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1. Introduction
Initial value problems for matrix differential equations of the type

W'(t) = C — DW(t) — W(t)D* — W(t)BW(t), W(0)= Ws (1.1)
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where W(t),C,D, B and Wy are n x n complex matrices and D* denotes the
adjoint matrix of D, arise in linear-quadratic optimal control problems [1] and
filtering theory [3]. The nonsymmetric Riccati equation takes the form

W'(t) = C— DW(t) — W(t)A — W(t)BW(t), W(0)=W, (1.2)

where A is not necessarily equal to D*, and it appears mainly in the invariant
imbedding context [13].
The study of the perturbed Riccati equation

W'(t) = C(A) — D)W (t) — W(t)A(X) — W(t)B(A)W(t)

W(0) = Wo(A) )

is interesting from the point of view of obtaining a good qualitative model of the
physical problem. The measure of the matrix coefficients of Riccati equation are
subject to some uncertainty because some parameters may be changing during
operation or are difficult to measure. This motivates the study of solutions of
the equation which are stable under perturbations of the matrix coefficients.

In a recent paper [10], a closed form solution for nonsymmetric Riccati equa-
tions of the type (1.2), where B is nonsingular, is given.

The aim of this paper is to show that the method proposed in [10] is sta-
ble under coefficient perturbations when some additional condition is assumed
and the coefficients of the Riccati equation (1.3) are continuously differentiable
functions of a real parameter A.

The paper is organized as follows. In section 2 we state some auxiliary results
that will be used in other sections. In section 3 we study the stability of the

problem

22(t) + A1V () + Ag(N)z(t) = 0,

2(0) = B()), «'(0) = F()) (1.4)

Finally, in section 4 we study the Riccati perturbed problem (1.3).

2. Preliminaries

For the sake of clarity in the presentation of the paper, we state some results
that will be used in following sections.

Let A, B be matrices in C"*" and let us denote by || - || the 2-norm defined
in [8], p.14, then from [2], [11], we have that

llexp(A) — exp(B)|| < exp(||Bl|)[ezp(||A — Bl — 1] (2.1)
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From the Banach lemma, if A is an invertible matrix and ||B—A[| < (||A~Y[)~1,
then B is invertible and

(1B~ = A7 < | A7Y| 1B IB - Al (2.2)

THEOREM 1 ([6]). Let F(A) be a C**" valued continuously differentiable matriz
function of the real parameter A € I(Ag) =]Ag — 6, Ao +6[, where F(Aq) is given,
M is an upper bound of ||F'())|| in I(Ag) and

IEE)] ™I < [M (Ao + )]~
then, it follows that
IEEOIH < NEG)]) I = 1EE )]~ I(M (Ao + 6))] 7

THEOREM 2 ([9], PROBLEM 86). For a matriz A € C**™ let us denote by o(A)
the set of all eigenvalues of A. If U is an open set of the complez plane con-
taining o(A), there exists a positive number € such that if ||A — B|| < g, then
o(B) CU.

Now we introduce the Gingold’s condition that permits us to obfain a stable
block diagonalization of a matrix function.

TueoreM 3 ([7]). Let C(X) be a continuously differentiable C*"**" valued ma-
triz function defined on the interval I(Ag) = [Ag — 6, Ag + 6] such that satisfies
the condition
The characteristic polynomial ®(A, z) = det(C(A) — zI) admits
a decomposition ®(A,z) = ®1(A,2) ... ®,4(A, 2), where ®;(A, z) for
1 < j < s are relatively prime monic polynomials in z of constant
degree for all X in I(Xo).

then for all A € I(Xo), C(X) ts similar to a matriz function J(X) =diag[J1(A),
ooy JE(X)], with Jj(X) € C™ %™, such that for an invertible matriz M(X) €
C2X2n ik M(A) = (Mij(A)) and Mij(X) € €™, for1 <i<2,1<j <k,
with my + ...+ my = 2n, and m; independent of X € I(Xp).

(2.3)

Finally, we recall that since two similar matrices have the same characteristic
polynomial, if C()) satisfies the condition (2.3) and there exists an invertible
matrix function P(A) such that

PA)C(A) = HA)P(A),

then H()) also satisfies the condition (2.3).
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3. Stable solution of the equation
" + Al.’JC" - A(]x =)

We begin this section by considering the homogeneous differential system

(Py) () + A1 (V)2 (2) + Ao(N)z(t) = 0.
1 z(0)= EQY), 2'(0)=F(\), 0<t<b

THEOREM 4 ([10]). Let us suppose that the companion matriz C(})

¢ I l (3.2)

CO=1 _40) -0

is similar to the block diagonal matriz
T = diaglhy(Y) .., Te(V)]

where Jj(A) € C™i*™i for 1 < j <k and my+ ...+ my = 2n. Let M(}) =
(M;;(X)) be the block partitioned invertible matriz in C***" with M;;()) €
Crxmi for1<1<2,1<j <k, such that

MN)JI) = COYM(N) (3.3)

Then the unique solution z(t,)) of system (3.1) 1s given by

k
z(t,A) = Myj(A) exp(tJ;(X)Dj (), (3.4)

i=1

where D;()) s

Di(})

= MO [ o ] - (35)

Dy (A)

Let us assume that the companion matrix C()) defined by (3.2) satisfies the
condition (2.3) with A belonging to interval I(Ag) = [Ag — &, Ao + 6]. From [7],
taking M (A) = (Mi;(X)) for 1 < i < 2,1 < j < k, the solution of the matrix
differential equation

Z'(A) = (P'A)P(A),— PN P'(N)Z(X), Z(%) = M(Xo), (3.6)
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where P(A) is a projection that commutes with C()). Then, one satisfies (3.3)
for some block diagonal matrix function J(A) =diag[J,(A),..., Jk(A)] and from
theorem 4, we have

z(t,A) — z(t, do) =

k
=Y {Myj(2) exp(tJ5(X))D; (A) — My;(Ao) exp(t;(Xo)) D (Ro)} =
j=1
k
=D M) exp(tJ;(A){D; () — Dj(A)} + (3.7)

ji=1

k
+D_ My (\){exp(t; (1)) — exp(tJ;(20)}D; (Ro) +

k
+ D AM1;(X) = M1;(20)} exp(tJ;(A0)) Dj(Ao)-
Al

From [5, p.110], M()) satisfies for |A — Ao| < 6 the inequality
IMA)]| < 1M (Xo)l| exp(2PQIA = Xol) < [|M(Xo)l| exp(2PQ8) (3.8).
where
P =sup{[|[PM)Il, 1A =20 <6}, Q=sup{[P'MIl, |A—Ao| < 8}.(3.9)

Note that the problem (3.6) is equivalent to integral equation

Z()) = Z(Xo) + : F(s, Z(s))ds (3.10)

where F(s,Z(s)) is the right-hand side of the differential equation (3.6), and
using (3.9) we obtain
IM)=M )| < 2PQIM (Ao exp(2PQE) Aol for A=A < 8.(3.11)
From the mean value theorem [5], there exist constants e > 0 and f > 0
such that
IEA) = EQo)ll < elA = Aol [IF(A) = F(Ao)ll < FIA = Ao,

3.12

for AE{AU—ﬁ,)\g+5] ( )
From (2.1), for every t € [0,b] and 1 < j < k, we have

exp(t5(0) — exp(t; (Aa))| < -

< exp(b]| 75 (Xo)I){exp(b]| 75 (A)) — Ji(Xo)l]) — 1}
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From [5, p.114] and using that M(}) is a solution of (3.6)
M1 )] < 1M1 ()| exp(2PQ5), for |A — Aol <. (3.14)
Then, from (2.2) and (3.11), for |A — Ag| < § it follows that
1M~ () = M~ (A)]| <
< 2PQIIM (o)l 1M~ (o) ||* exp(4PQ8)IA = Aol (3.15)
From the condition of continuous differentiability of C'(A)

C = sup{||CA)[|,|A = Aol < 8},

3.16
IC) = COOll < BIA= o, for A= o] <6 (8.16)
From the equality J(A) = M~ (A)C(A)M () we have

J(A) = J(ho) = [M~1(A) = M~ (X)]CA) M (M)+
+ M7 (A)[C(A) — CA)IM(X) + (3.17)
+ M7 (A0)C(X0)[M(A) — M (X0)].

Taking norms in the last expression and from (3.9), (3.11), (3.14) and (3.15),

it follows that

17(X) = T (o)l < 2PQCIM = (X0)[I*[|M (Xo)[|* exp(6PQS)|A — o]+
HIM Q)M MIIICR) = CQo)ll + (3.18)
+2PQIIM ™ Qo)lllICA)IIIM (Xo)|| exp(2PQE)A — Aol

From (3.18) we can write

17(A) = Tl < LIA = Aol for|A — Xo| < 6 (3.19)

where

L =2PQC|IM ™ (X)|I*[1M (Ao)||* exp(6 PQS) +
+E|| M~ o)l 1M (ho)l| exp(2PQ8) + (3-20)
+2PQC || M~ (Ao)[| [|M (Xo)[| exp(2PQ8)

Using the inequality

exp(t) — 1 < [t] exp([t]) (3.21)

(3.13) and (3.19) we have

[ exp(—tJ;(A))—exp(—tJ; (Xo)) || < bL exp(b(]| J; (Ao)[|+ LE))[A—Ao] (3-22)
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Now from (3.8) and (3.14) we have
Il < (1M~ C)M Q||

< MO IM=0u)l € exp(4PQ). (29
If T = max{e, f} and from (3.12),.(3.14) and (3.15)
Di(Ao) — Di(})
: : 1 = (M~ 0%0) - M7 (3)] [ o [+
Di(do) — Dx(Y)
o [ BOO) = BV
+ [M™(A)] FOo) = FO\ }
and
1D;(2) = Di(MI < KA —Xol, 1<i<k, [A=2o| <6 (3.24)
with

K = {2PQ(IM (o)l 1M~ (Xo)II* exp(4PQE}{II EQo)ll + IF (o)1} +
+|M ™ (Xo)l| exp(2PQ6)T'},

and

1D; (o)l < (1Mol {IEQ) + 1F (o)1} (3.25)

From (3.8), (3.23) and (3.24),if 1 < j <k, 0<t <band A € [A\g—6, Ao +4],
it follows that
k
1D M (3) exp(t7;(A)){D;(A) = D; (Ao)H| < q1|A = Aol (3.26)
i=1

where

a1 = k|| M (Xo)l| exp[2PQ8 + bC||M (Xo)|| [|1M47" (o)]| exp(4PQE)] K
From (3.8), (3.22) and (3.25) we have
132 My OV {exp (83 () — exp(t; o)} D (o)l € = dol - (3.20)
where
g5 = Lbk[|M (Xo)|| exp[2PQ8 + b([|.J; (Xo)ll + L&M= (Ro)|
LNEQ)I + [1F (Aol }-
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From (3.11) and (3.25), if X € [Ag — 6, Ao + 6] one gets that

k
I32(M5(N) - My (30)yexp(t; (o)) D3 M)l € gslh = do]  (3:28)
=1

where

gs = 2PQK|| M (Xo)|| exp[2PQ5 + b(||; (Ao) DM~ (o)
NEQ) + IFQo)}

From (3.7) and (3.26)-(3.28), for A € [Ao — 6, Ao + 8], we obtain
llz(¢,2) —2(; M)l < (91 + g2 + g3)|A — Ao (3.29)
for 0 <t < b. Thus, if £ is an admissible error, one gets
[lz(t,A) — z(t, Xo)|| <&, for 0 <t <b, |A—Ag| <" (3.30)
where
§* = min{6, (1 + g2 + g3) "'¢}. (3.31)
Thus the following result has been established:

THEOREM 5. Consider the problem (P») where the matrices A;()), Ao(}), E(})
and F(X) are continuously differentiable functions of the real parameter A and
A1(A), Ao(A) makes that the companion matriz C'(A) defined in (3.2) satisfies
the condition (2.3) of theorem 3. If 6 > 0 is the number defined in theorem 3
such that for |\ — Xo| < 8, the problem (Py) admists a unique solution x(t, )
defined by the (3.4). Moreover, if ¢ is an admaissible error for the solution of
the problem (P»,) in the interval [0,b], then taking 6* defined in (8.31), the
expression (3.30) is satisfied.

4. Stability of the Riccati equation
Let us consider nonsymmetric Riccati matrix differential equation
W'(t)=C(A)—-DNW (t)-W () A(N)-W(t) BQA)W(¢), W(0)=Wo(A)(4.1)

where W(t), C(A), D(X), B(}), A(X) and Wy(A) are nXn complex matrices. We

use the explicit solution of (4.1) given in [10] for a fixed value of the parameter A.
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THEOREM 6 ([10]). Let us consider problem (4.1) where B()) is invertible and

let BY/2()) be a square root of B()\). Let Ag()), A1()) be matrices defined by
Ao(Y) = =B3(N)IC(N) + DO)B™ (M) AN]B*(2)

| (4.2)

M) = =B N)[B-'(NAQK) - DA)BT(N]BH()

Then, the solution W (t, X) of the problem (4.1) in a neighbourhood £(0) oft = 0
is given by the expression
W(t,A) = B'2(0)V'(t, )V (L, M) B~2()) — BT1(A)A(X) (4.3)
where V(t, ) is the solution of
2@)(t) + A;(A)z()(t) + Ao(N)z(t) = 0 14)
z(0) = B/2()), z'(0) = BY/2(\)Wo(X) + B~/2(A)A()). &

Consider the Riccati equation (4.1) where the coefficients A(X), B(A), C(}),
and D()) are C"*" valued continuously differentiable matrix functions of the
real parameter A € I(Ag) =)Ao — b0, Ag + o[, where B(Xo) is invertible.

Since B()) is differentiable, from the mean value theorem [5], there exists con-
stants # > 0, 6; > 0 such that for |A — Ao| < é;, one gets

IB(A) = B(Ao)ll < BIA = do| < l

] |
BOwT1 (4:5)

Then from the Banach lemma (2.2), B(}) is also invertible for |A — Ag| < 6,
1B(o)™" = BO)™H I < [1B(a) "M IK1BIA = Aol (4.6)

where K is an upper bound of || B(A)™"|| for |A — Ag| < 6;.

Taking into account that

0 I A(X) B(A) 1
= P(A P(A 4.7
[-smm _l‘w)] ()lm] _Dm][ (] (a.7)

where

B=12()) 0 ]

Pl [ B=Y2NAN) BY2(N)

T M T

is invertible in C2*2% hecause B~'/2(A) is invertible in C
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Let us suppose that
IRCON:I6Y
| C(A) —D(X)
satisfies the condition (2.3) of theorem 3, then from (4.7)
[0 I
| —40(}) —41(})

also satisfies the condition (2.3) of theorem 3. Thus, if V (¢, A) is the solution of
the equation (4.4). Then, by section 3, there exist real positive numbers 8, ¢y

and gz such that
”Vf(ts Ao) = V(4 A)]| £ quA == )‘Ul
”V(ts }‘0) = V(ts'\)ll < Q'Zl’\ - )‘Dl
for A €)X — 6, Ao + 6[.

(4.8)

Given B(Xg), let us consider a number o € [0,27[, such that if we denote
by H, the half-line {—re'® : r > 0}, one gets Hq N o(B(Xo)) # 0. Since
o(B(A)) is contained in the open set Dy = C ~ Hg,, by theorem 2, there exists
63 > 0 such that o(B())) C D, for |A — Xg| < 63. Let us denote by log,
the holomorphic determination of the logarithm defined in D,. Then from the
holomorphic functional calculus [4], a continuous determination of the square
root of B(A) is defined by

[B(A)]'/? = exp(1/21log,(B())) (4.9)
Since log, is holomorphic, from (2.2), (4.5) and (4.8), it follows that
1B(Ao)~"/* = B(A)~/?|| <

(4.10)
< [1B(A0) ™ ?(|(exp(=1/2K2B]|A = Aol|) = 1)
for some Ky > 0 and for |A — Ag| < min(6y, é2).
From (2.2) and (4.8), there exists a number 63 > 0 such that
1
— < gulA = A S — 4.11
“V(t: /\U) V(ts A)” = qu 01 < ”V(t, ‘,\0)_1” ( )
and

V(£ A0)™" = V{6, 0) 7] < (IV(E Ao) ™' (| Kaga| A — Aol (4.12)

where K3 is an upper bound of ||V (¢, A)~!| for |A — Ag| < é3 and t € £(0).
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From theorem 1, there exists a positive number 4 such that
B2 < 1B(20)H2(I(1 ~ 1B(X0)~/2||64M1) ™ (4.13)
and
BT < 1B(Ao) M (1 = 1B(Ao) ™" [|8aM2) ™! (4.14)

where M; and M, are upper bounds of ﬁ%ﬂi and %‘\—1.
Let § = min{é;,i = 1,...,4} and let U(Xo) =]Ao — &, Ao + &[. Then from the
differentiability of A(A), there exists a constant gz > 0 such that

14(%0) — Al < g3|A = Aol. (4.15)
From the continuity of V’(t, A), there exists a constant g4 > 0 such that

IV/(6, M| < g, Fox(t, ) € £(0) x U() (4.16)
Now, we consider the difference

W(t, Ao) — W(t,A) =
B(Xo)~ Y2V (t, Xo)V (2, Xo) "  B(Xo) "2 = B(Xo) ' A(Xo) — (4.17)
—BA)"Y2V(t, )V (L, A) "L B(A) Y2 — B(A)TA(N).

Let us denote

V!¢, do)ll = Qu [IV(E, 2) ™M || = @2,
IB(X)~Y2[| = Qs, |4(20)l| = Qa,

and let us take norms in (4.17). Then, from, (4.6), (4.10), (4.12)—(4.18) and the
inequality exp(t) — 1 <| t| exp(t), for |A — Ag| < § it follows that

(4.18)

(IW(t, Xo) = W(t, M)l <

< IIB(ro)™ "2 = B2V (£, 20)V (£, 20) " B(Xo) 2| +
HIBA)TV2V! (2, ho) = V! (£, NIV (E, A0) " B(Xo) M2 +
HIBA)™Y2V' (1, )[V(E, Ao) 2 — V (£, A)~1]1B(No) 13| + (4.19)
+(1B( A) 12y, )\.;.)V(t Xo) " [B(o)~Y2 - B(A)~?|| +
H[B(Ao)™! = B(A)TAM0)| + |B(A) ! [A(Xo) — A(N)]|| <

< T[A = Aol '
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where

[ = Q1Q2Q3 exp(—1/2K,08)1/2K,p +
+Q2Q3(1 — QadaM1) g1 + (1 — Qa6 M1) ' Q2Q3 K3gaqs +
+(1 — Q364 M) ™' Q3q4 K3 exp(—1/2K,86)1/2K, +
+Q3Q4 K18+ Q3(1 — Q36:M3) ' gs. (4.20)

THEOREM 7. Let us consider the previous notation and the Riccati equation
(4.1) where B(Xo) is invertible and the matriz

A(A)  B(})
C(\) —D(

satisfies the condition (2.3) in a neighbourhood of A = Xo. Then, there exist an
interval U(Ao) =]Ao — 6, Ao + 6] and a neighbourhood £(0) of t = 0 such that for
(t,A) € U(Xo) x €(0) the solution W(t, ) of (4.1) is given by

k
W(t,A) = BO)™2{D ] Ma;(A) exp(tJ;(X) D (X)}

Ji=1
k
{>_ Mi;(A)exp(tJ;(2)D; ()} B(A)H2 — B(A)TTA(X)
Jj=1
where the matrices D;j(A) € C™§*", for 1 < j < k, are uniquely determined by
W (0) = Wy(A) and the expression

Di(A) B2

= [M)]™! B2(0)Wo(X) + B-Y2(NA(N) |’

Di(X)
and satisfies (4.19), (4.20).
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Stabilne rozwigzanie analityczne dla pewnej
klasy macierzowych rownan rézniczkowych
Riccatiego

W pracy rozwaza si¢ niesymetryczne macierzowe rownania rozniczkowe Ricca-
tiego, ktoérych wspdtezynniki zaleza od rzeczywistego parametru. Podano wa-

runki, przy ktorych otrzymuje sie rozwiazanie analityczne, stabilne wzgledem
zaburzen wspdtezynnikéw.
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YcrToliuuBoe aHaIUTHYECKOE pellleHre i HEKOTO-
poOro Kjacca MAaTPUYHBIX HupdepeHINAIbHLIX ypa-

BHeHUU Pukkarn

B paboTe paccMaTpuBaloTCA HECUMMETPHYHEIE MaTpHyHEIe AuddepeHTHaIL
Hble ypaBHueHUS PukkaTti, koaddunueHTE KOTODPLIX 3aBHUCIT OT HeiCTBH-
TeJNBFHOI'O IIapaMeTpa. Hpﬂ:Be;[,eH'bI YCIOBHA IIPH KOTODEIX IMONy4YaceM aHANH-
THYECKOEe pellieHWe, YCTOMYMBOE TIPH M3MEeHAIOIINXca KoshhunueHTax.

!




