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1. Introduction 

Linear matrix differential equations of the type 

X'(t) = A(t)X(t) + X(t)B(t), X(O) = C, 0 ~ t ~ b (1.1) 

where the unknown X(t) and the coefficients A(t), B(t) are r x r complex ma

trices, elements of crxr, arise in many fields of science and engineering mainly 

in optimization problems in linear control theory [1, 11, 13]. Equation (1.1) has 

been studied by several authors for the constant coefficient case, see [2, 3, 12], 

however for the variable coefficient case such equation has received little nume

.rical treatment in the literature. 

From [11], [1, p.109], t~e theoretical solution of equation (1.1) is given by 

X(t) = Y(t)CZ(t) where Y(t) is the solution of the matrix equation 

Y'(t) = A(t)Y(t), Y(O) =I, (1.2) 

and Z(t) is the solution of 

Z'(t) = Z(t)B(t), Z(O) =I (1.3) 

Unfortunately the exact solution of problems (1.2) and (1.3) is not computable 

in an analytic way and this motivates the search of alternatives which provide 

analytic approximate solutions and error bounds for them in terms of data. 

The paper is organized as follows. Section 2 deals with somewhat general 

results about one-step matrix methods for the numerical solution of matrix 

differential equations of the type 

Y'(t) = f(t, Y(t)), Y(O) =nE crxq, 0 ~ t ~ b (·1.4) 

where f : [0, b] X er X q ----+ crxq is bounded, continuous and satisfies the Lipschitz 

condition 

llf(t, P)- f(t, Q)ll ~ LIIP ~ Qll (1.5) 

what guarantees the existence of a unique continuously differentiable matrix 

function Y(t), solution of (1 .4), [4, p.99]. Section 2 completes recent results given 

in [8] for linear k-step matrix methods with k > 1, including an upper bound 

for the global discretization error of linear one-step matrix methods. Using the 

results of section 2 and by means of spline matrix functions we construct analytic 

approximate solutions in all the domain and a global error bound in terms of the 
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stepsize and the data is given. Given an admissible error c; > 0 we construct an 

approximate solution whose error is smaller than c; uniformly in all the interval. 

If B is a mat rix in cpxq we denote by I I E ll the square root of the maximum 

of the set { lz l; z eigenvalue of BH B} where BH denotes the conjugate transpose 

of B , see [10, p.41]. We recall that from [5, p.15], it follows that 

max{ lb;j l; 1 ~ i ~ p, 1 ~ j ~ q} ~ 

~ II B II ~ (qp)~ max{ lb;j l; 1 ~ i ~ p, 1 ~ j ~ q} (1.6) 

The identity matrix in crxr is denoted by I. 

2. One- step matrix methods for matrix differ

ential equations 

In a recent paper linear k- step matrix methods for k 2 2 have been introduced 

in [8] but no error bound is given . Let us consider one- step methods of the form 

(2.1) 

where Bo,B1 are matrices in crxr and Yn,Jn = f(tn,Yn) E cr x q with tn = 
nh E [0, b], h > 0 and 

Bo + B1 = I (2.2) 

Let us consider a matrix difference equation of the form 

(2.3) 

where Am, B1,m, Bo,m are matrices in crxq, h > 0, m is a non- negative integer , 

and let {Zm} be a matrix sequence solution of (2.3). If we write equation (2 .3) 
for m = n - p - 1, we have 

Zn-p- Zn - p- 1 = h{B1,n-p- 1II Zn - pll + Bo,n-p-1 11 } + An- p- 1, 

Considering the last equation for p = 0, 1, ... , n - 1, and adding the resulting 

equations it follows that the sum of the left hand side is Sn = Zn - Zo and the 

sum of the right hand side takes the value 

h{Bl ,n - diZnl l + (Bo,n -1 + Bl ,n-2) 11 Zn-l ll + · · · + Bo,oii Zol l} 

+ An - 1 + An- 2 + .. . + Ao 
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Equating the last. equation to Zn - Zo and taking norms it follows that 

n-1 

IIZnll :=; hBIIZnll + hB* 2::: IIZmll + N A+ 2IIZoll (2.4) 
m=O 

where 

IIB1,pll:::; B, IIB1,pll + IIBo,pll:::; B*, IIAPII:::; A, 0:::; P:::; N (2.5) 

h < B-1, r * = (1- hB)- 1, L* = r *B*, K* = r *(N A+ 2IIZoll) (2.6) 

Hence 

n-1 

(1- hB)IIZnll ~ hB* 2::: IIZmll +. (N A+ 2IIZall) 
m=O 

and from (2.5), (2.6), it follows that 

n-1 

IIZnll :=; hL* 2::: IIZmll + K* (2.7) 
m=O 

From (2.7) and [7, p.246] one gets 

(2.8) 

Taking into account that (1 + hL* )n :=; exp( nhL*), the following result has been 

proved. 

THEOREM 1. Let us consider the one-step matrix method (2.1}-(2.2} and the 

difference matrix equation (2.3). Let us consider the constants A, B, B*, K* and 

L* defined by (2.5)-(2.6), then for any matrix sequence solution Zn of (2.3} it 

follows that 

(2.9) 

Let us introduce the difference operator L associated to the method (2.1) 

and defined by 

L(Y(t); h)= Y(t +h)- Y(t)- h(B1 Y'(t +h)+ B0Y'(t)) (2.10) 

where Y(t) is an arbitrary crxq valued continuously differentiable function in 

[0, b]. Expanding the test function Y(t + jh) and its derivative Y'(t + jh) as 

Taylor series about t, and collecting terms in (2.10) gives 

L(Y(t); h)= CaY(t) + C1hY'(t) + ... + Cshsy(s)(t) + ... (2 .11) 
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where c. is a matrix in crxr that may be written in terms of t he matrix coef

ficients 

Go = 0; Ct = I- (Eo+ Et) = 0, . . . , 

C, = (s!)- 1 I- ((s- 1)!)- 1 Et, s = 2, 3, . .. (2.12) 

In an analogous way to the well known definition for the scalar case we say 

that the method (2.1) is of order p if, in (2.11), C0 = C1 = ... = Cp = 0 and 

Cp+l f- 0. It is easy to prove like in the scalar case, see [9, p.49-52), [7, p.257), 

that 

IIL(Y(tn); h)ll::; hP+ 1GD = Q, (2.13) 

where 

(2.14) 

The global truncation error of the method (2.1) at the point tn = nh, denoted by 

en, is the difference en = Y(tn)- Yn , where Y(tn) is the value of the theoretical 

solution of (1.4) at tn and Yn is the approximate value provided by the method 

(2.1) . 

If we write (2.1) in the form 

and substracting from this expression the quantity L(Y(tn); h) it follows that 

en+l- en- h{Et(Y'(tn +h)- fn+t) + Eo(Y'(tn)- fn)} = 
= en+l -en - h{ Et (f(tn+l, Y(tn+l)) - fn+l) + 

+Eo(f(tn, Y(tn))- fn))} + L(Y(tn); h) 

Now let us consider th~ sequence of matrices in crxq defined by 

Pn = { (f(tn, Y(tn))- f(tn, Yn))llenll- 1
, if en f- 0 

0, if en = 0 

From (2.15)-(2.16) we have 

(2.15) 

(2.16) 

Let us denote Zn = en, An = L(Y ( tn); h) and let us suppose that the method 

(2.1) is of the order p 2': 1. From (2.13) it follows that IIAnll = IIL(Y(tn); h)ll::; 
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hP+1GD, where G and Dare defined by (2.14). Note that from (1.5) and (2.16) 

it follows that I!Pnll :S L, IIE1Pn+lll :S LIIE11i and taking 

E* =IlEal!+ IIE11!, N = bjh, (2.17) 

from THEOREM 1 and the previous comments the following result has been 

established 

THEOREM 2. Let us consider a on,e- step method of the type (2.1}-(2.2}, of order 

p 2 1. Let h, f* be c.:.ejined by 

(2.18) 

and G, D defined by (2.14), then the global discretization error en zs upper 

bounded by 

(2.19) 

Now we apply the previous results to a concrete matrix differential equation 

that will be important in the following . 

EXAMPLE 1. Let us consider the one- step matrix method (2.1)-(2.2), where 

Eo= E1 = I/2, 

(2.20) 

Frorri (2.12) it follows that C0 = C1 = C2 = 0 and C3 = -I/12. Thus (2.20) de

fines a one-step method of order p = 2. The constants appearing in THEOREM 2 

take the values 

G = IIC311 = 1/12, E =IlEal!+ IIE11i = 2, r* = (1- hL/2)- 1 

and D 2 max{IIY(3)(t)ll; 0 :S t :S b} . The inequality (2.19) takes the form 

lien !I :S h2 ~~n (1- hL/2)- 1 exp(tnL(1 - hL/2)- 1
) (2.21) 

Let us consider the matrix differential equation (1.2) where A(t) is a 2- times 

continuously differentiable matrix function. Taking derivatives for the solution 

Y(t) of (1.2) , it follows that 

y( 2)(t) = A'(t)Y(t) + (A(t)) 2Y(t), 

y(3)(t) = A(2)(t)Y(t) + A'(t)A(t)Y(t) + (A(t)) 3 Y(t) + 
+(A'(t)A(t) +A(t)A'(t))Y(t) = 

= A(2)(t)Y(t) + 2A'(t)A(t)Y(t) + A(t)A'(t)Y(t) + (A(t)) 3Y(t) 
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From [4, p.114], the theoretical solution Y(t) of (1.2) satisfies 

IIY(t)ll :S exp(tko) , 0 :S t :S b, (2.22) 

and if we denote by ki, fori= 0, 1, 2, the positive constants satisfying 

ki ~ max{IIA(il(t)ll; o::; t ::; b }, i = o, 1, 2, (2.23) 

we have 

max{IIY(3 l(t)11; 0 :S t <.:; b} :S exp(bko){k~ + 3ktko + k2} = D (2.24) 

If h < 2/ ko, then from the previous comments it follows that the global dis

cretization error en at tn = nh, when one approximates the exact value of the 

solution of (1.2) by the value Yn obtained by means of (2.20), satisfies 

llenll :S h2tn exp(bko)(1- koh/2)- 1 {k~ + 3ktko + k2}· 

· exp(tn(1- koh/2)- 1ko)/12 

Since h < 1/ko implies 

1 - k0 h/2 > 1/2 

then for h < 1/ ko, (2.25) takes the form 

lien II :S h
2

;n exp(bko){k~ + 3ktko + k2} exp(2kotn) 

If we consider the problem (1.3) and define the constants 

qi ~ max{IIBCil(t)ll; o::; t::; b} , i = o, 1, 2 

(2.25) 

(2 .26) 

(2.27) 

(2.28) 

and we denote by Vn = Z(tn) - Zn the global discretization error when one 

approximates the exact value Z(tn) of the solution of (1.3) by the numerical 

solution Zn computeCl. by 

(2:29) 

where gn = G(tn, Zn) and G(t, Z) = ZB(t), then for values of h such that 

h < 1/qo, (2.30) 

it follows that . 

llvnll :S h
2

:n exp(bqo){qg + 3qtqo + qz} exp(2qotn·) (2.31) 
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3. Analytic approximate solutions and error 

bounds 

We begin this section with some results about interpolating B-splines. If we are 

interested in the construction of an approximation of a function which interpo

lates the exact values Yo,Y1,···,Y'N at the knots to,t1, ... ·,tN, then the linear 

B-spline is defined by 

N-1 

s(t) = L B1n(t)Yn+1 
n=-1 

wher_e t E [O,b], tn+1 -tn = h,h = b/N and 

for tn :S: t < tn+1 
for tn+1 :S: t < tn+2 

(3.1) 

(3.2) 

with B1n(t) = 0 for t < tn and tn+2 :S: t. In addition, B1n is non-negative 

satisfying B1n(t) + B1,n-1(t) = 1 for all t E [tn, tn+2], see [6, p.247-248]. If 

we consider the linear B-spline constructed in terms of approximate values 

ilo, Y1, .. . , YN, then we have a new approximating function 

N-1 

S(t) = L B1n(t)Yn+1 (3.3) 
n=-1 

such that 

N-1 

ffs(t) - S(t)f :S: max{[Yn+1- Yn+1f; -1 :S: n :S: N- 1} L [B1n(t)f = 
n=-1 

= max{[Yn+1- Yn+1[; -l :S: n :S: N}, for 0 =to :S: t :S: tN = b (3.4) 

Now let us consider the matrix case, given the exact values Y(to), Y(h), . .. , 
Y(tN ), of a crxr valued function defined in to= 0, h, ... , tN = b, but unknown 

in the rest of the interval, we are interested in construction of a linear interpo

lating B-spline matrix function W(t) knowing not the exact values Y(tn) but 

the approximate values Yn of Y(tn), for n = O,l, ... ,N. Let us consider the 

linear B-spline matrix functions defined by 

N-1 N-1 

V(t) = L Y(tn+l)B1n(t), W(t) = L Yn+1B1n(t), 
n=-1 n=-1 (3.5) 

0 = to :S: t :S: tn = b. 
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Then, taking norms, we obtain 

jjV(t)- W(t) jj :S max{ jjY(tn)- Yn ll ; 0 :S n :S N} (3.6) 

If f(t) is a scalar function and s(t) is the linear B-spline defined by (3.1) with 

Yn = f(tn) for 0 :S n :S N, and assuming that f(t) is twice continuously 

differentiable function in the interval (O ,b], then from (6, p.257], it follows that 

h2 . 
max lf(t) - s(t) l :S -

8 
max lf(2)(t) j 

O::'Ot::'Ob O::'Ot::'Ob 
(3.7) 

If Y(t) is a crxr valued function and we apply (3.7) and (1.6), assuming twice 

continuously differentiably Y(t), the linear B-s'pline matrix function V(t) de

fined by (3.5) satisfies 

rh2 

max jjY(t) - V(t) ll :S - max I! Y( 2l(t) l! 
o:::;t:::;b 8 o:::;t:::;b 

(3.8) 

Now we are interested in the construction of an analytic approximate solution 

of equation (1.1). First of all note that the numerical solution Yn of (2.20) 

corresponding to the problem (1.2) comes from the relationship 

(3.9) 

If h < 1/ko, where ko is defined by (2.23), then from the Perturbation lemma, 

(10, p.45], the matrix coefficients of Yn+l and Yn in (3 :9) are invertible and one 

gets 

(3.10) 

In an analogous way, if h < 1/qo, where qo is defined by (2.28), the numerical 

solution Zn of equation (2.29) corresponding to problem (1.3) comes from the 

relationship 
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whose solution takes the form 

n-1 h h 
Zo = I, Zn =IT {(I + 2B(tj))(I - 2B(tH1)) - 1}, n 2: 1 (3 .11) 

j = O 

Takmg into account that the exact solution X(t) of problem (1.1) is given by 

X(t) = Y(t)CZ(t), from (3 .10) and (3.11), we have numerical approximate 

solution of X(t) at tn = nh , given by 

(3 .12) 

where Yn is given by (3.10) and Zn by (3 .11), for 1 :S n :S N with Nh = b. 
Starting from the approximate values of X(t) at tn = nh, given by Xn defined 

by (3 .12), we construct the linear B- spline matrix function 

N - 1 , 

W(t) = L Xn +1 B1n(t), 0 :S t :S b, (3 .13) 
n=-1 

where B1n(t) is defined by (3 .2) . If we denote by V(t) the theoretical linear 

B-spline rp.atrix function 

N - 1 

V(t) = L X(tn +l )B1n(t ), 0 :S t :S b (3.14) 
n=- 1 

interpolating the exact values X(tn) at tn of the solution of problem (1.1 ), then 

from (3.6) it follows that 

jfV(t) - W(t) l! :S max{ I! X(tn) - Xn I! ; 0 :S n :S N} , 0 :S t :S b (3 .15) 

In order to obtain an upper bound of the right hand side of (3.15), note that 

X(tn) - Xn = Y(tn)CZ(tn) - YnCZn = (3.16) 

= (Y(tn) - Yn )C Z(tn) + Y(tn)C(Z(tn)-Zn) - (Y(tn) - Yn)C(Z(tn) - Zn) 

Since from [4, p.114], we have that 

I!Y(t) l! :S exp(tk0 ) and I!Zt) l! :S exp(tq0 ) for 0 :S t :S b, (3 .17) 

taking norms in (3.16) and using (3 .17) one gets 

I! X(tn) - Xn l! :S exp(tnqo) l! en i!I! C I! + exp(tnko)l!vn i!I! C I! + 

+ I! CI! I! enl! l! vn l! 
(3 .18) 
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where en = Y(tn)- Yn and Vn = Z(tn)- Zn, for 0:::; n:::; N, tn = nh. From 

(2.27), (2.31) and (3.18) it follows that 

h2b 
IIX(tn)- Xnll :S IICII6{exp(3bqo)(q~ + 3qlqo + q2)+ 

+exp(3kob)(k~ + 3klko + k2)} + (3.19) 
h4b2 

+IICIIw exp(3b(ko + qo))(q~ + 3qlqo + q2)(k~ + 3klko + k2), 

for 0:::; n:::; Nand for values of h < 1/q0 , h < 1/k0 . 

Note that if X(t) is the theoretical solution of (1.1) and A(t), B(t) are twice 

continuously differentiable functions in (0, b], then, 

X(2)(t) = A'(t)X(t) + A(t)X'(t) + X'(t)B(t) + X(t)B'(t) = 

= A'(t)X(t)+(A(t))2 X(t)+A(t)X(t)B(t)+A(t)X(t)B(t)+ (3.20) 

+X(t)(B(t))2 + X(t)B'(t) 

Taking into account (2.23), (2.28), the relationship X(t) = Y(t)CZ(t) and 

(3.20), (3.17), it follows that 

IIX(2)(t)11:::; IICII exp(b(ko+qo)){kl +k5+2qoko+q5+qt}, 0:::; t:::; b (3.21) 

From (3.8) and (3.14), it follows that 

IIX(t)- V(t)ll :::; h2 o:, 0:::; t:::; b, (3.22) 

where 

r 2 2 
a= siiCII exp(b(ko + qo)){kl + k0 + 2qoko + q0 + qt} (3.23) 

From (3.14),(3.15),(3.19),(3.22) and (3.23), the difference between the theoreti

cal solution X(t) of problem (1.1) and the linear B-spline matrix function V(t) 
interpolating the approxi'mate values Xn given by (3.10)-(3.12), is uniformly 

upper bounded in (0, b] by the inequality 

IIX(t)- V(t)ll :::; f3h 2 + !h4
' 0 :::; t :::; b, (3.24) 

where 

IICIIb 3 f3 =ex+ -
6

-{exp(3bqo)(q0 + 3qlqo + q2) 

+exp(3kob)(k~ + 3klko + k2)} (3.25) 
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11 CI Ib2 
( 3 3 1 = ~ exp 3b(ko + qo))(q0 + 3qlqo + q2)(k0 + 3klko + k2) (3.26) 

a is defined by (3.23) and h < min(l/k0,l/q0 ). 

Given an admissible error c; > 0 if we choose a positive number h such that 

h < min(l/k0 , 1/q0 ), b/h is integer and (3h 2 + rh4
:::;; c:, (3.27) 

then taking N = b/ h, considering the sequence {Xn }~=O defined by (3.10)- (3.12), 

and V(t), the linear B-spline matrix function defined by 

V(t) = h- 1{(tn+l - 't)Xn + (t - tn)Xn+d; 

tn = nh, t E [tn,tn+l], 0 :S: n :S: N - 1 
(3 .28) 

defines an approximate solution of problem (1.1) whose error E(t) = X(t) - V(t) 

satisfies 

IIX(t) - V(t) ll :S: c:, uniformly for 0 :S: t :S: b (3.29) 

Taking logarithms the inequality (3h 2 + 1h4 :S: c; is equivalent to the condition 

1 
ln(h) :S: 4{ln(c:) - ln((3 + 1)} (3.30) 

From the previous comments the following result has been established 

THEOREM 3. Let us consider the problem {1.1) where the matrix functio71-s 

A(t) , B(t) are twice continuously differentiable in [0, b], and let ki and qi 'be 

defined by (2.23) and (2.28} respectively, fori = 0, 1, 2. Given an admissible 

error c; > 0, let (3 and 1 be defined by (3.25) and (3. 26) and let h be a posi

tive real number satisfying h < min(l/ko, 1/qo) and (3.30) with b/h integer. Let 

b/h = N and let {Yn}{Zn} be the finite sequences defined by (3.10) and (3.11) 

respectively, for 0 :S: 1 :S: N, then the linear B-spline matrix function V(t) de

fined by (3. 28) which interpolates the sequence { Xn }~=O give'Ft by (3.12) is an 

analytic approximate solution of problerr; (1.1) whose error is uniformly upper 

bounded by c; in all the domain [0, b]. 
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Przyblizone rozwiqzanie analityczne i oszacowa

nie bl~du dla liniowych macierzowych r6wnan 

rozniczkowych wyst~pujqcych w zagadnieniach 

sterowania 

W artykule przedstawiono przyblizone rozwi'l:zania analityczne dla zadan z wa

runkiem pocz<);tkowym zwi<);zanych z macierzowym r6wnanieniem r6zniczkowym 

X ' (t) = A_(t)X(t)+X(t)B(t), w kt6rym funkcj e macierzowe parametr6w SC); klasy 

C 2 . Uzywaj<);c do interpolacji rozwi<);zania na siatce punkt6w macierzowych funk

cji skokowych i liniowych splajn6w uzyskuje si~ rozwi<);zanie przylizone, kt6rego 

bl<),d jest mniejszy od zalozonego c > 0 w calym obszarze. 

fipH6JIH:>KeHHble aHaJIHTHqeCKHe pemeHH.H H O~eH

Ka norpemuocTH AJI.H JIHHeil:HbiX MaTpHqHbiX AH«<>

«J>epeH~HaJibHbiX ypaBHeHHH llO.HBJI.HIOIII.HXC.H B 

ynpaBJieHHH 

B eTa The rrpe)l.cTaBJieHhi rrpH6mr:>KeHHhie aHaJIHTH'IecKHe perneHH.ll )l.JI.ll aa)l.a'l 

c Ha'laJihHhiMH ycnoBH.HMH, CB.H3aHHhiX c MaTpH'IHhiM Jl.HcpcpepeHJ::J;aJihHhiM 

ypaBHeHHeM X '(t) = A(t)X(t) + X(t)B(t), B KOTopoM MaTpH'IHhie cpyHK

I:J;HH rrapaMeTpoB .HBJI.HIOTC.ll Knacca C2 • Mcrronhay.s~ )l.JI.ll HHTeprron.HI:J;HH pe

rneHH.ll Ha CeTKe TO'IeK MaTpH'IHhiX cpyHKI:J;H:A: CKa'IK006pa3Hhie H JIHHe:A:Hhle 

crrna:A:Hhi, rrony'laeM rrpH6JIH:>KeHHOe perneHHe, rrorpeiiiHOCTh KOToporo MeHh

rne aa)l.aHHO:A: c > 0 )l.JI.ll 11;enon o6nacTH. 


