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Poland 

We present a new numerical method for minimizing any convex 
not necessarily differentiable function of several variables. At each 
iteration, the method uses one conditional E-subgradient of the given 
function, which can be computed numerically by applying the algo
rithm of N.Z. Shor [6, §1.3). Consequently, no analytical formula for 
computing subgradients is required. 
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1. Introduction 

In this paper we present a new numerical method for the minimization of a 

convex nondifferentiable function f: ~n --+ ~. Unlike the majority of meth~ds 
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which can be found in the literature (see e.g. (2,3,4,6]), neither the computation 

of subgradients nor <:-subgradients of the given function are required in our 

method . Instead, at each iteration, one conditional <:-sub gradient (as defined in 

(1.1) below) is used. It can be computed numerically by applying an algorithm 

described by N.Z. Shor in [6, §1.3]. In its origin;~J version , the algorithm of Shor 

enables one to find, for given xo E !Rn and c, 8 > 0, a point y E !Rn satisfying 

11 y- Xo [[< 8 and a vector z* for which there exists a subgradient z E af(y) 
satisfying [[ z* - z [[ < <:, where [[ · [[ is the Euclidean norm corresponding to 

the standard inner product. The computation of y and z* requires only a finite 

number of arithmetic operations and a finite number of evaluations off at some 

appropriately constructed points. 

In the paper we shall use the following definition which can be found in (2, 

§I.l 0]: 

DEFINITION 1.1 Let f be a real-valued convex function defined 'on a convex 

subset D of !Rn. For fixed xa E D and c 2: 0, define 

a~f(xo) = {v E !Rn I f( z )- f(xo):::: (v,z- xo)- c for all zED} (1.1) 

The set 8~ f( xo) is said to be the conditional t:-subdifferential of the function 

f at the point xo E D with respect to the set D. An element v E 8~ f(xo) is said 

to be a conditional t:-subgradient of the function f at the point xa with respect 

to the set D. In particular, if D = !Rn, the set 8~n f( xo) is simply denoted by 

ad( Xo) and called the £-subdijferential off at Xo. 

We shall prove here (cf. Proposition 2.1 below) that the algorithm of Shor, 

with suitably chosen parameters c and 8, can be used for exact calculation (if 

we neglect the roundoff error) of some conditional £-subgradient of f at x 0 . 

Consequently, this finite procedure can easily be included as a subprogram to 

be used at each iteration of our minimization method. 

This paper deals only with a general convergence theorem for the proposed 

minimization method. We indicate here the way of choosing the parameters 

c, 8 at each iteration, but we do not go into the details of Shor's algorithm. 

A more detailed description of an implementable version of our method will be 

the subject of further research. 

The minimization method presented here can be applied in those situations 

in which we are able to compute the values off at any given point, but we have 

no analytical formula for computing subgradients or <:-subgradients. 
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In this paper we take as the set n (in the definition of the conditional 

t:-subdifferential- see (1.1)) some closed ball with centre x 0 . 

It should be noted that S.V.Rzevskii in paper [7], the title of which is simi-· 

lar to the one adapted here, also discusses the problem of minimizing a convex 

nondifferentiable function f: ~n --+~.However, he considers constrained mini

mization problems and takes the set n as the constraint set. Consequently, the 

approach presented in [7] (see also [8]) is entirely different from ours. 

The paper is organized as follows. In §2 we present a result concerning Shor's 

algorithm (cf. Proposition 2.1 below). The convergence theorem is established 

in §3. Finally, §4 contains some remarks on the implementation of the method. 

2. A result concerning Shor's algorithm 

The proposition stated below shows that an element of a:(xo,r) f(x 0 ), where 

B(x0 , r) is the closed ball with centre xo and radius r > 0, can be computed 

by applying the algorithm given by N .z. Shor with suitably chosen parameters 

c and 8. 

PROPOSITION 2.1 Let xo E ~n and J.l, r > 0 be given. Let L be the Lipschitz 

constant for f on B(xo,l),jl = min{J.l,4L},8 = Jl/4L and c = f.l/2r. Then 
Shor's algorithm gives a vector z* E a:(xo,r) f(x 0 ). 

PROOF . By Lemma 6.1 in [4], we have 

U of(u) c o";2J(xo) 
uEB(xo,iJ./4L) 

Now apply Shor's algorithm with the given parameters 8 and c to find elements 

y, z, z* satisfying 11 y - Xo 11 < 8, z E af(y), 11 z* - z 11 < c (see Introduction). In 

particular, we have 

z E af(y) c U af(u) C 8";2f(xo) 
ueB(xo,6) 

This means that 

(z, v- xo) :S f(v) - f(xo) + f.l/2 for all v E ~n 

Now, assume that v E B(xo, r). Then 

(z*, v - xo) (z,v - xo) + (z*- z,v- xo) 

< f(v) - f(xo) + J.l/2 + ll z* - zllllv- xoll 
< f(v) - f(xo) +f.l/2 + t:r f(v) - f(xo) + f.l 
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We have thus verified that z* E a:(xo,r) f(x 0 ). 

3. Convergence of the minimization method 

The proof of our main result stated below is a suitable modification of the proof 

of the convergence of the Ek-subgradient method (cf. [2 , §3.4]). 

THEOREM 3.1 Let f:IRn--> IR be a convex function which has a bounded non

empty set of minimum points M*. For any xa, consider the sequence { Xk i k ::::0: 0} 
generated according to the formula 

where 

if Vk = 0, 

if Vk # 0, 

(3 .1) 

Vk E a~(xkh) f(xk)· We assume that the numbers Ak,fk , and Ok (k = 0, 1, ... ) 

satisfy the conditons: Ak > 0, Iimk-+oo Ak = 0, L~=O Ak = oo, Ek > 0, Iimk-+oo Ek = 

0, and the sequence { Ek; k ::::0: 0} is nonincreasing, Do > 0 and Dk = 2 2::7~01 >.; for 

k > 0. Then 

lim p(xk, M*) = 0 and lim f(xk) = f* 
k-+ oo k-+ oo 

(3.2) 

where 

f* = inf f(x) and p(x , M*) = inf llx - ull. 
xEJltn uEM* 

To prove Theorem 3.1, we need the following lemma: 

LEMMA 3.1 Let D be an arbitrary bounded set in IRn, and let the sequence {xk} 

be generated according to (3.1). Then there exists ko such that 

(3.3) 

PROOF. First, we prove that 

(3.4) 

It follows from the construction of algorithm (3.1) that 

ll x; - Xi +l ii= >.i i = 0,1,2, . .. , (3 .5) 
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where Ai is equal to either )..i or 0 (depending on whether Vk -:/= 0 or vk = 0). 

Let z E B(xo, bk/2) , i.e. , llz- xa ll :::; I::7:a1 
)..i· Using this inequality and 

(3.5), we obtain 

k-1 
llz- xkll :::; llz- xa ll + 2::: ll xi - . Xi+1 11 

i:=O 
k-1 k-1 

< I: )..i + I: ;..; 
i=O i=O 
k-1 k-1 

< L:)..i + 2:)..i bk, 
i=O i=O 

thus z E B(xk, bk) , and (3.4) is proved ... 

Since D is bounded, there exists M > 0 such that 

llull :::; M for all u E D. 

Using the property that bk/2 __, oo as k __, oo, we can find some ko such that 

bk/2 2: M+ 11 xa 11 for all k 2: ko. 

Then we have, for all u E D and k 2: ko, 

llu- xall:::; llull + ll xa ll::::; M+ llxoll:::; bk/2, 

and so, in view of (3.4), 

PROOF OF THEOREM 3 .1. From the boundedness of M* we obtain the bound

edness of the set 

for any f > 0 (cf. [2, Corollary 2 of Lemma I. 9.1]) . 

First, we shall prove that 

(3.6) 

Assume the contrary; then there exists a > 0 and k1 E N such that 

p(xk,M*) 2: 2a > 0 for all k 2: k1 . (3.7) 
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We may assume that, for all k, Vk f. 0. Indeed, suppose that there exists an 

infinite set K C N of k for which Vk = 0. Then we have, for all k E K, 

I.e. 

that is, for all k E K, 

(3.8) 

Since M* is bounded, it follows from Lemma 3.1 that there exists ko such that 

(3.9) 

Take any x* EM* Then we have, by (3.8) and (3.9), for all k E K, 

f(xk):::; f(x*) + f.k = f* + f.k for all k 2 ko. (3.10) 

Hence, for all k E K and k 2 ko, 

Since D,
0 

is bounded, there exists a convergent subsequence Xk, ---+ x as s ---+ =· 

We have, for all s, 

and so, by the continuity off, 

f(x):::; !* + o, 

i.e., ·x EM* . This implies that p(xk.,M*)---+ 0 ass---+=, which contradicts 

assumption ( 3. 7). 

Since the set M* is bounded, therefore, according to Corollary 4 of Lem

ma I. 9.1 in [2], there exists c > 0 such that 

De= {xI f(x):::; f* + c} C Sa(M*) (3.11) 

where 

Sa(M*) ={xI p(x, M*):::; a}. 
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Since De is bounded, we can find, by using Lemma 3.1, some k2 EN such that 

where 

k-1 

8k = 2 :l:.Ai. 
i=O 

Denote 

C2a(M*) ={x I p(x, M*) 2 2a}. 

We shall prove that 

inf f(x)-f*=d >c>O .. 
xEC,a(M•) 

Suppose, to the contrary that 

inf f(x)- f* :::; c. 
xEC,a(M•) 

Then, for any mEN, there exists Ym such that 

P(Ym, M*) 2 2a and f(Ym) :::; f* + c + 1/m. 

(3.12) 

(3.13) 

(3.14) 

Observe that the sequence {Ym} is bounded since it is included in the bounded 

set De+l· Thus we can choose a convergent subsequence Ym. --+ x as s --+ oo. 

Passing to the limit in (3.14), we obtain 

p(x, M*) 2 2a and f(x):::; f* + c. (3.15) 

Hence x E De, and so, by (3.11), x E Sa(M*) , which contradicts the first part 

of (3.15). This completes the proof of (3.13). 

It can easily be shown that there exists r > 0 satisfying 

B(x,r)={xiilx-xli::;r}CDe forall xEM*. 

By the definition of o~(xkh) f(xk) we have, for every k, 

f(x)-f(xk)2(vk , x-xk)-f.k forall xEB(xk,8k)· 

It follows from (3.7) and (3.13) that 

f(xk) 2 f* +.d for all k 2 k1. 

(3.16) 

(3.17) 

(3.18) 



74 YOUSSEF ALY MOHAMED BAGHDAD! 

Using the inequality d > c and the fact that Ek ---+' 0+ as k ---+ oo, we can find 

k3 2:: max{ k1 , k2 } such that 

Ek < d- c for all k 2:: k3. 

Conditions (3.12), (3.17), (3.18), (3.19) and the definition of De imply 

(vk, x- xk) 'S f(x)- f(xk) + Ek < f* + c- f*- d + d- c = 0 

for all x E De and k 2:: k3. Thus, for all k 2:: k3, we have 

(zk,Xk- x) < 0 for all x E De. 

(3.19) 

(3.20) 

Let us fix an arbitrary x EM* and define Xk = x- rzk 11 Zk 11- 1 . It follows from 

(3.16) that Xk E De and hence, from (3.20) , that 

(zk,Xk- Xk) < 0 for all k 2:: k3. 

Therefore 

Le., 

Furthermore, 

llxk + zk - xll 2 

llxk- xll 2 + 2(zk, xk- x) + z~ 
< llxk- xll 2

- 2r.\k +.A~ . 

Since Ak ---+ 0+ as k---+ oo, we have, for sufficiently large k, 

Going on analogously, we obtain 

s-1 

llxk+s- xll 2 < llxk- xll 2
- r "L; Ak+i · 

i=O 

(3 .21) 

Since =r=o Ak :::;; oo, we have 11 Xk - x I I-+ -oo as k ---+ oo, which is impossible 

by nonnegativity of 11 · 11· This contradiction proves (3.6). 

Now, let us fix a> 0. As above, we find ra > 0 such that the inequality 

(3.22) 
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holds for all sufficiently large k satisfying p(xk , M*)> a. From (3.22) we obtain 

(3.23) 

By (3.6), there exist numbers k such that 

(3.24) 

Since Xk+t = Xk + Zk, 11 Zk 11= Ak, we may assume, by taking >.k -> 0+ into 

account, that p(xk+ 1 , M*) < 2a for all sufficiently large k satisfying (3.24). If, 

moreover, p(xk+1, M*) > a, then, by (3 .23), 

Further, we argue analogously. Namely, if p(xk+i, M*):::; a, then p(xk+i+l, M*)< 

2a; _if, instead, a< p(xk+i , M*) < 2a , then p(xk+i+t,M*) < p(xk+i,M*) < 
2a. Finally, for all i 2: 1, we have p( x k+i, M *) < 2a. Since a was arbitrary, we 

have p(xk, M*) -> 0 ask-> oo, and so , f(xk)-> f* ask-> oo , which finishes 

the proof of the theorem. 

4 . Remarks on the implementation of the 

method 

1) If the function f is globally Lipschitzian, then, to compute the elements 

Vk E 8~(x,,h) f(xk) , we apply the algorithm of Shor as in Proposition 2.1 , with 

the global Lipschitz constant L. 

2) If the function f is locally Lipschitzian, then, to compute the elements Vk, we 

apply the algorithm of Shor with the Lipschitz constant Lk for f on B(xk, 1). 

In this case, we must be able to determine the constant Lk for each point Xk · 
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0 zbieznosci metody warunkowego E-subgradien

tu w wypuklej optymalizacji nierozniczkowalnej 

Przedstawiono nowq, metod~ numerycznq, minimalizacji dowolnej funkcji wypu

klej - ni~koniecznie r6zniczkowalnej ~ wielu zmiennych. W kazdej iteracji algo

rytm odwoluje si~ do jednego warunkowego E-subgradient danej funkcji, kt6ry 

moze bye wyznaczony numerycznie przy pomocy algorytmu N.Z. Shora (6, §1.3]. 

Tak wi~tc, nie jest konieczna znajomosc wzoru analitycznego dla wyznaczania 

subgradient6w. 

0 CXOAHMOCTH MeTOAR YCJIOBHOro E-cy6rpaAHeHTa 

B BhiDYKJIOit HeAHci»cl»epeHIJ.HpyeMOH ODTHMH3RIJ.HH 

I1pe)J.CTaBJieH HOB:bl:B 'IHCJICHHI:.I:B MeTO)J. MHHHMH3aiJ;HH npOH3BOJILHO:B - He 

o6.SI3aTeJILHO .U.HiiJiiJepeHn;HpyeMO:B - BLinYKJIO:B liJyHKIJ;HH MHOrHX nepeMeH

HLIX:B Ka)K,li,O:B HTepai(HH aJirOpHTM o6paru;aeTCH K O,li,HOMY YCJIOBHOMY c·cy6-

rpa.n.HeHTY )J.aHHO:B liJyHKIJ;HH, KOTOp:bi:B MO:>KeT 6LITL onpe)J.eJieH C llOMOrn;LIO 
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anropHTMa H.3. Illopa [6, §1.3] . TaKHM o6pa30M HeT Heo6xo)l.OMOCTH 'IT06LI 

aHaJIHTH'IeCKaH <!>opMyna onpe)l.eJieHHH cy6rpa)l.HeHTa 61.ma H3BeCTHa. 




