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In the earlier paper of the same authors [1] an Optimal Pole As-
signment (OPA) theorem has been enunciated. Using this theorem
the Optimal Pole Region (OPR) has been delineated. A recursive
procedure has been used to carry out optimal pole assignment. At
each recursion one or two poles have been assigned. In this paper a
method for multiple real pole assignment at each recursion is devel-
oped. In the process a physical interpretation for Riccati equation
solution matrix P has been given. An algorithm for multiple pole
assignment is presented. In carrying out optimal pole assignment we
have assumed that R = I, and determined the optimal pole region.
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In a subsequent article this assumption has been relaxed. Our in-
vestigation reveals that a general R alters the OPR and that it is
possible to increase the OPR.

1. Introduction

It 1s well known that for a multi-input system there are many control laws which
achieve the same closed loop pole configuration. It indicates thereby that apart
from pole assignment, a state feedback could satisfy additional performance re-
quirements such as minimization of a quadratic performance index. Such an
optimal pole assignment (OPA) amalgamates the advantages of improved tran-
sient response of pole assignment and the feedback properties of linear quadratic
design. In our earlier paper [1] an OPA theorem has been enunciated. Using this
OPA theorem the Optimal Pole Region (OPR) for one or two poles has been
delineated. A recursive procedure has been used to carry out the optimal pole
assignment. In this paper OPA theorem has been extended to carry out multiple
pole assignment at each recursion.

The optimal pole assignment by delineating OPR has been done with R =
I,;,. The OPR helps to locate the optimal poles and also to calculate the mini-
mizing cost function ).

For a:given controller K, cost function (@, R) is not unique. This is the
redundancy problem. In the paper by Molinari [3] a theorem has been stated.
This theorem states that the cost functions @' and @Q? for an optimal K are
equivalent if there exists a symmetric matrix Y satisfying A’Y +Y A4 = Q' — @
and Y B = 0. But nothing has been mentioned about the cost function R. In
the paper by Martin [2] a linear algebraic equation has been established to
determine the matrix pairs that are equivalent to (@, R).

The redundancy problem subsequently dealt with in this paper differs from
the works of Molinari and Martin. For a set of optimally assigned poles by
delineating OPR, a method for generating equivalent controller K and corre-
sponding cost function (@, R) has been proposed. [t has been found that optimal
pole region alters and it is possible to increase the OPR.
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2. OPA theorem

Consider the controllable system

X =AX +BU (1)
with control law

U=-KX (2)
the closed loop system is

X = AX =(A- BK)X (3)

wherein the dimensions of state and input vector are nx 1 and m x 1 respectively.
The other system matrices are of compatible dimensions.

A reduced order controllable system can be decoupled from this system by
the real Schur form (RSF) transformation for pole assignment. A recursive pro-
cedure is adopted for complete pole assignemnt [1]. Thus the reduced order
controllable system at k—th recursion is

Xir = Arr Xer + BrrU (4)
with control law

U=—RKerXkrL (5)
the closed loop system becomnes

Xir = A Xer = (Aep — Ber Kir) XL (6)

In this system Xjp and U are pp x 1 and m x 1 state and input vectors respec-
tively. The remaining matrices are of compatible dimensions. In addition, By,
is of full rank.

Let the linear quadratic cost function be
= / (XT, Qe Xz + UTRU)dt (7)
0

where, Qx = QF, > 0 (positive semidefinite) and R = RT > 0 (positive
definite), the upper index 7" denoting the transposition. For this cost function

to be minimum, the controller for the system is given by

Kpr = R_IBELPJ:L . (8)
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where, Prr, = Pl > 0 (positive definite) is the solution of the algebraic Ricatti
equation. There is no loss of generality in assuming R = I,, [2]. Hence

Kip = Bl Pip (9)

THEOREM 2.1 (OPA THEOREM) For the controllable system with p, < m,
the poles of the closed loop system can be assigned so that Py = Pf‘L >0
and Qi = QT > 0 iff (BrpBY,) Y (Arr — Axr) is positivé definite, and
—(BELBEL)—I(AkL—'AkL)AkL_A{L(BkLBgL _I(AkL—x‘leL) is positive semidef-

inite.

ProOF: See [1].
Thus pg ( < m) poles can be assigned optimally by delineating OPR using
the above theorem and P and Qyr are given by [1]

Prr = (BkLB{L)_I(AkL — Ak,[,) >0 (10)
Qir = —(PerArr — AL Pip) > 0 (11)

LEMMaA  When pr ( < m) poles are optimally assigned using OPA theorem,
leading principal minors Py; of Prr are directly proportional to pole shift.

Proor: The reduced order system matrices in RSF at k—th recursion are

aiy Pz Pz oo oo Prp
Ay = 0 @y oz ... ... Py
L0 e e om0 By |
; [ @11 B ?13 @13’ ]
Ay = 0 &g foz ... ... Pop
L0 0 ay |
and
bii b1z ... by
bis boy ... by

(BxBip) ™' =

bip by ... by
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Then from (10) we have

[ b1y b1z ... bip o1 — @11 Pz =Pz .. .. Bip — Pip
512 b22 . bzp 0 g2 — 5‘22 ...... ,82;; = ﬁzp
Pz =
L b1p bop bpp 0 0 app—dpp
[p11 p12 P13z ... Pip
__ | 1z pz2 p23 ... Pip
L Pip P2p -+ .- Ppp
Pn
P‘22
- (12)
- PPP -
From (12) we get
Piy = p11 = bir(e1r — @11) > 0 (13)

and

pi2 = bia(en1 — @11) = b11(Brz — Prz) + bia(orzn — Ga2)

substituting for (12 — f12) from this equation in (12) and simplifying we get

T ? Agz _
Py = poP1t) —Pi2 4+ b—Pu(Q’zz — @r2) (14)
11 11
where
Agg = (bribag — b3y) >0 (15)

Now equations (13) and (14) are equations of a straight line. Similarly, it can
be shown that the @&;; is directly proportional to FP;;. This has been illustrated
in Figure 1.

Therefore, the leading principal minors of Pz are directly proportional to
the pole shift.

This lemma leads us to the following definition.

DEFINITION Since the leading principal minors of Pyp are proportional to pole
shift in RSF plane, the algebraic Riccati equation solution matriz P s called
pole shift matriz.
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Figure 1. Relation between principal minor and closed loop poles

pi ( < m) closed loop poles {@;;} are assigned progressively such that Py > 0
and Q;; (leading principal minor of Qgr) > 0. This has been illustrated by the
numerical example involving one recursion.

3. OPA algorithm — the multiple pole assign-
ment

1) Transform A and B to RSF
Ay=UT AU, and By =U!B

where Up is the unitary similarity transformation matrix that transforms
A to RSF Ag.

2) Choose g, the number of recursions necessary to carry out pole assignment,
and the order in which the poles are to be assigned. Set k = 0 and Ag = Ag.

3) Set k=k+1

4) Obtain Ay = UF Ay_1U and By = UT By_4

5) Set i =0

6) Set i =i+ 1 and choose F;; =a >0

7) Calculate P;; by solving Pj; = a
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8) Solve the simultaneous equations for py;, pa;, ..., pi; and determine ay;.
9) Draw the straight line joining «y; and @;;. Choose desired @;; on this
straight line and read P;;.
10) Determine p;; from Pj;
11) If i = 1 go to step (13) otherwise go to step (12)
12) Solve the simultaneous equations for py;, pai, .. ., P(i-1)i and determine
Bues Pasy B{i—l)i
13) Set j=i
14) Set j=j+1
15) Calculate p;;. If j = pg go to step (16) otherwise go to step (14)
16) Check for Qs;; If Qi > 0 go to step (17) or else put @;; = @y — b (b > 0),
read P;; on straight line and go to step (10)
17) If i = py go to step (18) otherwise go to step (6)
18) Calculate Kpp
19) If k = q go to step (20) otherwise go to step (3)
20) Caleulate P, K, @ and A in the original system coordinates.

Illustrative example 1

Consider
—4 1 2 2 o1
X=| 0 -2 of|X+]011|U
0 1 -1 1 1 2
By RSF transformation we get
[ —4 —0.707 -2.121 20 0 1
Ag = 0 =2.0 -1.0 , Bo=| —0.707 0 —0.707
0 0 —-1.0 0.707 1.414 2.121

where

(1 0 0
Us=| 0 0.707 —0.707
| 0 0707 0.707

The open loop poles are at —4, —2, —1 and ¢ = 1. Since U; = I3 the identity
matrix we have, A1y = A1 = Ag and Byp = By = By. To shift the open loop
pole at —4, choose a = 0.5

Pip = (BirBY) (AL — Awr)
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@33

@11

Figure 2. Closed loop poles of illustrative Example 1

3 T o007 | [ ~d—ag <0707 —~PBs S19 ~Bis
= |'7q7r 225 2.5 0 2 Bgy  —1—Boa
0.707 25 0.5 0 0 —1— @33

Now P11 = p11 = 3(—4 — @11) = 0.5 which implies a;; = —4.167.
Straight line is drawn through the points —4 and —4.167 in Figure 2.
Choosing a1; = —4.333 from Figure 2 we get P;; = p1; = 1. Then

1 2.593 0.236
PIL =t 2.593 Pag Paa P P‘“ >0
0.236 pas  pa3

and

8.333 17.128 1.728
Qip = | 17.128  qo 23 |, @u>0
1.728  qas 733

Now we shift the open loop pole at —2, for Pys = 0.5, pos = 7.222 and agp =
—2.214.
A straight line is drawn through —2 and —2.214 in Figure 2. Choosing @ss

Il

I

—2.548 we have P;3 = 1.278 and ps; = 8.0. Solving for pys, we have Fiy
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—0.151. Thus

1 2.593 0.236
Pip =1 2593 8.0 0976 |, P>0
0.236 0.976 Pas

and

8.333 17.128 1.728
Qip = | 17.128 38.607 5.999 |, Q22>0
1.728 5999  gaa

Finally we shift the open loop pole at —1. For P33 = 0.5, we have ps3 = 0.551
and a3 = —3.739. Choosing érs3 = —2.681 on the straight line joining the points
—1 and —3.739 in Figure 2, we get P33 = 0.307 and p3z = 0.4

Solving for p13 and pa3 we get B3 = 1.599 and B33 = —0.676. Then

1 2.593 0.236
Pip=1| 2593 80 0976 |, Ps>0
0.236 0976 0.4

and

8.333 17.128 1.728
Qi = | 17.128 38.607 5.999 |, (s3>0
1.728 5999 2.231

We thus have

—4.333 —0.151  1.599
Ay = 0 —2.548 —0.676
0 0 —2.681

and

0.333 0219 0.064
Kip =B, Pp=| 0333 1380 0566
—0.333 —0.993 0.394

Now, referred to the original system coordinates

—-4.333  1.024 1.238
A= 0 -2.952 —0.405
0 0.271 —2.276
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0333 02  —0.109 |
K=| 0333 1376 —0.576

| —0.333 —0.424  0.981 |

1.0 1.2 —1.667 |
P= 1.2 5176 —3.8 >0
| —1.667 —3.8 3.224 |

and

8.333 13.333 -10.889
Q= 13.333 26418 -—18.188 | >0
| —10.889 —18.188  14.420

4. The redundancy problem

With Ry = I, px( < m) poles can be optimally assigned by delineating OPR
using Theorem 1 (OPA theorem). From (10) and (11) P}, and @}, are given

by

Ply = (BerB{p) '(ArL— Agr) >0 (16)
Qi, = —PlAw—A[LPiL>0 (17)

Equivalent positive definite cost function Ry = RT # I, can be found by using
Theorem 2 stated below. It also helps in finding equivalent functions P2, and

2
Qi

THEOREM 4.1 For optimally assigned pi( < m) poles, Ry = RY > 0 is equiva-
lent cost function iff SP}; is positive definite and SQ}, + (SAT, — AT, S)P},

is positive semidefinite where
S = (BxLRy'Biy) ™' (Brr Biy) (18)
Hence equivalent pf; and Q% can be calculated.
Proor: We have, substituting for S from (18)
SPiy = (Be Ry Bip)™ (Bre Bip) Pir
From (16) (Bir BY )Pl = (AkL — Axr), therefore

SPl =(BrrR3 Bip) (Axr — ArL) = P >0 (19)
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Furthermore, substituting for Q}, and S from (17) and (18) respectively
SQiL + (SATL — ATLS)Piy
= (ByrR3'Bip) ' (BerBir)(—PirArr — AXLPir)
+(Brr Ry ' Biy) ™ (BrrBiL) AL Pir
—A{L(BroR3 ' Bip) ™ (Brr Bir) Pir
= —(BrrR;'Bip) ' (BrrB{L)PiLArr
— A (Ber Ry ' Biy) " (BiLBip) Pir
substituting again from (16)
SQk + (SAfL — ATLS) Py
= —(BeLR;'Biy) " (Aer — Arp)Arr
—Afp(Brr Ry ' Bip) " (Akr — Akr)
= —PhAw—-ALPhL = Qi 20 (20)

Thus, R is equivalent cost function for the optimally assigned pr( < m) poles
iff

SPl, >0 and SQip+(SAT,—ATLS)Pi, >0

and equivalent PZ; and Q%; can be calculated using equations (19) and (20)
respectively.

All the equivalent cost functions (@, R) for a set of optimally assigned poles
can be determined using the above stated theorem. Illustrative examples are
given in Section b.

5. Illustrative examples

It is possible to shift a complex conjugate pair of poles to a pair of complex
conjugate poles ar real poles in the OPR. A pair of real poles can be shifted
to real poles or to complex conjugate poles in the OPR. All the equations for
optimal pole regions derived in our previous paper [1] remain the same but
define the new optimal pole regions because of the presence of R. The OPR
delineated using these equations is illustrated in Figure 3. The hatched area
represents the OPR.

ExaMPLE 2. Consider

= -0.707 0.0
—_— B bt
A l 0 —i] Lk [ 0.707 1.414]
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Im
— R= Ig
e R# 1

- Additional
OPR due to

R# I

o Re

Figure 3. OPR shifting of real poles to complex poles
a) With Ry = I [1]
OPR of §:
Brmax = 0.89

Let 8 = 0.5 with this value of 8, f2 = 0.342 and 8; = —0.731 with the value of
B2, the OPR of & is

a < —2.068
The value & = —3 satisfies the necessary constraints and
o [ -3 ~0.731 , 2329 0.329
AL = Pip =
0.342 -3 0.329 0.866
Kl = [ _1.414 0.379 Q! = 11.538 3.35
LT 0465 1.224 T 335 4.03
b) Let
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This R, satisfies conditions (1) and (2) of Theorem 2.
OPR cf f: :

Bmax = 1.1547

And for chiosen B of 0.5, B = 0157, Bi = ~1.267 and OPR of & i

n < —1.934
Selected @ = —3 satisfies other constraints also. Thus
Fom -3 —1.267 p2 — 3.197 -1.197
YL — 1L — ;
0.197 -3 —1.197 1.732
P R —1.414 —0.378 Qz B 16,221 —1.932
71 0568  1.603 =1 <1992 4214
REMARKS:

1. OPR of & alters with R and it is possible to increase OPR.

2. Generally fmax range also alters it is possible to increase fpay range.

3. Though closed loop poles remain the same with different R’s off-diagonal
elements of Az are altered.

ExampLE 3. Consider

-4 1 2 2 0
X = 0 =2 0 |X+|0 1|U
0 1 -1 11

a) with Ry = I [1], the closed loop system matrices are

—4.318 3.2714 —0.312
Al = 0.403 —4.236 —0.825
0.244 —0.099 —2.981

The eigenvalues of open loop system are —4, —2 and —1. The assigned eigen-
values of A! are (=3 £ j0.5) and (—5.53).

0.123 —-0.316 —0.087
P'=| -0316 2.7141 —0.505
| —0.087 —0.505  1.33

0.159 -1.137 1.156
| —0.403 2236 0.825

Kl

il
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and

1.167 —3.012 —0.883
Q= | —3.012 2741 —1.596
| —0.883 —1596  5.025

b) Let

[3 2

Ry =
2 )

Since m = 2 the poles are assigned in two recursions (¢ = 2). In first recursion
(—2,—1) are shifted to complex conjugate pair. In second recursion (—4) is
shifted.

By RSF transformation of A we get

-4 —=0.707 2.12 2 0
A{] = 0 -2 —1 3 Bg = —-0.707 0
0 0 -1 0.707 1.414
where
1 0 0

U= |0 0707 0.707
0 —-0.707 0.707

Since U/; = I3 the identity matrix

-2 -1 —0.707 0
= B
A { 0 —1] aod. R l 0.707 1.414]

This has been solved in example 2(b), and the chosen optimal closed loop poles
are (—3 % j0.5) as before

-4 2121 2876
A = 0 -3 0
0 0197 -3

For k = 2, by RSF transformation, As and By are given by

—3.061 —0.186  2.087 1.431 0.447
Ay =] -1.366 —2.938 2858 |, By=| 1717 0.165
0 0 —4 0.054 1.329




Optimal pols assignment and redundancy 63

where

0.284 0.935 -0.212
U= | —0905 0.334 0.264
0.316 0.117  0.94

Then

Ay = [—4] and Byr =[0.054 1.329]

Since @3 < @z with the chosen value of @3 = —5.53 we get
Py =[0.61], Qo =1[5.813] and Ky = l ﬂ?:;g ]

Referred to the original system coordinates

[ —4.33 4.86 1.27
A? = 0252 —4.54 —1.204
0.083  0.399 —2.649 |

0.027 -0.11 -0.062

P*=| —011 1709 —0.484
| —0.062 —0.484 38 |
K| 0165 —1.929 0361

—-0.251  2.542 1.207

and

0.261 —1.048 —0.589
Q*=| —1.048 12494 -—3.637
—0.589 —3.637 13.474

6. Conclusions

A multiple real pole assignment procedure using OPA theorem has been pre-
sented in this paper. It has been shown that principal minors P;; are directly
proportional to pole shift &;;. Hence P is called pole shift matrix. This OPA
procedure enables the designer to locate optimally the closed loop poles to meet
the closed loop system specifications.

Further, it has been shown in this paper for optimally assigned poles that

using our second theorem it is possible to calculate the equivalent controller
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K and the corresponding cost function (@, R). In addition, the optimal pole
region increases with increase of cost function R. Thus it is possible to use the
entire region to the left of open loop poles (to the left of mirror image in case
of unstable poles) for optimal pole assignment by using a general R instead of
a unit matrix. This paper enables to identify the set of all cost functions that
~are being minimized for a set of chosen optimal poles. This in turn provides the
freedom for the designer to choose an optimal feedback matrix K.

Further research work is being carried out to establish the relation between
complex poles of the closed system and elements of Pjz. Also constraints on p;;
such that ;; > 0 are being investigated. In addition the effect of R on OPR in

the redundancy problem is being investigated.
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Optymalne przesuwanie biegunéw a zagadnienie

nadmiarowosci

We wezesniejszej pracy autoréw [1] podano twierdzenie o optymalnym przesu-
waniu biegunow. Korzystajac z tego twierdzenia okreslono obszar optymalnych
hiegunow. Opisano rekurencyjna procedure optymalnego przesuwania biegundw.
W kazdym kroku rekurancyjnym przesuwa sie jeden lub dwa bieguny. W tej
pracy przedstawia sie algorytm przesuwania wielu biegunéw rzeczywistych w
kazdym kroku. Podaje si¢ fizyczna interpretacje macierzy P bedace] rozwia-
zaniem rownania Riccatiego. Przy okreslaniu obszaru optymalnych biegunéw
poczatkowo zaktada sie, ze R = [, a nastepnie to ograniczenie jest ostabione.
Rozwazania wykazuja, ze wybor R wplywa na obszar optymalnych biegundéw i

ze w ten sposob mozna ten obszar powiekszyé.
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OnTumManbHOE InepeMelneHue MoJrncoB a BOIIpoc

U30BITOYHOCTH

B 6onee paunent pabore asropos [1] naHa TeopeMa 06 ONTHMaIBHOM IEpe-
MellleHuy noocoB. Ha ocHOBe TeopeMsl onpefeiieHa 061acTh ONTHMAIBHBIX
nomiocoB. OmucaHa pekyppeHTHas MIPOLENLYpa ONTHMAILHOI'O IIepeMelleHn S
montocoB. Ha xaskgoM peKyppeHTHOM LIary HepeMelllaeTcs ofuH nubo fBa
nmomtoca. B maHHOl paboTe mpefcTaBlieH ANIOPHTM IepeMelleHWsS MHOTHX
[IelicTBHTeTHHBIX IIONI0COB Ha KaXXAoM liare. PaccMoTpeHa puanyeckas WH-
TepmpeTanus MaTpumsl P, Apindollelics pellleHHMeM ypaBeHcTBa Pukkarw.
Tlpu ompefelleHUM 06IACTA ONTHMAIBHBIX IIONIOCOB B Hayajle IIPeIoiaraeT-
cs, uro R+ I, a 3aTeM aTo orpaHuyeHue ociabngercd. Vccnegopagus mo-
Ka3BIBAlT, UTO BEIGOp R BauseT Ha 06/1acTh ONTHMAIBLHEIX IONIOCOB M YTO
MOJKHO TaKuM 06pazoM Ty 06/1aCTh YBEJINYUTE.







