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The paper deals with the classification problems in which the
sequences of recognized patterns form second-order Markov chain.
First the algorithm in the case of complete probabilistic information
is presented and furthermore the respective algorithm with learning
is proposed. Subsequently, the results of experimental investigation
of both algorithms are shown.

1. Introduction

In many pattern recognition tasks there exist dependencies among the patterns
to be recognized. For instance, this situation is typical in text recognition [7],
or in recognition of state of technological processes [1], or in sequential medical
diagnosis when we need to classify the sequence of medical tests for the same
patient [2, 8, 9]. In such cases the Bayes approach with the assumption of Markov
dependence among the patterns to be recognized is often made.

There is a great amount of papers dealing with recognition problems under
assurnption of first-order Markov dependence [1, 5, 7]. Furthermore, in [6], the
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pattern recognition algorithm for k-order (k > 1) Markov chains, but only in the
case of complete statistical information, can be found. In this paper the pattern
recognition algorithm with learning for second—order Markov chain is presented
in detail. Subsequently, the results of experimental investigations (for algorithm
with complete probabilistic information and with learning) are shown.

2. Statement of the problem

Let us consider the recognition problem of sequence of patterns in which there
exist a second-order Markov dependence among the classes to which the pat-
terns belong. Let z, = [x&_l),rgf)‘ .- )], taking values in the r—dimensional
space of observations, denote the vector of measured features of the n~th (n =
1,2,...) recognized pattern. Let us denote by j, the class index to which the
n—th pattern in question belong and let j, take values in the set of class
M =1,2,...,m. We assume that couples (x,, j,) are realizations of the stochas-

tic process F(Xn,Jn) described by the probabilities:

P{Jl:jI:JZ:.J'.Q,---;Jn:jn}:pn(}n) (1)

and the joint conditional probability density functions:

f(T1,5'32: . ‘::‘Uﬂ/‘]]. == J‘Is J2 = j2: v '!Jﬂ . jﬂ) = fn(Eﬂ/;n) (2)
where %, = (z1,22,...,2,) denotes the sequence of n patterns and j, =
(71,72, -+, Jn) denotes the sequence of their true identities. Additionally, we

suppose stationarity and conditional independence in the sequence of random
variables X, i.e., for each n:

k)

:anjn = H (Ta/ja) (3)

(= a0

where

f(‘cn/jn) = fjn($n)s in €M (4)

denote the class density functions.
If the sequence J, = (J1,J2,...,Jn) forms a second-order Markov chain, 1.e.:

P{Jn =jn/j-n—1 =}n—l} = P{J‘n = .?n/J -1 = jﬂ—]: Jrig = jn-2} (5)
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for n > 2,jn,dn-1,---,51 € M then the complete probabilistic information
means that all density functions (4), and all transition probabilities of second—
order Markov chain:

P{Jn = jn/Jn—l = jﬂ—lv Jn—‘z = jn——ﬂ} — En,(jn:jn—lrjn—-z)

n=34,...,0nsJn-1,Jn-2 € M #
and its initial probabilities:
P{J1 = j1,J2 = j2} = p2(72) )
j,j2€M
are known.

3. The pattern recognition algorithms

In [6] and [9] the Bayes pattern recognition algorithm for second-order Markov
chains in the case of complete probabilistic information is presented. In the case
of 01 loss function first the following functions: '

hn(jn)jﬂ-—lsfﬂ) =
P{Jn = Jaydn—1= jﬂ—l} ¥ f(zﬂ/Jﬂ = Jn; Jn-1 = jn—l) (8)
n= 2a3:-":jﬂ:jﬂ—l eEM

are defined. In [6, 9] it is also shown, that these functions can be calculated
according to the recursive formula:

h(jmjn—lsfn) —

m

fin(@n) Y Blin:dn-1)dn-2)hn-1(jn-1,Jn-2,%n-1) (9)
jn—:!:l

jn:jﬂ—lEM1 n=3,4-,...

with the initial condition:

ha(j2, j1,%2) = fi,(21)p2(22)

i (10)
Jj2 €M
From the formulas (9),(10) we derive the decision functions
i ’n:&-n = m o hn jn,jn— ;En)
g (J ) Z}n—l—l ( 1 (11} I

n=2.23,... jEM.
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For n = 1 we use the Bayes decision rule for the sequence of independent

patterns with following decision functions:

g1(jr, ¢1) = fi, (1) Z p2(74) heEM (12)

J2=1
Knowing (11) or (12) we classify the n—th recognized pattern to the class i,, for
which the value of decision function after observing 7, is the greatest one, i.e.:

U(Z,) = Up(zn) = in (13)

9n(in,Tn) = Max gn(jn, Tn) n€M (14)
The above described algorithm can be also extended for the higher-order Markov
dependence and for the case of general loss function [6, 9]. When the class den-
sity functions (4) and the description of the Markov chain (6),(7) are unknown,
we can use the information contained in the set of learning sequences [2, 9]:
[S]y = Si, 54, ..., Sn. Each sequence is the realization of the stochastic process
(1),(2),(3) and contains k correctly classified patterns:
S = (311‘.‘;"11), (2312;.512)1 cey (mlk:jlk)
Sy = (x21,J21), (®22, 522), - - -, (T 2k, J2k)

(15)

SN — (leale)r (rN?anZ)a ey (xNk:ij)
The pattern recognition algorithm with learning in n—th moment of classification
is as follows:

in = ¥([S]n;Zn) = ¥n,n(2n) (16)
Now, let us consider the problem of using the set of learning sequences (15).
In this case the transition probabilities of Markov chain By ,(i,7,1) can be
estimated by:

;i Nutit 5 s
ﬁNn(i,J,!')=+n‘:ﬂ i,5,le M, n=3,4,... (17)
! Nn,jf
where
Np,iji denotes the number of events such that jgn = i, jgn-1 = 7,

Jen-2 =1, =1,2,...,N in (15), N, ;i denotes the number of events
such that jgn—1 =, jan—2=1,8=1,2,..., N in (15).
The initial probabilities can be estimated by:

con o Nogio
prpind) = 5 GieM (18)
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When the second-order Markov chain is homogeneous:

P{Jﬂ, = i/Jn_l = j, Jn_z = :}P{Jn—] = i/Jn—Z = jan—-"I = !) = (19)
s P{J3 = %/J:Z = j?‘Il = I} = ﬁ(i‘,j,!) é!j?! eEM
and stationary:
Plh=i,Ja=j}=P{ly=4,J3=j} =
P{Jn—1=£:‘}n=j}=p2(£:j) (20)
1,] EM.
for the estimation of probabilities [6, 7] we can use only one learning sequence
(of course the sequence should be long enough):

Sy = (&1,41), (22, 42), - ., (2N, IN) (21)

In this situation the transition probabilities can be estimated by:

5 Niji N -1
B e W T2 29
pN(E;J;) NJIN_Q ( )

where
N;ji denotes the number of events such that jo =1, jo—1 = J, ja-2 =1,
a=3,4,...,N in (21), and Nj; denotes the number of events such that
Jae1=17, Ja—2 =1, @ =2,3,...,N in (21).

The initial probabilities can be estimated according to:

e o Nij
P.N,'Z(z:.}) = N -1 (23)

where Nj; denotes the number of events that in (21) jo = 4,ja—1 = j,&@ =
. L

Let us notice that according to the Bernoulli’s theorem all these estimators are
consistent. The value of class density functions can be estimated using nonpara-
metric techniques [3, 4, 9] (for example using Parzen or Loftsgaarden estimators
or using the least interval pattern recognition algorithm) and let:

fNJjﬂ(:cn)‘ jﬂEM: n= 1,2.‘-- (24}

denote the value of density in class j, in point z,, which is obtained using the
set of learning sequences (15).

Subsequently, we use estimators (22), (23), (24) to calculate functions (10), (10)
and the decision functions (11), (12) as though they were correct. Finally, our

pattern recognition algorithm with learning for second-order Markov chain is
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as follows:

1. We determine all additional functions for j,,j.—; € M according to the
following recursive formula (n = 3,4,...):

hN,n(jnajn—l}fn) = (25)
fN.jn (a:n) Z ﬁN,n (Jn ) jn—l; jn—-E)hN,n—l (jn—l; jn—z, E'-'n—l)
Jn-2=1

with the initial condition for n = 2:
hn,n(d2, 51, F2) = N 31 (21) N2 (22)Pw,2(75) (26)

2. We determine all the decision functions for j, € M (n=2,3...):

m
.‘J’N,n(jnsfn)= Z hN,n(jmjn—la:'En) (27)
Jn—1=1

and for n = 1 we have similarly as in (12):

m

an1 (i @) = s (=1) Y pv,a(Fa) (28)

ji=1
3. We classify the n—th recognized pattern to the class i,, if:

INn(in, Tn) = juax INn(Jns Tn) ' (29)

For the above presented algorithm its asymptotical optimality can be proved
[9]. It means that if N — oo then the distance between the rule with learning
and corresponding Bayes rule goes in probability to zero and moreover the risk
of the rule with learning in probability goes to the risk of Bayes rule in every
moment of classification n.

4. Experimental results

In the experimental investigations of properties of the above described pattern
recognition algorithms computer simulation was used. First, the values of cou-
ples (2n,jn) n = 1,2,... of the stochastic process (3), (5) were generated.
These numbers were treated as the patterns to be recognized or as the learning
patterns. In both cases the true classes to which the patterns belong were also
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known. As a measure of the quality of recognition the frequency of misclassifi-
cation (mf) was chosen:

mf = % (30)

where [ denotes the number of misclassified patterns in sequence of L recognized
patterns. It is well-known, that in the case of 0 — 1 loss function, the frequency
of misclassification estimates the probability of error of the recognition rule and
its average risk as well. In the case of complete probabilistic information it was
important to check out whether taking into account the second—order Markov
dependency could improve the quality of recognition, i.e. whether the pattern
recognition algorithm for second—order Markov chains is better in quality than
the pattern recognition algorithm for the first—order Markov chains of indepen-
dent patterns. This comparison was possible because knowing the description
of the second-order Markov chain we can calculate corresponding description of
first—order Markov chain and class probabilities at every moment n = 1,2,...
needed in pattern recognition algorithm for independent patterns [9]. Further-
more, in the case of learning, it was important to investigate the asymptotical
properties of proposed recognition algorithm. Let us notice, 1;hat experimental
investigations were done for the case of two classes and for one-dimensional

normal distributed patterns. The particular results were as follows:

A. The investigation of influence of changes of parameters of class distributions
on the frequency of misclassification (mf).

In this test 30 sequences of length n = 10 of patterns, for which the sequence
of classes forms a stationary and homogeneous second-order Markov chain, were
generated. The transition probabilities of the chain were as follows:

p(1,1,1)=09 p2,1,1)=0.1 5(1,2,1)=08 p(2,2,1)=0.2
7(1,1,2)=01 B21,2)=09 »p(1,2,2)=02 $2,22)=08
First, the distance ||m; —mg|| between the mean values in the classes of distribu-
tions fi(x) = N(my,01), fa(z) = N(mg, o) was changed, while oy = o4 = 3.
In the second test oy was changed, while oy = 3, m; = 2, ms = 4. The results
are shown in Figures 1 and 2 respectively, where the frequencies of misclassifi-
cation (mf) for particular pattern recognition algorithms were denoted by:

mf3 — for second—order Markov chains,
mf2 — for first—order Markov chains,
mf1 — for sequences of independent patterns,
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mf
0.4
0.3
0.2-
mf1,2
0.11 : mf3

2 4 6  (m1—my)
Figure 1. Misclassification frequency as a function of [jm; — mg]|.

mf

0.4

0.3 . mﬂ,mf2
mf3

0.2

0.14

1 2 3 4 w8
Figure 2. Misclassification frequency as a function of 5.
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B. The investigation of influence of the transition probabilities of second-order
Markov chain for "mf”.

In this test only one sequence of 500 patterns from the classes with con-
ditional density functions fi(z) = Ni(2;4), fo(z) = Na(5;4) was generated.
In the case of dichotomy for the evaluation of degree of second-order Markov
dependency the special parameter :

7 1ﬁ(1v1$1)_5(1:1:2)|+lﬁ(lslal)_ﬁ(1:2:1)l+
+|5(1r1>1)_5(1:2:2)|+ '?(111}2)-ﬁ(1:2:1)|+ (31)
+|§(1:1:2)_5(11212)[+ [?(112‘1)_5(]1212”:

was defined. Let us notice, that ¥ = 0 denotes that in the sequence of classes
there does not exist dependency and that increasing of ¥ means increasing of
degree of dependency (y € [0,4]). In these investigations, the parameter v was
changed and two cases of initial distribution of second-order Markov chain:

a) p2(1,1) =04 p2(1,2)=0.1 pa(2,1) =0.1 p2(2,2) =04,

b) p2(1,1) = p2(1,2) = p2(2,1) = p2(2,2) = 0.25,
were taken into account. The results are shown in the Figures 3 and 4.

mf j

mfl
mf?2
mf3

1 2 3 7
Fig.3. Misclassification frequency as a function of v (case a).
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me
0.4 mfl
mif2
0.3
mf3
0.2
0.1 2
1 2 3 7

Fig.4. Misclassification frequence as a function of v (case b).

C. The investigation of the influence of length of learning sequence for the
misclassification frequency of the algorithm with learning. In this case, in the
algorithm (16) the consistent Parzen estimator with the kernel function K(z) =
exp(—2?)/(27)%5 and sequence h(n) = n~"2 was used. For generation purpose,
it was assumed that fi(z) = N(2;3) and fy(z) = N(8;3) and that the chain is
homogeneous and stationary. In this investigation, first the test sequence of 50
patterns then the learning sequence of N patterns were generated. The results
of investigation of influence of the length of learning sequence N for ”mf” for
different parameter v are shown in the Figures 5 and 6, where by the horizontal
lines the misclassification frequency of respective algorithms with the complete
probabilistic information are shown.

5. Final remarks

In this paper the results of experimental investigation of pattern recognition al-
gorithms for second-order Markov chains are presented. In the case of complete
probabilistic information the comparison between the algorithms for second—
order Markov chains, for first-order Markov chain and for the sequence of in-
dependent patterns (fig.1,2,3,4) was done. It shows us that taking into account

the second-order Markov dependence (even in the case of not so strong degree
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of dependence i.e. for v > 1.5), improves the quality of recognition in the cases
when the sequences of patterns form such chain. Furthermore, ip the case of
the algorithm with learning, its asymptotical optimal properties were experi-
mentally confirmed. Finally, one can say that the presented pattern recognition
algorithms can be useful, and in the future they will be tested in some case of
medical diagnosis.

mf j

0.2

50 100 200 500 N
Fig.5. Missclassification frequency as a function of N (y = 2.7).

mf
0.2

0l puccsncimasne bk man R EET—— .

50 10 200 500 N
Fig.6. Missclassification frequency as a function of N(y = 3.2)
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Badania eksperymentalne algorytmoéw rozpozna-
nia obrazéw dla lancuchéw Markowa drugiego
rzedu

Artykul dotyezy zagadnien klasyfikacji, w ktorych sekwencje rozpoznanych ob-
razow tworza lancuchy Markowa drugiego rzedu. Jako pierwszy przedstawiono
algorytm dla przypadku pelnej informacji probabilistycznej, a nastepnie — od-
powiedni algorytm z uczeniem. W dalszej czesci pokazano wyniki badan ekspe-
rymantalnych obu algorytméw.
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JdKcnepUMeHTaJbHbIE HCC/IeIOBAHUS AJITOPUTMOB
pacno3HaBaHUs 00pa30B /IS MAapKOBCKHX Iemeif

BTOPOTO NMOpSAaKa

CTaThs KacaeTcd BOIIPOCOB KIAacCMPUKANWHA, B KOTOPEIX IOCIeIOBATEIbHOC-
TH PAacIO3HAHHBEIX 06pasoB co3[al0T MapKOBCKMe LM BTODOI'o IOPSAMKA.
[TepBEIit anropuTM KacaeTcs CIIy4as IIOIHON BepOATHOCTHOM HHQOPMAIIAH, a
B KayecTBe BTOPOI'O IPefCTaBlIeH aNropuT™ ¢ obyyenuemM. B cuepyroureit ya-
cTi paboThI pacCMOTpPEHE! Pe3yILTATEl SKCIePHMEHTANLHEIX HCCllefOBaHIH
ob6oux anropuTMOB.







