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We investigate whether the core of an n - person characteristic 
function game can be supported by players' noncooperative behav
ior in some suitably defined bargaining model. In our bargaining 
model, players negotiate over (possibly infinitely) many periods and 
negotiations within one period consist of a sequence of finitely many 
proposals and responses to them. It is shown that for a totally 
balanced game the set of all payoff distributions attained by sub
game perfect equilibrium points of the bargaining model with no 
discounting payoffs coincides with the core of the game if the equi
librium points satisfy the two conditions about low complexity of 
players' bargaining behavior: (i) stationarity and (ii) payoff - ori
ented response. 
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1. Introduction 

The purpose of this paper is to investigate a problem of coalition formation 

and payoff distributions in an n - person game in characteristic function form 

by presenting a noncooperative bargaining model. Our main concern is with 

how a cooperative outcome can be realized by players' noncooperative utility 

maximizing behavior under some specified rule about negotiation process. 

Nash (1951) suggested that a cooperative game should be analyzed as a 

noncooperative game by constructing a bargaining model suitably defined in 

extensive form and by studying its noncooperative equilibrium points. In this 

noncooperative approach, we can clarify the assumptions that various coopera

tive solution concepts implicitly make about players' bargaining behavior if we 

reconstruct them as equilibrium points in a noncooperative bargaining game, 

and furthermore we can explain the multiplicity of cooperative solution concepts 

by various possible negotiation rules for the characteristic function game. This 

research program is now called the N ash program. 

Up to now, several works towards carrying out the Nash program have been 

done for an n - person characteristic function game, stimulated by Harsanyi's 

(1974) earlier work on von Neumann-Morgenstern solution. Selten (1982) inves-

·. tigated the concept of a stable demand vector introduced by Albers (1975) in an 

n - person game with the one-stage property, and Binmore (1985) investigated 

the" asymmetric" N ash bargaining solution in 3-person games without the grand 

coalition (called the 3-person / 3-cake probl~m), and Gul (1989) investigated 

the Shapley value in a framework of ann- person market game. Kaneko (1986) 

also investigated von Neumann-Morgenstern solution from a different viewpoint 

of his convention-stability theory. 

In this paper, we will consider the core among various cooperative solution 

concepts for a characteristic function game. Although the core is defined by 

a simple criterion of coalitional behavior of players, it is not a trivial question 

whether the core can be implemented by players' noncooperative behavior in 

some suitable bargaining model. 

In our earlier work (Okada, 1991), we investigated the implementation prob

lem of a Pareto efficient and individually rational outcome in the framework of 

a 2-person supergame. We incorporated a possibility of negotiations and of 

binding agreements for acti<?ns into the usual supergame model and considered 

a question whether a noncooperative equilibrium point in the bargaining game 

necessarily leads to a Pareto efficient and individually rational outcome. It turns 



Noncoopera.rive Ba.rga.ining a.nd the Core 233 

out that the answer of this question depends on the complexity (or memory) 

of players' equilibrium strategies. The answer is affirmative if the two players 

employ stationary equilibrium strategies which are independent of the history 

of the game. We also pointed out that nonstationary (or history-dependent) 

equilibrium points may lead to Pareto inefficient outcomes even under such a 

strong institutional assumption on negotiations that players can reach binding 

agreements on their current and also future actions. In this paper, we will at

tempt to extend our investigation to an n-person game in characteristic function 

form. 

The n - person bargaining model presented in this paper has the following 

features. 

(1) Negotiations are done among relatively small number of players. 

(2) The players can negotiate for (possibly infinitely) many periods. Negoti

ations within one period consist of a sequence of proposals and responses 

to them. There exists an upper limit of the number of proposals which 
can be made sequentially in one period. 

(3) If one coalition is formed in some period, then the remaining players can 

continue their negotiations under the same rule at the next period. 

( 4) The possibility of renegotiations is allowed in a sense that, if the players 
fail in making any agreement in one period, then they can negotiate again 
under the same rule at the next period. 

(5) Future payoff's are not discounted. 

The aim of our analysis is to investigate a subgame perfect equilibrium 

point of our bargaining model which satisfies additional conditions about low

complexity of players' behavior. 

When we attempt to explain a cooperative solution of a characteristic func

tion game in the framework of noncooperative bargaining models, the two main 
questions should be considered: 

( 1) ( the problem of bargaining rules ) what kind of negotiation process should 

be designed? 

(2) ( the problem of strategic complexity ) How complexity of players' bar

gaining behavior affects the equilibrium outcomes of the bargaining game? 
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Our main theorem shows that for an n - person totally balanced game in 

characteristic function form its core coincides with the set of all payoff distri

butions attained by subga1t1e perfect equilibrium points of the bargaining game 

which satisfy the following two conditions on low-strategic complexity of players' 

bargaining behavior: 

(i) stationarity: players' strategies are independent of the history ofthe game 

in past periods, 

(ii) payoff-oriented response: every player responds to any proposal according 
only to the payoff offered to him. 

It is also pointed out that players' complicated bargaining strategies which 

do not satisfy both conditions may lead to an outcome outside the core. 

The paper is organized as follows. Section 2 defines an n - person game in 

characteristic function form and the core of it. Section 3 presents both informal 
and formal descriptions of our bargaining model. A sub game perfect equilibrium 

point of the bargaining game and the two conditions of stationarity and of 

payoff-oriented response are defined. Section 4 is devoted to the analysis of the 

equilibrium points of the bargaining game. Section 5 has concluding remarks. 

2. An n-Person Game in Characteristic Func

tion Form 

An n-person game in characteristic function form is a pair (N, v) where N = 
{1, 2, ... , n} is the set of players, and v, the characteristic function, is a real 

-valued function on the family of all subsets of N with v(0) = 0. A nonempty 

subset S of N is called a coalition. The value v(S) assigned to a coalition S 

is interpreted as a sum of money which the players in S can distribute among 
themselves in any way if they reach an agreement on a payoff distribution. 

The characteristic function v is 0-normalized if 

v(i) = 0 for i = 1, ... , n, 

and is superadditive 

V(S UT) ~ v(S) + v(T) 
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for any two disjoint coalitions S and T . A zero-normalized superadditive char

acteristic function v is called essential if 

v(N) > 0. 

In this paper, we assume that the characteristic function v is zero-normalized, 

superadditive and essential whenever no specifications are given. 

A payoff vector of a coalition S is a real-valued function on S , denoted by 

xs = (xf);es· A payoff vector xs forS is called feasible if. 

L:xf ~ v(S). 
iES 

The set of all feasible payoff vectors for S is denoted by xs . X~ denotes the 

set of all payoff vectors xs = (xf);es in xs s.atisfying xf 2:: 0 for all i E S. A 

payoff vector xN = (xfV\eN for N is simply denoted by x = (x;)iEN whenever 

no confusion arises. 

DEFINITION 2.1 A payoff vector x = (x1, ... , Xn) for N is said to be an impu

tation of (N, v) iff 

1. individual rationality: x; 2:: 0 for all i E N, and 

2. Pareto efficiency: .EieN x; = v(N) . 

The set of all imputations of ( N, v) is denoted by X*. 

DEFINITION 2.2 The core of a game (N, v) is defined by 

C(v) = {x E X*l L x; 2:: v(S) for all S ~ N}. 
iES 

DEFINITION 2.3 {1} A restricted game of a game (N, v) is a pair (S, vs) where 

S is a coalition of N and vs is the characteristic function on S induced naturally 

by v, i.e., 

vs(T) = v(T) for all T ~ S. 

{2} A game (N, v) is called totally balanced iff every restricted game of it (in

cluding itself) has the nonempty cQre. 
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We will provide a characterization of the core which is useful to our investi

gation. Let x = (x 1, ... , Xn) be a payoff vector for N. We define the maximum 

payoff for player i under x by 

m;(x) = ~ax {v(S)- ~ xi}_. 
S:tESCN L...J 

- jES,j:fii 

The value m; ( x) is the maximum payoff which player (can obtain by forming 

all possible coalitions including himself under the assumption that all other 

members in the coalitions receive the payoff's specifi~d in x = (x1, ... ,·xn)· 

PROPOSITION 2.1 An imputation x = (x1, . . . , Xn) of(N, v) is in the core C(v) 

iff 

x;=m;(x) forall i=l, ... ,n. 

The proof of Proposition 2.1 is left to the readers. Proposition 2.1 shows 

that for every imputation x in the core every player enjoys his maximum payoff 

under x. 

3. A Noncooperative Bargaining Model for the 

Game (N,v) 

3.1. Informal Description 

We first provide an informal description of our bargaining model for ann-person 

·characteristic function game (N, v). A precise definition of the rule of the bar

gaining game will be given in extensive form in the next subsection. 

All players in N negotiate for coalition formations and payoff destributions 

over (possibly infinitely) many periods. Negotiations in every period start with 

a proposal of a (predetermined) player and responses by other players to it. If 

some player rejects the proposal, he can make a counterproposal. This process 

is repeated finitely many times within one period. A proposal is a pair of a 

coalition and a feasible payoff vector for the coalition. If a proposal is accepted 

and thus some coalition is formed, then negotiations will continue among the 

remaining players in the next period. Otherwise, negotiations will be repeated 

among the same set of players. Negotiations do not end until each of n players 

belongs to some coalition, More specifically, our bargaining game proceeds as 

follows, 



Noncoopera.rive Ba.rga.ining a.nd the Core 237 

In period 0, an ordering a = ( i1, i2, ... , in) over N is randomly selected. 

This ordering is called the proposership ordering, which is used to determine 

the first proposer at every period. Given S C N, let as denote the ordering 

over S which is naturally induced by a. 
In every period t = 1, 2, ... , negotiations take place within the set Nt of 

players. This player set Nt in period t will be defined inductively by the rule of 

the game explained below with the initial condition of N 1 = N. 

Rules: 

( 1) The first proposal: The first proposer is the player who is in the first 

position in Nt with respect to the ordering aNt. Let i E Nt be the first 

proposer. Player i proposes a pair (x 8 , S) satisfying (i) i E S ~ Nt and (ii) 

x8 = (xf)jes E Xf The proposal (x 8 ,S) is called essential ifv(S) > 0, 
and inessential otherwise. In what follows, we assume that every player 

makes an essential proposal when he becomes a proposer. 

(2) Responses: When the first proposer i makes a proposal (x 8 , S), all players 
in S- { i} can either accept or reject it sequentially according to aN'. The 

two cases are possible. 

(2a) If all players in S- { i} accept (x 8 , S), then it is agreed upon. In this 

case, the coalition S is formed and every player j in S receives the 

payoff xf. And then, in period t + 1 all players in Nt+ 1 = Nt- S have 

negotiations under the same rule as in period t with the proposership 

ordering a N•+l . 

(2b) If some player j inS.- { i} rejects (x 8 , S) , then he can make a coun

terproposal. 

(3) Counterproposal: Player j counterproposes a pair (yT, T) satisfying (i) 

j E T ~ Nt and (ii) yT = (yf)keT E xr · 
( 4) Responses: All players in T - {j} can either accept or reject player j's 

counterproposal (yT, T). Then, the same rule as in (2) is applied. 

(5) Finitely many proposals: The process from (2) to ( 4) is repeated until 

an agreement is reached. However, there exists an upper bound /{ of the 

number of successive proposals in every .period t where /{ is any fixed 
positive integer with K 2: 2. When no agreement is reached after K 

proposals, negotiations break down in period t. 
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(6) Renegotiations: When negotiations break down in period t, the players in 

N' can negotiate again in the next period t + 1 under the same rule as in 

period t. In this case, we have Nt+ 1 = Nt. 

(7) End: The game ends if and only if (i) every player in N belongs to some 

coalition arid obtains an agreed upon payoff, or (ii) players in a coalition 

S with v(S) = 0 remain. In case (ii), we assume without loss of generality 

that the coalition S is formed and every member in S obtains zero-payoff. 

In the case of an infinite play, all players who fail to belong to any coalitions 

obtain zero-payoffs. 

In what follows, the proposership ordering a= (i1 , i2 , ... , in) is fixed, and 

we put a= (1, 2, ... , n) for simplicity. 

3.2. The Extensive Form 

The rule of our bargaining model explained in the last subsection is formally 

described in the extensive form. The bargaining model in each period is called 

a component game. We will first define a component game. 

(1)The Component Game 

The component game with the player set S is defined by a seven-tuple 

G(S) = (S, X, Z, P, A, h, c) 

of which each element is explained below. 

(i) S, a subset of N, is the set of players. Without any loss of generality, we 
write 

S = {1, ... ,s}. 

(ii) X is the set of all personal positions where players make choices. X 

consists of the positions of the following types: for all i E S, 

where ( x5k, Sk) is a' proposal by player ik for k = 1, ... , m. The nota

tion p;({ik,(x5k,Sk)}r=1) means the position of player i where he makes 
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a proposal under the history that the proposals (x8k, Sk) by players ik 
(k = 1, ... , m) have been rejected. When m = 0, the first proposal is 

made by player i at this position. The notation ri({ik,(x8 k,Sk)}/:'=1 ) 

means the position of player i where he responds to player im 's proposal 

(x 8 m, Sm) under the history that all previous proposals (x 8
k, Sk) by play

ers ik (k = 1, ... , m- 1) have been rejected and also tha.t all responders 

in Sm preceding him have accepted the proposal (x 8 m, Sm)· 

(iii) Z is the set of all endpoints, which consists of those of the following types: 

where ( x8
k, sk) is the proposal by player ik. 

The notation a( { ik, (x 8
k, Sk)}/:'=1) means the endpoint where player im 's 

proposal (x 8 m, Sm) is accepted after all previous proposals (x 8
k, Sk) (k = 

1, ... , m-1) have been rejeCted . The notation a({ik, (x8
k, Sk)}f=1) means 

the endpoint where negotiations break down in period t after all K pro

posals (x 8
k, Sk), k = 1, ... , K, have been rejected. 

(iv) P = [P1 , ... , Ps], the player partition, is a partition on X where Pi (i = 
1, ... , s) is the set of all personal positions of player i. 

(v) A, the choice function, is a function which assigns a nonempty choice set 

to every personal position in X such that 

(vi) h, the payoff function, is a function which assigns a payoff vector to every 

endpoint in Z such that 
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(vii) c, the continuation function, is a function which assigns a component game 

to every endpoint in Z such that 

The game tree of the component game is constructed by the set of personal 

positions, X, the set of end points, Z , and the choice function, A, according to 

the rule explained in subsection 3.1. The component game G{S) has no play 

when S = 0, and has the unique payoff vector {0, . .. , 0) when v(S) = 0. 

(2) The Bargaining Gamer 

The extensive form of our bargaining gamer is constructed from the family 

{ G(S)} scN of component games defined above. r starts with the component 

game G(N1 ) with N 1 = N. All endpoints of G(N1 ) are connected to appro

priate component games G(N2 ) by the continuation function in G(N 1 ), and all 

endpoints of G(N2) are also connected to appropriate component games G(N3 ) 

by the continuation function in G{N2), etc. r is constructed in this way as 

far as the continuations of component games are possible. When we want to 

emphasize the upper bound /( of the number of successive proposals in every 

period in f, we write fK instead of f. 

Let X be any personal position of player i in the extensive form of r. Then, 

there exist uniquely {1) a sequence {G(NI:)}~= 1 of component games, and (2) 

endpoints zk in all G(Nk), k = 1, ... , t - 1, and (3) a personal position xt of 

player i in G(Nt) such that xis corresponding to the sequence (z 1 , . . . , zt- 1 , x1) 

under the construction rule of r. The sequence ( z1 , . . . , zt- 1 , x1) is called the 

history of x . In what follows, the position x is identified with the history 

( 1 t-1 t) f .t If h f . . Wh ( 1 t-1 t) z , . . . , z , x o 1 se w en no con uswn anses. en x = z , . . . , z , x , 

we say that xis a position in period tin r, We assume that at his every position 

of r every player can know the history of the position. The bargaining game 
r is formally described as an extensive game with perfect information, and of 

infinite length. 

Let z be a play of r . Similarly to the case of a personal position, there exist 

uniquely {1) a sequence of component games, {G{N1)}[=1 , T < oo or T = oo, 

and (2) endpoints z1 in all G(N1
), t = 1, . .. , T such that .z is corresponding 

to the sequence (z 1 , ... , zT) under the construction rule of r. When T < oo, 

z is said to have length T, and to have infinite length, otherwise. The payoff 



Noncoopeu.rive Ba.rja.ining and \he Core 241 

function h off assigns a payoff vector h( z) = ( hl ( z)' ... ' hn ( z)) to every play z 
off satisfying h;(z) = xf if player i belongs to some coalition S and obtains a 

payoff xf on the play z, and 0 otherwise. 

(3) Strategy and Payoff 

A (pure) strategy u; for player i in f is defined by a function that assigns 

to every position x of player i in fa choice u;(x) at x. In this paper, we will 

not consider any randomization of choices by players. Let· II; denote the set of 

player i's strategies in f. Given a strategy combination (1 = (ul, . .. ' Un) off, 

a play z off is uniquely determined. Then, the payoff H;(u) of player i.for u is 

defined by 

H;(u) = h;(z). 

Let H(u) denote the payoff vector (H1(u), ... , Hn(u)) for u. Given a strategy 

combination U = (u1, ... , Un) off and a subgame f off, let Ulf' denote the 

strategy combination in t induced by u. Similarly to f, we can define the payoff 

for player i in f' when u1f' is played, which is denoted by H;(u1t)· 

3.3. Equilibrium Points 

We define the concept of a subgame perfect equilibrium poir;tt which we will 

employ as the noncooperative solution concept for f. We also introduce two 

conditions about low-complexity of an equilibrium point: (i) stationarity and 

(ii) payoff-oriented response. 

DEFINITION 3.1 A strategy combination u* = (ut, ... ,u~) off is said to be a 

Nash equilibrium point off iff for all i = 1, .. . ,n, H;(u*) 2': H;(u*ju;) for all 

u; E II; where u* / u; is the strategy combination obtained from u* by replacing 

uf with u; . 

DEFINITION 3.2 A Nash equilibrium point u* = (ut, ... ,u~) off is called a 

sub game perfect equilibrium point iff it induces a N ash equilibrium point on 

every subgame off. 

DEFINITION 3.3 A Nash equilibrium point u* = (ut, ... , u~) off is called 

stationary iff the following holds for every i = 1, ... , n: for every position 

x = (z1 , •.. , zt-l, x 1) of player i in f in every period t, u*(x) depends only 

on x 1
• 
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Definition 3.3 says that in a stationary equilibrium point players' behavior · 

at every position in every period t does not depend on the history of the game 

before period t, but may depend on the intra-period history xt of the game 

within period t. In this paper, we call such an equilibrium point stationary 

because it induces the same strategies of players on every subgame of r that 

starts with the first proposal in every period. 

Remark. A Nash equilibrium point u* = (ut, ... ,u~) of r is stationary iff 

there exists a strategy combination u8 = (uf);es for every component game 

G(S), S ~ N, such that the following holds·for every i E N: for any position 

X= (z1 , ... , zt-l, x1) of player i in f, We have 

where xt is a position of player i in the component game G(S). Then, u* is 

called the strategy combination of r defined by the family { ( uf)ies }sc;;;N of 

strategy combinations for all component games G(S). 

Finally, we define a low-complexity condition about players' response rule in 

the bargaining model. 

DEFINITION 3.4 A stationary equilibrium point u* =(ut, ... , u~) off is said to 

have payoff oriented response if], for every component game G(S), there exists a 

payoff vector a8 = (af)ies such that every u[ prescribes the following response 

rule of player i in G(S): for any proposal (yT, T), i E T ~ S, accept it if 

YT ~ af, and reject it otherwise. The payoff af is called player i's acceptable 

payoff in the component game G(S). 

The condition of payoff-oriented response means that every player employs a 

simple response rule which depends only on the payoff offered to him, indepen

dent of the history of the game. Every player accepts a proposal whenever he 

is offered at least as much as his acceptable payoff. Remark that every player's 

acceptable payoff depends on the component game. We can interpret in the two 

ways why a player may employ such a simple response rule in negotiations. One 

way is to assume that the capacity of the information processing system embod

ied in a player is bounded either physically or with high costs and that he has to 

employ a low-complexity response rule by this reason. Another interpretation is 

that a player employs such a simple response rule with strategic consideration. 

For example, low-complexity strategies may have a focal point effect such that 

all players are more fikely to select them with mutual expectations that the 

other players also select them. 
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4. A Characterization of Equilibrium Points of 

the Bargaining Game r 
In this section, we will characterize the subgame perfect equilibrium point of 

the bargaining game r which satisfies both conditions of stationarity and of 

payoff oriented response. In what follows, we assume that an equilibrium point 

is subgame perfect and stationary. 

LEMMA 4.1 Let u* = ( ut);eN be an equilibrium point of r such that x* = 
H(u*). For every i EN let f; be the subgame off starting with player i's mov~ 

to make the last proposal in the component game G(N). Then 

where m;(x*) is player i's maximum payoff under x*. 

PROOF: By definition, we have 

m;(x*) = max [v(S)- L xj] 
S:iES~N iES,j-:Fi 

Let Si be the coalition which attains m;(x*). For any x; with m;(x*) > x;, 

define w = (wi)ieS in X~ by 

w; = x; and 

Wj = xj + (m;(x*)- x;)/(IS;I- 1), j E S, j :f; i. 

Then, we have Ljes• Wj = v(S;) and Wj > xj for all j E S; ,j :f; i. Suppose 

that player i makes the last proposal ( w, Si) in the component game G(N). 
Also suppose that all responders except the last one, say player k; accept this 
proposal. If player x accepts it, then the proposal ( w, Si) is agreed upon and 

thus he obtains Wk. On the other hand, if he rejects it, negotiations break down 

in period t and thereafter renegotiations will take place in the next period t + 1. 

Since u* is stationary, player k will obtain xt in such a case. Apparently it is 

optimal for him to accept (w, S;). By the "backward induction" argument, we 

can see that all other players in S; also accept ( w, s;) in u*. Therefore player i 
can obtain at least x; in u*. On the other hand, suppose that player i proposes 

(yT, T), i ET, with YT > m;(x*). Then, 

L yJ +YTS v(T) S L xj + m;(x*). 
jET,jf.a iET,jf.i 
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Since YT > m;(.x*) , there exists some player j E T, j ::/= i, such that yJ < .xj. 

Assume that (yT, T) is accepted in u*. Then player j can increase his payoff 

from yJ to xj by rejecting (yT, T). This contradicts that u* is a subgame perfect 

equilibrium point of f. Hence, player i's last proposal (yT, T) must be rejected 

when u* is employed. Afterward, renegotiations will take place in the next 

period, and player i will obtain the equilibrium payoff .xf since u* is stationary. 

Since m;(.x*) ~ .xf, we must have H;(ujt) = m;(.x*) in order for u* to be a 
sub game perfect equilibrium point of r. • . 

Lemma 4.1 shows that, once every player becomes the last and K -th proposer 

in the component game G(N), he can enjoy the maximum payoff under the 

equilibrium payoff vector. This implies that , when he responds to the last 

second proposal, he will reject it whenever he is offered less than this maximum 

payoff. 

LEMMA 4.2 Let (N, v) be a totally balanced game. Then, for any imputation 

.x* in the core C(v), there exists an equilibrium point u* = (uf);eN of G such 

that H(u*) = .x*. 

PROOF: Since (N,v) is totally balanced, for every restricted game (S,vs) of 

(N, v) we can select a payoff vector x*8 in the core of (S, vs). First define a 

strategy 7rfN for every player i in the component game G(N) as follows: 

(1) propose (x*, N) , and 

(2) for any proposal (.x 8 , S), i E S, 

accept it if .xf ~ .xf, and reject it otherwise. (4.1) 

Similarly, define the strategy 7rf8 for player i in the component game G(S), 
S C N, with x* replaced by x*8 . Let u* be the stationary strategy combination 

in r defined by {( 7rf8 );es} scN. Clearly H ( u*) = x*. We will show that u* i~ a 
sub game perfect equilibrium point of r by the" backward induction" argument. 

Claim 1: u* is a.Nash equilibrium point of r. 
(PROOF of Claim 1) First assume that the first proposer, player 1, deviates from 

u* in period t (= 1, 2, .. . ). Suppose that he proposes (.xT, T), 1 E T, .xf > x! 

in order to increase his payoff. Since .xT E xr and .x* E C(v), we have 

iET iET 
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Since xf > xt , there exists some player j E T, j :j; 1, such that xJ < xj. Let 

j be the first responder in T among such players. Player j rejects (xT, T) and 

counterproposes (x*, N) from (4.1). All other responders in N except player 1 

accept this counterproposal if they conform to u*. Therefore, if player 1 accepts 

it, ( x*, N) is agreed upon and he will obtain the equilibrium payoff xt- On 

the other hand, if he rejects it, he is in the same position to make a proposal. 

The same argument as above is applied, and the possible outcome in period t is 

either that he obtains the equilibrium payoff xt or that negotiations break down. 

When negotiations break do·vn, renegotiations will take place in the next period 

t + 1. Since u* is stationary, the same arguments as in period t hold in the next 

period. Therefore, player 1 can not increase his payoff by deviating from u* . 

Next, assume that any other player i EN, i :j; 1 , deviates from u*. Suppose 

that he rejects player 1's proposal (x* , N) and counterproposes (xT,T), i ET, 

xT > xf. By the same reason as in the case of player 1, ( xT, T) is rejected by 

some player in u* and player i can not increase his payoff by deviating from u*. 

This completes the proof of claim 1. 

In the next claims 2 and 3, we assume that the component game is G(N). 

Claim 2. u* prescribes to every player i E N the optimal response to the last 

proposal (yT, T) in every period. 

(PROOF of claim 2) First consider the case y[ .~ xf. If player i accepts 

(yT, T), he will obtain the payoff y[ or negotiations will break down, depending 

on whether all succeeding responders accept it or not. In case that negotiations 

break down, he will obtain the equilibrium payoff x; in the next period since 

u* is stationary. Therefore, he can obtain either YT or xr by accepting (yT, T). 
On the other hand, if he rejects (yT, T), negotiations break down and he will 

obtain xt in the next period. Since y[ ~ xt , it is optimal for him to accept 

(yT, T). In case y[ < xf, it is clearly optimal for him to reject (yT, T). This 

completes the proof of claim 2. 

Claim 3. u* prescribes tQ every player i E N the optimal proposal when he 

makes the last proposal in every period. 

(PROOF of claim 3) When u* is employed, player i proposes ( x*, N) and this 

is accepted. If he proposes (yT, T), i ET, with y[ > xf, then it is rejected by 

some responder as we have seen in the proof of claim 1 . Therefore, negotiations 

break down and he will obtain xf in the next period. Hence, it is optimal for 

him to propose (x*, N). This completes the proof of claim 3. 
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By the induction argument starting from claims 2 and 3, we can show that 

u* prescribes to every player i E N the optimal choice when he responds to or 

makes the k-th (k = 1, ... , K -1) proposal. Sine.~ the same arguments as above 

hold for all subgames of r starting with the component games G(S), S c N, 
we can prove that u* is a subgame perfect equilibrium point of r . • 

THEOREM 4.3 Let (N, v) be a totally balanced game. Then,· there exists a sub

game perfect equilibrium point u* of r with H(u*) = x* satisfying {i) station

arity and (ii) payoff-oriented response if and only if x*· is in the core of (N, v ). 

PROOF: The if-part is proved by Lemma 4.2 . We will prove the only-if part . Let 

u* be any subgame perfect equilibrium point of i' satisfying the two conditions 

in the theorem and let x* = H(u*). Let aN = (a{")ieN be the acceptable payoff 

vector of G(N) in u*. Then, since u* prescribes players' optimal responses to 

the last players for proposal in G(N), we can show that 

a{"= H;(u*) for all i EN. (4.2) 

From Lemma 4.1, we can show that every player i E N enjoys his maximum 

payoff m;(x*) under the equilibrium payoff vector x* once he becomes the last 

proposer in period 1. Therefore, from the condition that u* prescribes players' 

optimal responses to the last second proposal, we must have 

a{" = m;(x*) for all i E N . (4.3) 

From (4.2) and (4.3), we have 

xf = m;(x*) for all i EN. (4.4) 

We can P,rove x* E C(v) from (4.4) and Proposition 2.3 if x* is an imputation 

of (N, v). Finally, we will show that x* is an imputation of (N, v). Suppose 

not. Then, I:ieN xf < v(N) and there exists an imputation x = (x;);eN with 

x; > xf for all i E N. Let i E N be the last proposer on the play of u* in 

period 1, and assume that player i counterproposes (x, N). Then, (x, N) must 

be accepted from (ii) payoff oriented response since x; > xf =a{" for all i EN. 

Therefore, player i can increase his payoff from xf to x;. A contradiction. • 

Theorem 4.3 shows that for a totally balanced game the set of all equilibrium 

payoff vectors in our bargaining model r coincides with the core of the · game 

if the equilibrium point satisfies both (i) stationarity and (ii) payoff oriented 

response. The essense of this result is explained as follows. Suppose that an 
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imputation x = (xi)ieN not in the core is agreed upon in an equilibrium point 

of r. First the stationarity implies that the acceptable payoff of every player i 

in the component game G(N) is equal to his equilibrium payoff Xi, because u* 

prescribes his optimal response to the last proposal in every period. Secondly, 

assume that there exists at least one coalitions such that LiES Xi < v(S). The 

players in this coalition are not satisfied with the proposal because they can find 

a feasible payoff vector y5 such that all of them are better off in y5 than in x. 

Supp'ose that one of them rejects the proposal x and counterproposes (y5 , S) (if 

there remains the opportunity to make a proposal )., Then all other members 

in the coalition S accept this counterpropoval because of the payoff oriented 

response and thus the proposer himself is better off. Therefore every member in 

S has an incentive to reject the imputation x not in the core and thus such an 

imputation can not be supported by an equilibrium point of r . This argument 

restates a usual view to players' bargaining behavior underlying the definition 

of the core in the framework of noncooperative game theory. 

Finally, we investigate what outcomes will result in our bargaining model if 

players employ more complicated response rule than payoff-oriented one. For 

an illustration, we consider a simple case that only two successive proposals are 

possible within one period, i.e, K = 2, and also that the game (N, v) has the 

one-stage property which is introduced by Selten (1982). Here a characteristic 

function game is said to have the one - stage property if for every coalition S of 

N 

v(S) > 0 implies v(N- S) = 0. 

For the game (N, v) with the one-stage property, if one coalition reaches an 

agreement, then no further negotiations will take place among the remaining 

players. 

PROPOSITION 4.4 Let (N, v) be a game with the one~stage property. Then there 

exists an equilibrium point u* = (ut)ieN of r 2 such that H(u*) = .x* if and 

only if x* is an imputation satisfying m~:(x*) = xZ for some k # 1 {the first 

proposer). 

PROOF: ( if-part ) If a coalition S with v(S) >. 0 is formed in period 1, no 

further negotiations among players in N - S will take place since ( N, v) has the 
one-stage property. Therefore, it is ·sufficient for us to define a strategy 1rtN 
of every player i for the component game G(N) only. We first introduce some 
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notations. For any i E N, let Si be a coalition which attains m;{x*), and let 

x*i denote the feasible payoff vector for Si such that xfi = m;(x*) and xj' = xj 

for all j E Si, j :j; i. Define a strategy 7rfN for player i in G(N) as follows. 

player 1: 

player k: 

{1) propose ({0, 0), {1, k} ), and 

{2) for any last proposal (y8 , S), 1 E S, 
accept it if yf ~ xf, and reject it otherwise 

{1) propose (x*, N), and 

{2) reject the proposal ({0, 0), {1, k}) of player 1, and 

for any other proposal (y5 , S) of player 1, 
accept it if yf ~ m;(x*) for all i E S,i ~ k, and 

reject it otherwise, and 

for any last proposal (y8 , S), 
accept it if yf ~ xt, and reject it otherwise 

player i (# 1,k): {1) propose (x~,Si), and 

(2) employ the same response rule as player k. 

Let u* = (ut);eN be the stationary strategy combination of f 2 defined by 

{7rfNheN· Clearly, on the play of u*, player k. becomes the last proposer in 
period 1, and his proposal is accepted. Therefore, H(u*) = x*. We can show 

without much difficulty that u* is a subgame perfect equilibrium point of f 2 in 
the same way as in Lemma 4.2. 

(only-if part) It follows from Lemma 4.1 that there exists some k :j; 1 such that 

mk(x*) = xt. By the rule of r, it is clear that x* is a feasible payoff vector for 

N. Suppose that x* is not an imputation. Then l:ieN xf < v(N) . This implies 

4 < mk(x*). A contradiction. • 

If an equilibrium point of r does not satisfy payoff oriented response, the 

players may employ complicated response rules. In fact, the equilibrium point 

constructed in the proof of Proposition 4.4 prescribes to a player the response 

rule which depends on many factors other than the payoff offered to him: {1) 

the payoffs offered to all other responders succeeding him and {2) how many 
proposals were made from the beginning of the period, or equivalently, how 

many proposals are possible by the end of the period. 

In the equilibrium point, some player k rejects the first proposal and ob

tains the opportunity.to make the last proposal. By exploiting this opportunity . 
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strategically, he enjoys the maximum payoff under the equilibrium point but 

the other player may not. Remark that this equilibrium point in favor of the 

last proposal is supported by other players' response rules stated above which 

are not payoff-oriented. Such complicated response behavior is not necessarily 

beneficial to them. 

5. Concluding Remarks 

We have presented a noncooperative bargaining model for an n-person charac
teristic function game and have investigated the problem of whether an equilib

rium point of the bargaining game nece:;sarily leads to a payoff distribution in 

the core of the game. When we explore cooperation among players in noncoop

erative bargaining model where they seek their own payoffs, it is obvious that 

the possibility of cooperation depends on the rule of negotiation process, i.e., 

the way in which proposals can be made and agreements can be reached. Our 

investigation shows thatit also depends on the strategic complexity of players' 

bargaining behavior. Theorem 4.3 shows that an equilibrium point of the bar

gaining game necessarily leads to an outcome in the core if every player employs 

a "simple" bargaining strategy such that (i) his behavior is independent of the 
history of the game in past periods and (ii) he responds to pro~osals according 

only to the payoff offered to him. If players employ more complicated response 

rule in such a "strategic" way that their responses also depend on how many op
portunities for proposals are left by the end of the period, then negotiations may 

result in an outcome outside the core. Such complicated bargaining strategies 

do not necessarily benefit players. 

It seems to us that this result poses an interesting question of how insti

tutional complexity (or rule complexity) of the game and strategic complexity 

of players' behavior are related when we consider noncooperative implementa

tion of cooperation . For example, in an institutionally simple model of the 
supergame where there exists neither possibility of negotiations nor of binding 

agreements, the Folk theorem shows that players' history-dependent strategies 

incorporating a sophisticated punishment rule are necessary to the establish

ment of a cooperative outcome. The simple history - independent strategies 

never produce cooperation in the supergame model. On the other hand, once 

the game is institutionally organized in a way that negotiations become possible 

among players and a specified rule of negotiations is established, simple history 
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- independent strategies are sufficient and also necessary for the realization of 

cooperation. Complicated history-dependent strategies do not necessarily lead 

to cooperation. 

This paper is our first attempt towards noncooperative game approach to an 

n - person characteristic function game. Many problems are left unsolved. We 

have assumed that players do not discount their future payoff's. It is an interest

ing question how the assumption of discounted payoff's affects the equilibrium 

outcomes of our bargaining game. It is also necessary for us to study strategic 
complexity of players' bargaining behavior more formally and more thoroughly. 

We will do these stl).dies in future papers. 
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