
Control 
and Cybernetics 
VOL. 21 (1992) No. 3/4 

Substitution algorithm for binary chains1 

by 

J acek Gawin and Pawel Fochtman 

Department of Technology, 

Division of Electronics and Computer Science, 

Silesian University, 

ul. B~dzinska 60 

41- 200 Sosnowiec, Poland 

The paper presents an algorithm for the Binary Chains algebra, 
used for functional description of digital circuits in automatic test 
pattern generation. An example of its performance and a comparison 
with other algorithms are included. 

1. Introduction 

The Binary Chains as an economical form of the Binary Decision Diagrams [1, 

2, 7] are one of the boolean function notations. The inventors of Binary Chains 

are K. Sapiecha and T. Czichon [6]. The formal definition of tb~ Binary Chains 

has been presented in [3]. They are suited for an easy calculation of boolean 

expressions on complicated functions. Besides, they can be calculated for the 

variables of a digital circuit from its procedural description in any Hardware 

Description Language (4, 5]. Therefore the Binary Chains algebra was used for 

1 Sponsored by KBN project no . 8 0275 91 01 



94 J. GAWIN, P. FOCHTMAN 

the test generation method [6] . Some algorithms of this algebra are presented 

in [3]. 

The substitution ofthe Binary Chains describing some variables so as to form 

other Binary Chains which contain these variables are frequently used during 

test generation calculations by the Automatic Test Equipment [7] . There are no 

publications on the algorithms of such substitution. The present paper describes 

three original substitution algorithms and discus~es them. 

Section 2 of this paper outlines the problem. In Sections 3, 4 and 5 the 

consecutive versions of the algorithm looked for are presented. An example of 

performance of the last, recurrent algorithm is shown in Section 6. Its qualities 

are specified in Section 7. 

2. Notation and problem formulation 

The following notation shall be used throughout the paper: 
a a logic variable; 

X a Binary Chain containing variable a; 

A a Binary Chain describing variable a as a function; 

X the sought Binary Chain, equivalent to X. 
We have to find the Binary Chain X which is equal to X, but in which 

instead of the variable a, the Binary Chain A appears (see Example 1). 

Example 1 

a=b 

X=a,b,O,l,b,l,O (X=a·b+a·b); 

A=c,O,d,1,0 (b=c·d). 

The solution sought is: 

X =a, c, 1, d, 0, 1, c, 0, d, 1, 0 (X= a· c +a· d +a · c ·d) . 

The chain X should be reduced and the variables appearing in it should 

occur according to specified (ascending) order. Noncompliance with the first 

condition will cause quick increase of computational complexity. If the second 

condition is not satisfied then subsequent calculations may be erroneous due to 

variable looping (see Examples 2 and 3). 



Subs-titu-tion a.lgorithm 1or bina.ry c ha.ins 

3. Algorithm 1 

procedure Algorithmi(X, a,A, X); 

begin 

X:="; 
sx: =sizeDf (X); 

sa : =sizeOf CA); 

for ix:=1 to sx do 

if X [ix] =a then 

for ia : =1 to sa do 

if A [ia] = const then 

X: =X +subchain(X, ix, const)) 

else {A [ia] is variable} 

X: =X+A [ia] 

else 

X:=X+X[ix]; 

end; 

95 

The proposed algorithm is simple and rapid . It turns out, however, t hat 

variables in the resulting chain are not ordered (see Example 2) . 

Example 2 

a = a; 

X= a,b, 1,0,0; (X= a· b); 
A = c, 1, d, 1, 0; (a = c + d). 

Note that the variables in both chains are in the ascending order (a, b and c, d). 

According to Algorithm 1 we get: 

X = c,b, l,O,d,b, 1,0,0; (X = c·b +d·b), 

where the order is changed (c, d, b) . 

If the following substitutions (Example 3) are performed for the obtained Binary 

Chain, the possibility of variable looping will appear. 

Example 3 

a =b 

X = c,b, l,O,d,b,l ,O,O; 
A =d,0,1; (b=d). 



96 

According to Algorithm 1: 

;y = c,d,O, 1,d,d,O, 1,0; (variable d loops). 

The correct results of the previous Examples should be: 

- for Example 2: 

;y =b, c, 1,d, 1,0,0; (X = b · c + b · d). 

-for Example 3: 

X = c,d,0,1,0 (X = c ·d). 

J. GAWIN, P. FOCHTMAN 

It appears from the foregoing examples that Algorithm 1 is unfit for use in 

automatic test generation. 

4. Algorithm 2 

procedure Algorithm2(X , a,A , ;y); 

begin 

addVariablesOf (X, S) ; 

addVariablesOf (A, S) ; 

{S is in ascending order} 

ss: =sizeOf (S); 

for i:=1 to ss do 

end; 

for j:=1 to 2i-i do 

;y[varPos(i,j ,ss)] :=S[i]; 

for i:=1 to 2ss do 

;y[constPos(i,ss)] :=value(i,ss,X ,A); 

Such an algorithm makes it possible to obtain the Binary Chain ;y ful

filling all the restrictions assumed but it has to be reduced. Yet , it is very 

time- consuming because of the complicated calculations of functions varPos, 

constPos and value. Its time complexity is O(IXI 2 * IAI) . 
For example, the first of them is calculated according to the formula: 

n=i-2 

varPos(i, j, ss) = i + L bitAt(j , n). (2ss - i+n+ 2 - 1) , 
n=O 

where bitAt(j, n) means the binary value of n-th bit of the number j. 



Substitution a-lgorithm fo r bina.ry c ha.ins 97 

5. Algorithm 3 

We can now present an algorithm which avoids the shortcomings of Algorithms 1 

and 2. 

procedure Algori thm3 ex' CY ,A, X).; 

begin 

( i) addVariablesDf (X, S) ; 

if a in S then 

if A=const then 

(2) X: =restriction(X ,a, const) 

(3) 

(4) 

else 

begin 

remove Variable CS~ a); 

addVariablesOf CA, S) ; 

{S is i~ ascending order} 

~:=S[i]; 

Ai: =restriction CA, v, i); 

Ao: =restriction CA, v, 0); 

Algorithm3(X, a ,Ai ,Xi); 

Algori thm3 ex' CY 'Ao 'xo) ; 
binaryChain(~ ,Xi, X2 ,X); 

end 

else 

X: =X; 

end; 

Step ( 4) of this algorithm contains the recurrent call to itself. Step (2) con

tains the conditions for the end of recurrence. The time complexity of it is: 

The·calculation of the time complexity of Algorithms 2 and 3 is quite lengthy 

and was therefore not included in the scope of this paper but intuitively, Algo

rithm 3 is better. 

6. An Example of functioning of Algorithm 3 

Let us consider the data from Example 2: 

(a=a; X=a,b,l,O,O; A =c,l,d,l,O). 



98 

1- st call of the Algorithm 3: 

l)S={a,b}; 

2)-; 

3) S = {b,c,d}. ~ = b; 

4) a= a.X = Xl~=l =a , 1, O.A = Al~=l = c, 1, d, 1, 0; 

2- nd call of the Algorithm 3: 

l)S={a}; 
2) - ; 

3) S = {c,d}.~ = c; 

4) a= a.X = X l~=l =a , 1, O.A = A~=t = 1; 

3-rd call of the Algorithm 3: 

l)S={a}; 
2) X= Xla=l = 1. Return to call number 2; 

2- nd call of the Algorithm 3: 

4) Xl = l.a = a.X = XI~=O =a, 1, O.A = A~=O = d, 1, 0; 

4-th call of the Algorithm 3: 

l)S={a}; 
2) - ; 

3)S={d}.~=d; 

4) a= a.X = Xlt=l = a, 1, O.A ·= Ac-=t = 1; 

5-th call of the Algorithm 3: 

l)S={a}; 
2) X= Xla=l = 1. Return to call number 4; 

4-th call of the Algorithm 3: 

4) Xl = l.a = a.X = XI~=O =a, 1, O.A = Abo = 0; 

6-th call of the Algorithm 3: 

l)S ={a}; 
2) X= Xla=O = 0. Return to call number 4; 

4- th call of the Algorithm 3: 

4) xo = 0; 
5) X= d, 1,0. Return to call number 2; 

J. GAWIN, P. FOCHTMAN 



Substitution algorithm for binary chains 99 

2-nd call of the Algorithm 3: 

4) xo = d, 1,0; 

5) X = c, 1, d, 1, 0. Return to call number 1; 

1-st call of the Algorithm 3: 

4) X1 = c, 1, d, 1, O.a = a.X = X IE=D = O.A = A IE=D = c, 1, d, 1, 0; 

7-th call of the Algorithm 3: 

1) S = {}.X = 0. Return to call number 1; 

1-st call of the Algorithm 3: 

4) xo = 0; 
5) X = b, c, 1, d, 1, 0, 0. 

7. · Conclusions 

The qualities of the Algorithm 3 in comparison with both previous ones are: 

a) - Utilization of the calculating chain restriction procedure. This procedure 

is indispensable in many operations during the test generation and thanks 

to that more economical use the memory resources is ensured; 

b) - The resulting Binary Chain is already reduced, so that the algorithm is 

much less time- consuming than Algorithm 2: 

c) - Complicated numeric calculations are avoided , and the implementing pro

gram is quite legible; 

d) - Use of recurrence cuts down the length ofthe implementing program [8] . 

References 

[1] AKERS S .B. Binary decision diagrams.Proc. IEEE TC vol.C-27,June 

1978. 

[2] BRYANT R. Graph- Based Algorithms for Boolean Function Manipula

tion .Proc. IEEE TC vol. C- 35,August 1986. 

[3] CZICHON T. Wyznaczanie test6w dla uklad6w cyfrowych opisywanych za 

pomoc~ proceduralnych jt(zyk6w do opisu sprzt(tu. Politechnika Warsza

wska, Ph.D. dissertation, (in Polish) Warszawa 1986. 

(4] KINOSITA K., AsADA K., KARACU 0. Logiczeskoje projektirowanije 
SBIS.(in Russian) Mir, Moskwa 1988. 



100 J. GAWI N, P. FOCHTMAN 

[5] LIPSETT R., MARSCHNER E . , SHAHDAD M. VHDL -the language. 

IEEE Design & Test, April 1986. 

[6] SAPIECHA K., CZICHON T . Test generation for circuits described in the 

procedural Hardware Description Languages (HDL's) . Int. Conf. Euromicro 

86, Venice, pp. 371- 379. 

[7] SAPIECHA K. Testowanie i diagnostyka system6w cyfrowych. (in 

Polish) PWN, Warszawa 1987. 

[8] WIRTH N. Algorytmy + struktury danych = programy. WNT, (in 

Polish) Warszawa 1980. 

Algorytm podstawienia dla lancuch6w binarnych 

Artykul przedstawia pewien algorytm z dziedziny algebry lancuchow binarnych, 

uzywany do opisu funkcjonalnego obwod6w cyfrowych w automatycznym gene

rowaniu test6w. Pokazano przyklad dzialania tego algorytmu oraz por6wnanie 

z innymi algorytmami. 

AnropHTM no,a;cTaHOBKH ,[t;JI.SI 6uHapHbiX u.eneit 

B cTaT:ne rrpe)J.cTaBJieH HeKoTop:nrA: anropHTM H3 o6nacTH anre6p:hl 6HHapHMX 

n;erre:A:, HCIIO.TI:D3yeM:hi:A: )J,JI.sl lj:lyHKD;HOHaJI:DHOro OIIHCaHH.sl D;Hij:lpOB:hiX KOHTy

pOB aBTOMaTH'IecKoro reHepHpoBaHH.si TecToB. ITpe)J.cTaBJieH rrpHMep )l,e:A:cT

BH.si aToro anropHTMa a TaK:>Ke cpaBHeHHe c )J.pyrHMH anropHTMaMH. 






