Control

and Cybernetics
VOL. 21 (1992) No. 3/4

Substitution algorithm for binary chains!

by
Jacek Gawin and Pawel Fochtman

Department of Technology,

Division of Electronics and Computer Science,
Silesian University,

ul. Bedzifiska 60

41-200 Sosnowiec, Poland

The paper presents an algorithm for the Binary Chains algebra,
used for functional description of digital circuits in automatic test
pattern generation. An example of its performance and a comparison
with other algorithms are included.

1. Introduction

The Binary Chains as an economical form of the Binary Decision Diagrams [1,
2, 7] are one of the boolean function notations. The inventors of Binary Chains
are K. Sapiecha and T.Czichon [6]. The formal definition of the Binary Chains
has been presented in [3]. They are suited for an easy calculation of boolean
expressions on complicated functions. Besides, they can be calculated for the
variables of a digital circuit from its procedural description in any Hardware
Description Language [4, 5]. Therefore the Binary Chains algebra was used for

1Sponsored by KBN project no. 8027591 01

94 1. GAWIN, P. FOCHTMAN

the test generation method [6]. Some algorithms of this algebra are presented
in [3].

The substitution of the Binary Chains describing some variables so as to form
other Binary Chains which contain these variables are frequently used during
test generation calculations by the Automatic Test Equipment [7]. There are no
publications on the algorithms of such substitution. The present paper describes
three original substitution algorithms and discusses them.

Section 2 of this paper outlines the problem. In Sections 3, 4 and 5 the
consecutive versions of the algorithm looked for are presented. An example of
performance of the last, recurrent algorithm is shown in Section 6. Its qualities
are specified in Section 7.

2. Notation and problem formulation

The following notation shall be used throughout the paper:
-~ a logic variable;

— a Binary Chain containing variable a;

— a Binary Chain describing variable a as a function;

Nk xR

-~ the sought Binary Chain, equivalent to X.
We have to find the Binary Chain X which is equal to X, but in which

instead of the variable &, the Binary Chain A appears (see Example 1).

Example 1

a=b
X =a,b,0,1,6,1,0 (X =a-b+a-b);
A=¢04d1,0 (b=72-d).

The solution sought is:
X =a,¢1,d,0,1,¢,0,d,1,0 (X=a-c+a-d+a-c-d)’

The chain A should be reduced and the variables appearing in it should
occur according to specified (ascending) order. Noncompliance with the first
condition will cause quick increase of computational complexity. If the second
condition is not satisfied then subsequent calculations may be erroneous due to
variable looping (see Examples 2 and 3).

Substitution algorithm for binary chains 95

3. Algorithm 1

procedure Algorithmi(X, o, A, X);
begin
A=
sx:=size0f(X);
sa:=sizeDf(A4);
for ix:=1 to sx do
if X[ix]=o then
for ia:=1 to sa do
if A[ial = const then
X :=X+subchain(X,ix,const))

else {Alial is variable}
X :=X+Alial
else
A :=X+X[ix];
end;

The proposed algorithm is simple and rapid. It turns out, however, that
variables in the resulting chain are not ordered (see Example 2).
Example 2

a = a;
X =a,b,1,0,0; (X=ua-b);
A=¢1,d,1,0; (a=c+d).

Note that the variables in both chains are in the ascending order (a,b and ¢, d).
According to Algorithm 1 we get:

X =¢0b,1,0,d,b,1,0,0; (X=c-b+d-b),

where the order is changed (¢, d,b).
If the following substitutions (Example 3) are performed for the obtained Binary
Chain, the possibility of variable looping will appear.

Example 3

a=="b
X =¢b,1,0,d,b,1,0,0;

A=4d,0,1; (b=d).

96 J. GAWIN, P. FOCHTMAN

According to Algorithm 1:
X =e¢,d0,1,d,d,0,1,0; (variable d loops).

The correct results of the previous Examples should be:
~ for Example 2:

X =b,c1,d,1,0,0; (X =b-c+b-d).

— for Example 3:

X =¢d0,1,0 (X =c-d).
It appears from the foregoing examples that Algorithm 1 is unfit for use in

automatic test generation.

4. Algorithm 2

procedure Algorithm2(X, o, A, X);
begin
addVariables0f(X,S);
addVariablesDf(A,S5);
{S is in ascending order}
ss:=size0f(S5);
for i:=1 to ss do
for j:=1 to 2171 4o
X [varPos(i,j,ss)]:=S[il;
for i:=i to 28 do
X [constPos(i,ss)]:=value(i,ss, X, A);
end; ’

Such an algorithm makes it possible to obtain the Binary Chain X ful-
filling all the restrictions assumed but it has to be reduced. Yet, it is very
time—consuming because of the complicated calculations of functions varPos,
constPos and value. Its time complexity is O(| X |2+ |A]).

For example, the first of them is calculated according to the formula:

n=i—2
varPos(i, j,ss) = i+ »_ bitAt(j,n)- (2" ="+ — 1),

n=0

where bitAt(j, n) means the binary value of n—th bit of the number j.

Substitution algerithm for binary chains 97

5. Algorithm 3

We can now present an algorithm which avoids the shortcomings of Algorithms 1
and 2.
procedure Algorithm3 (X ,w,A, X);
begin
(1) addVariablesDf(X,S);
if a in S then
if A=const then

(2) A i=restriction(X,a,const)
else
begin
(3) removeVariable(S,) ;
addVariables0f(A,S);
{S is in ascending order}
£:=S[1];

Al:=restriction(A,v,1);
AO0:=restriction(A,v,0);
(4) Algorithm3(X , o, A1,X1);
Algorithm3(X ,«,.40,X0);
binaryChain(é,X1,X2,X);
end
else
X:=X;
end;
Step (4) of this algorithm contains the recurrent call to itself. Step (2) con-

tains the conditions for the end of recurrence. The time complexity of it is:
O((1X|M? + |A]'/?) log(| X [*/?))

The’calculation of the time complexity of Algorithms 2 and 3 is quite lengthy
and was therefore not included in the scope of this paper but intuitively, Algo-
rithm 3 is better.

6. An Example of functioning of Algorithm 3

Let us consider the data from Example 2:

(e =a; X =0a,01,0,0; A=r¢1,d,1,0).

98

J. GAWIN, P. FOCHTMAN

1-st call of the Algorithm 3:

1) 8 ={a,b};

2) -5

3)8=4be,d}.£= G

4) o= 0.X = Xlfey =8, 1,04 = Alsy = ¢, 1,d,1,0;

2-nd call of the Algorithm 3:

1) § ={a};

2) - ;

3) S= {c‘ d}'f =G

)a=aX=X|=1= a,i,U.A = Apzy=T,

3-1d call of the Algorithm 3:

1) S ={a};
2) X = X|a=1 = 1. Return to call number 2;

2-nd call of the Algorithm 3:
NHXl=la=aX=X|=0=a,1,0A=A¢—0=4d,1,0;

4-th call of the Algorithm 3:

1) § = {a};
2) -
3) 8§ ={d}£=d;

4) a=aX = X|E=1 =d, 1,0./4 = AE:I = 1;

5-th call of the Algorithm 3:
1) § = {a};
2) X = X|a=1 = 1. Return to call number 4;

4-th call of the Algorithm 3:
4) X]. =17 = a.X = X1E=[} =a, 1'0./4 — Alfzﬂ = 0,

6—th call of the Algorithm 3:

1) S ={a}
2) X = X|a=0 = 0. Return to call number 4;

4-th call of the Algorithm 3:
4) X0 = 0;
5) X =d, 1,0. Return to call number 2;

Substitution algorithm for binary chains 99

2-nd call of the Algorithm 3:
4) X0=4d,1,0;
5) X =¢,1,d,1,0. Return to call number 1;

1-st call of the Algorithm 3: | .
4) X1=¢1,d,1,0a=0a.X = X|t=0 =0.A= A|t=0 =¢,1,d,1,0;

7-th call of the Algorithm 3:
1) § = {}.X = 0. Return to call number 1;

1-st call of the Algorithm 3:
4) X0 =0;
b A= b6 1,d,1,40,0,

7. Conclusions

The qualities of the Algorithm 3 in comparison with both previous ones are:

a) — Utilization of the caleulating chain restriction procedure. This procedure
is indispensable in many operations during the test generation and thanks
to that more economical use the memory resources is ensured;

b) — The resulting Binary Chain is already reduced, so that the algorithm is
much less time-consuming than Algorithm 2:

¢) — Complicated numeric calculations are avoided, and the implementing pro-
gram is quite legible;

d) — Use of recurrence cuts down the length of the implementing program [8].

References

[1] AxeErs S.B. Binary decision diagrams.Proc. IEEE TC vol.C—27,June
1978.

[2] BRvyaNT R. Graph-Based Algorithms for Boolean Function Manipula-
tion.Proc. IEEE TC vol. C-35,August 1986.

[3] CzicHoN T. Wyznaczanie testéw dla ukladéw cyfrowych opisywanych za
pomoca proceduralnych jezykéw do opisu sprzetu. Politechnika Warsza-
wska, Ph.D. dissertation, (in Polish) Warszawa 1986.

[4] Kivosita K., Asapa K., Karacu O. Logiczeskoje projektirowanije
SBIS.(in Russian) Mir, Moskwa 1988.

100 J. GAWIN, P. FOCHTMAN

[5] LipsETT R., MARSCHNER E., SHAHDAD M. VHDL - the language.
IEEE Design & Test, April 1986.

[6] SapiecHA K., CzicHoN T. Test generation for circuits described in the
procedural Hardware Description Languages (HDL’s). Int. Conf, Euromicro
86, Venice, pp. 371-379.

[7] SariecHA K. Testowanie i diagnostyka systeméw cyfrowych. (in
Polish) PWN, Warszawa 1987.

[8] WIRTH N. Algorytmy + struktury danych = programy. WNT, (in
Polish) Warszawa 1980.

Algorytm podstawienia dla laincuchéw binarnych

Artykut przedstawia pewien algorytm z dziedziny algebry tanicuchéw binarnych,
uzywany do opisu funkcjonalnego obwoddéw cyfrowych w automatycznym gene-
rowaniu testow. Pokazano przyktad dzialania tego algorytmu oraz poréwnanie

z innymi algorytmami.

AJITOPHUTM IOJCTAHOBKH [N OMHAPHBIX Ieneil

B cTaThe npencTaBneH HEKOTOPHIR anropuT™M us obnacTu anre6ps1 GUHAPHBIX
memeit, HCHONB3yeMbI# AJi8 GYHKIMOHAILHOI'O ONMUCAHUSA HUPPOBLIX KOHTY-
POB aBTOMAaTHYEeCKOT'0 TeHepHPOBaHUA TecToB. [IpefcTaBieH mpumep pe#cT-
BHA 9TOT'0 alllOPUTMa a TaKyKe CpaBHEHHWE C IPYTHMH aJIrOPUTMaMH.

