisaged by Akerlof (1970) who predicted such a low posterior probability for 

a good quality car that no trade will take place. 

7. On the possibility of signaling 

According to Theorem 6.1 there can be no signaling of the car's true quality via 

the repair or price decision of the seller if orie relies on the concept of uniformly 

perfect equilibria in pure strategies. In the following it will be shown that 

signaling becomes possible if we allow for mixed behavioral strategies, i.e. if 

every seller or buyer agent is allowed to randomize between his two possible 

moves. 

Although we think that we have explored all possibilities for uniformly perfect 

equilibria, we will not try to prove that the three equilibria described in Theorem 

6.1 and the three uniformly perfect equilibria, which will be discussed below and 

which all prescribe randomization for one seller and one buyer agent, are the 

only uniformly perfect equilibria of the game described in Figure 5.1. What we 

want to show is mainly that signaling the car's true quality is possible at all 

and that there exist generic regions of parameter constellations satisfying (5.1) 
for which uniformly perfect pooling and 'signaling equilibria coexist. 

To have a simple notation 1r, respectively 1r*, is the probability with which V1 , 

respectively Vt, uses his move P, respectively P*. In ant-uniformly perturbed 

game the behavioral strategy of V1 and Vt are both indicated by 1r'. Since at 

most one of these seller's agents voluntarily randomizes, this nota~ion cannot 

cause any confusion. Furthermore, J..lj denotes the probability by which the 

buyer agent Kj accepts the offer of the seller. 

Proposition 7.1 The strategy vector ij = (ijv, fiv•, fiK) with 

iiv = (ir, H, h), 

t/v• =(P*,H*,M), 

iiK =(a, A, z, J..L4) 
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where 

1-w C-H 
11-=--·---

X 
J-l4= H 

w H 
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is a uniformly perfect equilibrium of the game in Figure 5.1 if the following three 

conditions are satisfied: 

and 

H > (1- w)C. 

Proof. Whether for an agent one move is better than the other depends only 

on the payoff implications of his move given that his information set is actually 

reached. We will therefore analyse how his conditional payoff expectation, given 

· that the information set is actually reached, is influenced by his own move. For 

the buyer agent K 4 we must show that his moves yield the same payoff. Let 

7r' denote the probability for the move p by the seller agent vl for which /{4 's 

conditional payoff expectation 

-w7r(1- E)H + (1- w)(1- f) 2(C- H) 
w1r(1- t) + (1- w)(1- f)2 

for acceptance is equal to 0 in an f-uniformly perturbed game. For 1r' one 

obtains 

1-w C-H 
7r' = --. --(1- f). 

w H 

Clearly, 1r' ...... 7r = 1 ~w • cl/ for f --+ 0. If V1 chooses P with probability 

1r' in the f-uniformly perturbed game, /{4 can freely randomize. Similarly, let 

JJ4 be the probability for the move Z by the buyer· agent /{4 which makes V1 
indifferent between his two possible moves. Since V1 's conditional payoff for P 
lS 

(1 - t)J.t4H + f (1- t)N- X 
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whereas it is 

for P, one obtains 

' X+ t[(1- t)H- (1- 2 t)N] 
Jl4 = (1- t)H 

and Jl~ --+ Jl4 = fl for t--+ 0. For Vt the move P* is better than P• if 

t [(1 - t)N + t] + (1- t) [Jl~H + 1- Jl~]- y > 
t [tN + 1- t] + (1- t) [tH + 1- t]. 

Since Jl~ --+ Jl4 for t--+ 0, this condition is satisfied for t (> 0) suffciently small 

if 

or 

Jl4H + 1 - Jl4 > 1 + y 

H -1 
x~>y. 

·.For V2 , respectively V2*, the high price is better than the low one if 

Since Jl4 --+ Jl4 for ( --+ 0 and p4H > N is equivalent to x > N, the choice of 

H by V2 is optimal if t (> 0) is sufficiently small and if x > N. For Va the 

high price is better since both price proposals are accepted only with minimal 

probability t . For the same reason also V3* prefers the high price. 

It remains to prove that also the buyer agents want to use their moves pre

scribed by iiK with maximal probability. K1 's conditional payoff expectation 
for acceptance is negative if 

(1- w) ( (C- N) < w(1- 1r')N. 

Since 71'' --;, 1l' for (--+ 0, this condition is fulfilled for ( (> 0) sufficiently small if 

1l' < 1, i.e. (1- w)C < H. For K2 acceptance is worse if 

(1- w) t(C- H)< w(l- 1r')N, 
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i.e. alsoif(1-w)C <H. Acceptance by K3 is optimal for (1-w)(1-f)(C-N) > 
W7Tf N. Since 7Tf --+ 11- for f --+ 0 and 

(1-w)(C-N)>w?TN 

is equivalent to H > N, this condition is always fulfilled for f (> 0) sufficiently 

small. 

This shows that every f-uniformlyperturbed game with f sufficiently small has 

an equilibrium point qf which requires all pure choices of the strategy vector 

ij in Proposition 3.1 to be realised with maximal probability 1 - f and whose 

components 7Tf and Jl~ converge to 11-, respectively Jl4 , for f --+ 0. Thus the 

strategy vector ij is the limit of equilibria qf in f-uniformly perturbed games for 

f --+ 0 as required by the concept of uniformly perfect equilibria. • 

Proposition 7.2 The strategy vector ij = ( ii.v, ii.v•, ii.K) with 

ii.v = (ir, N, h), 

ii.v• = (P*, N*, h*), 

ii.K =(a, A, Jl3, A) 

where 

1-w C-N 
ir=--·--

w · N 
X 

Jl3=
N 

is a uniformly perfect equilibrium of the game in figure 5.1 if the following three 

conditions are satisfied: 

(1-w)C<N 

Proof. For V1 to be indifferent between P and P in an f-uniformly perturbed 

game K 3 must use Jl1 with 

f x+f{H(1-2f)+fN) 
Jl3 = (1- f)N 

.. 
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where /Ja --> 1J3 for f --> 0. For K3 to be indifferent between his two moves z 
and a the seller agent V1, in turn, must behave according to 1r( with 

7r( = ..:.....( 1_-_€.:....:.)(_1 -----:-:-w ).:....:.( C_-_N-'-) 
wN 

where 1r£ --> 7r for f--> 0. The seller agent Vt prefers P* if 

(1- E)(IJ~N + 1 - IJ~) + f (EH+ 1- f)- y > 

f{EN + 1- f)+ {1- E)( EH+ 1- f). 

Since /Ja --> p 3 for f--> 0, this condition is satisfied for f (> 0) sufficiently small 

if 

/J3N + 1 - l-'3 - y > 1 

or p3 ( N - 1) > y which is eqivalent to ( N - 1 )x > N y. Seller agent V2, 
respectively V2*, prefers the lower price since it is accep~ed with probability f-ta 
whereas the high price is accepted only with the minimum probability f. Seller 

agent v3 , respectively v;' prefers the higher price since both prices are rejected 

with maximal probability. For the buyer agent K1 rejecting is better since 

holds for f (> 0) sufficiently small. Similarly, A is better for K2 since 

{1- w) f {1- E){C- H)< w(1- 7r(){1- E)H 

holds for f (> 0) sufficiently small due to 7r<--> 7r for f--> 0 and if < 1 because 

of {1- w)C <N. Finally, seller agent K4 prefers A if 

which is also true for f (> 0) sufficiently small. Thus ij is the limit of equilibrium 

q£ of €-uniformly perturbed games with 1r( and /Ja and with maximal probability 

for the choices of ij otherwise. • 
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Proposition 7.3 The strategy vector ij = ( ijv, ijv•, iiK) with 

iiv = (P, H, h), 

iiv• = ( 1r*, H*, h*), 

iiK = (z, p.2, z, Z) 

where 

7r* = 1 - ~ . _!!_ 
. 1-w C-H 

y 
P.2= 1---

H-1 
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is a uniformly perfect equilibrium of the game in Figure 5.1 if the following three 

conditions are satisfied: 

y H -1 
-<-
X H 

H-1 
y<--(H-N) 

H 
(1-w)C>H 

Proof. For Vt to b'e indifferent between P* and P• in an £- uniformly perturbed 

game K2 must rely on J.L2 with 

f t [(1- t)N + t] + (1- t) [H(1- t) + t] 
p.2 = (1- t)(H- 1) + 

-(1- t)- t (N(1- f:) + (1 - t) t]- y + . 
(1-t)(H -1) 

which converges to P.2 = 1 - -d':r for f -+ 0. For K2 tq be indifferent between 

his two moves Z and A the seller agent Vt must repair with probability 

7rf = 1 _ w(1- t)H 
(1-w)(C-H) 

which converges to 7r* for f -+ 0. For V1 the move P is optimal if 
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Since 11; ---+ 112 for f ---+ 0, this condition is fulfilled for f (> 0) sufficiently 

small if H(t- 112 ) < x or ~ < Hi/. For V2 , respectively V2*, the high price 
·is better since both prices are accepted with maximal probability 1 - €. For 

V3 the high price yields p;H whereas the low price implies a conditional payoff 

expectation (1- f)N. Since p; ---+ 112 for f---+ 0 and 112H > N is equivalent to 

Hi/ (H- N) > y, seller ~gent V3 prefers the high price. This also proves that 

h* is optimal for V3*. Acceptance is optimal for K 1 if 

(1- w)(1- 7r~)(C- N) > w(1- E)N. 

Since 11"' ---+ 7r* for f---+ 0, this condition holds for f (> 0) sufficiently small if 

(1- w)(1 - 7r*)(C- N) > wN 

or H >N. For K3 acceptance is"optimal if 

(1- w)7r'(C- N) > w f N. 

Due to 11"' ---+ 11"* for f---+ 0 this condition is fulfilled for f (> 0) sufficiently small 

if 11"* is positive, i.e. if H < (1 - w)C. Finally, acceptance is K4 's better choice 

if 

(1- w)7r'(C- H)> w f H. 

Again this is true for f (> 0) sufficiently small if 7r* is positive, i.e. if H < 
(1- w)C. Thus q is the limit of equilibria q' of (-uniformly perturbed games 

with 11"' and p~ and with maximal probability 1- f for the pure moves of q. • 

According to all three equilibria ij, ij and q signaling is possible. If, for instance, 

V1 happens to choose P, what he does with probability 1 - 1r according to ij, 

and if ij is expected to be the solution, than buyer K would conclude that the 

car is a lemon. Similarly, the car's quality is revealed with probability w(1- 71') 
if ij is the solution. According to q the car's quality is revealed with probability 

(1- w)7r*, namely if Vt happens to decide a.nd if he chooses his move P*. This 

shows that the main screening device is the repair decision since the repair cost 

is lower for V* than for V, the owner of a lemon. 

It is interesting to note that in case of ij the price for the repaired car is lower 

than the one for the unrepaired car. The reason for this counterintuitive result 
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equilibrium q q ij 

probability 

of signaling H-~1-w)C N-~1-w)C ~1-w)C-H 
H N C-H 

Table 7.1. The signaling probability implied by q, q, and ij 

is that, since every price proposal for the unrepaired car is rejected, the seller 

tries to exploit optimally the possibility of a mistake by the buyer. 

Proposition 7.1, 7.2, and 7.3 together show that signaling the car's true quality 

is possible accorrding to the concept of uniformly perfect equilibria, but does 

not accur with probability 1. 

The signaling probabilities for the three signaling equilibria are given by Table 

7.1 in the original parameters of the game, described by Figure 5.1. q and 

q are both signaling equilibria for w > (C- N)JC and then the signaling 

probability for q is greater than the one for q since H > N. The equilibria 

ij and q (respectively ij) are valid for different parameter constellations. The 

signaling probability implied by ij can be larger than the one of ij and also 

smaller than the one of q. Here one must, of course, remember that the initial 
chance move is purely fictitious so that these probabiliti{.'S only express the 
buyer's expectations. For the seller signaling occurs with probability 1 - 7r 

according to ij, with probability 1 - 7r according to q, and not at all according 

to ij if the car is a lemon. In case of a good car the seller expects no revelation 

of the car's quality according to ij and ij and with probability 1r* according to ij. 

8. Discussion of results and concluding remarks 

We first want to discuss the possibility that at least two uniformly perfect equi

libria can coexist. Due to Theorem 6.1 there is no parameter constellation 

satisfying the parameter restriction ( 5.1) for which the corresponding game has 

two uniformly perfect equilibria in pure strategies. 9early, also q and ij exclude 
each other since ij requires· x > N whereas for ij one needs x < N.. Similarly, 

neither ij and ij nor q and ij can coexist since ij relies on (1- w)C > H whereas 
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H-1 
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Hii1(H- N) 

(1- w)C 

Figure 8.1. The regions of uniformly perfect equilibria for the game of Figure 5.1 

with parameters 8.1 

the expected value ( 1-w )C of the car has to ·be smaller than H, respectively N, 

according to ij, respectively ij. In order to demonstrate coexistence of uniformly 

perfect equilibria we therefore have to show that there are parameter constella

tions satisfying condition (5.1) such that the game of Figure 5.1 has exactly one 

equilibrium in pure strategies and one with two agents using mixed behavioral 

strategies. 

In Figure 8.1 we graphically illustrate the situation for the parameter constel

lations with 

C = 5 > H = 4 > N = 2, x > y = 1/2, and 0 < w < 1 (8.1) 

where we exclude, of course, the border cases w = CcH, w = ccN, x = 
N, x ·= rf_ 1 y and x = HH_ 1 y. Although there are regions with only one 

uniformly perfect equilibrium which is always in pure strategies, coexistence of 

one pure and one non-pure uniformly perfect equilibrium can also be observed 

(see Figure 8.1). 

Whereas 8 1 , respectively 8 6 , can only coexist with ij, .respectively ij, the pure 

strategy equilibrium 8 16 can go along with ij and ij. Since all boun~aries in Fig

ure 8.1 depend continuously on the game parameters, Figure 8.1, furthermore, 

illustrates a generic situation. Thus both phenomena, namely coexistence of one 

pure and one non-pure equilibrium or just one uniformly perfect equilibrium in 

pure strategies, are generic. 
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uniformly 

perfect 81 86 816 ij q ij 

equilibrum 

probability W1i"Jl4+ W1i"Jl3+ WJl2 + (1- w)· 

of 1 1 0 +(1- w)Jl4 +(1- ui)Jl3 ·(11'* + (1- 11'*)Jl2 

sale =(1-w)~~ =(1-w)N-~ 1 WC1f. 
- (c-H)(H-1) 

sales price 

in (lase of H N - H N H 

sale 

Table 8.1. The probability of sale and the sales price for all 6 uniformly perfect 

equilibria 

Although uniformly perfect equilibria do not allow to speculate freely about 

beliefs in unreached informed sets, they do not resolve strategic uncertainty 

completely. In the regions of Figure 8.1 with two equilibfia the strategic advice 

remains ambiguous. If, for instance, 816 and ij coexist, 816 presribes P* for Vt 
whereas ij tells Vt to use P*. Similarly, K 3 is supposed to accept according to ij 

and to reject according to 816 • Like other refinement concepts (see van Damme, 

1991, and Giith, 1992, for a survey) uniform perfectness is only an attempt to 
define a necessary condition for individually rational decision making which, in 
general, will not be sufficient to resolve strategic uMertainty completely. 

Attempts to resolve strategic uncertainty completely are theories of equilibrium 

selection (see Harsanyi and Selten, .1988, as well as Giith and Kalkofen, 1989). 

Giith and van Damme (1991a and 1991b) have applied equilibrium selection to 

signaling games and shown how to select one of possibly many uniformly perfect 

equilibria as the unique solution of the game. A similar study would be possible 
for the game of Figure 5.1. 

The economic implications of the six uniformly perfect equilibria can be illus

trated with the help of Table 8.1 which gives the probability of sale as well as 
the price in case of a sale for t.he three pure and the three non-pure uniformly 

perfect equilibria derived in sections 6 and 7 where we express the sales proba-
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bilities both by the parameters of the behavioral strategies and by the original 

parameters of the game. 

Whereas the pure strategy equilibria imply either sale (s1 and s6 ) or non-sale 

(s16 ) , the non-pure equilibria imply both sale and non- sale with positive prob

ability. Since H > N, the sales probability for q is larger than the one for q. 
The sales probability of ij can be larger or smaller than the ones implied by q 
and q. Furthermore, every uniformly perfect equilibrium in Table 8.1 implies a 

unique sales price which can be the high one (in case of s 1, q and ij) or the low 

one (in case of s6 and q). 

The game of Figure 5.1 is highly restrictive since it allows only to choose between 

two prices, namely a high and a low one. Furthermore, one might want to 

allow the seller not to sell at all. Nevertheless some aspects will probably be 

true also for more general models, e.g. that signaling has to rely on non-pure 

choice behavior if there is only one screening choice like repairing the car or 

the generic coexistence of pooling and signaling equilibria. As already indicated 

when discussing the implications of Theorem 6.6, the possibility of more than 

two price proposals does not seem to cause problems. What matters more is 

the possibility of prices exceeding the car's expected value (1- w)C. 

The bargaining process in Figure 5.1 is of the most .simple form. The seller first 

can repair the car and then chooses his sales price which the potential buyer 

can either accept or reject. One might argue that this is a much too simple 

procedure since we often observe long bargaining disputes before a settlement 

or conflict results. However, in most cases even a long dispute will end with a 

final offer which the other party then can only accept or reject. It is this final 

stage of the bargaining process what we try to capture by the game model of 

Figure 5.1. 

Of course, in a bargaining game with incomplete information exchanges of ar

guments might affect the beliefs of the uninformed players. If, however, it is in 

the interest of V* to give some information about the quality of the car, the 

owner V of the lemon can imitate V* and also obtain the same advantages. In 

a uniform equilibrium screening has to be costly in the sense that V* 's behavior 

cannot be imitated without a.· payoff loss by the seller type V who wants to sell 

a lemon. 



Ga.me Theoretic ~na.l ys i a ... 227 

Most bargaining models like, for instance, Rubinstein's celebrated approach con

sider highly stylized situations, e.g. the division of a unit cake. In economic 

life bargaining is just one aspect of the economic environment. So a bargaining 

model has to capture both, the economic environment with all its strategically 

relevant institutional details and the prevailing rules of bargaining. In our view, 

the game model of Figure 5.1 demonstrates the difficulty of this task. Although 

the economic structure is rather simple (just two types of a used car, which can 

be sold at two possible prices, and the simple procedure of ultimatum bargain
ing), it is by no means trivial to solve such a 'simple model'. 

The great art in bargaining theory is to develop a model which captures the 

richness of strategically essential institutional details and also the typical rules 

of bargaining and which still be analysed analytically. In our view, one crucial 

institutional aspect is the existence of private information which is also the 

decisive feature of the game in Figure 5.1. With respect to bargaining rules one 

can rely on successive concession or final proposals as we did and as it is often 

assumed in the bargaining literature. 

Game theory has provided thorough investigations of stylized bargaining rules. 

Master pieces which strongly influenced the game theoretic school of bargaining 

theory were Nash (1951 and 1953) and Rubinstein (1982) whose models were 

both generalized to environments with incomplete information (see Harsanyi 

and Selten, 1972, and Rubinstein, 1985).But we need many more such master 

pieces to complete the 'gallery' of game theoretic bargaining studies. 
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