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In the paper two Markovian piecewise time series models are 
presented. They aim at forecasting of the turning points of the trend 
and of the slope of the future segments of the trend. 

The first model, a univariate one can be represented as the sum 
of two components: the first component, called Markovian piecewise 
linear trend, is a discrete semi~Markov process, while the second 
one is the normal white noise. The realisation of the first compo­
nent assumes values equal to those of some continuous piecewise 
linear function (for integer arguments); the sequence of slopes of the 
function is a realisation of the homogenous Markov chain with finite 
number of states, while the holding time of each state is a reali­
sation of some random variable associated with this state. Model 
predictors are constructed for mean square criterion under assump­
tion that incomplete information on cun;ent state of the process and 
its parameters is .. available only. 

The second model, a bivariate one - is a combination of two 
piecewise trends: the first one is 'the mentioned .above Markovian 
piecewise trend. The second one is assumed to be some piecewise 
linear trend (not necessarily continuous or with finite number of 
possible slopes) that provides information about turning points of 
the first process. Predictors of the bivariate model are determined 
under assumptions, similar to those adopted in the univariate model. 

Examples of applications of these models for short term forecast­
ing of commodity prices are presented. In the bivariate model the 
volume of the turnover is included, as the second process. 

Keywords: Markovian piecewise models, turning points forecasting. 
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1. Introduction 

Models presented in this paper are aimed at forecasting of time series with 
rapid changes of the trend slope. Such time series are typical for many phenom­
ena, e.g. economies witnessing structural changes (especially the East European 
economies) or speculative markets (commodity markets, stock exchange mar­
kets, etc) . For such phenomena the use of forecasting methods based on tradi­
tional linear time series or econometric models may be not suitable and more 
advanced models, taking into account changes of parameters, ought to be used . 
Recently some new approaches have been worked out for this purpose, especially 
methods based on: Kalman 's filter (see e.g. Harvey (1989) , Harrison and Stevens 
(1976)), Markovian switching models - regression and autoregression (see e.g . 
Goldfeld and Quandt (1973), Tyssedal and Tjostheim (1988)), threshold models 
(see Tong (1983) ), cointegrated ARMA models (see Engle and Granger (1987)), 
Markovia~:t trend models (see Hamilton (1989)). 

Models considered in this paper belong to the last of the groups mentioned 
i.e. to Markovian trend models. The main idea of these models is that the t rend 
of time series under consideration can be expressed as a sum of two components : 
the first on e, representing the trend of time series , assumes values equal to those 
of some piecewise continuous linear function (for integer arguments) , with slopes 
being t he states of some homogeneous finite state Markov chain , and the second, 
representing disturbances , is normal white noise. Moreover , it is assumed that 
the holding time of each state (i.e. the time period the Markov chain spends in 
some state before making a transi tion to the next state) is a realisation of some 
random variable associated with this state. As a result the model of time seri es 
is a discrete sem i- Markov process . 

ln the pap er two ty pes of Markovian piecewise models are considered : um­
variate and bivariate . For a bivariate model it is assumed that there exists a 
time series having turning points in the same instants of time as those of a 
predicted trend. Moreover, it is assumed that the second time series can be also 
represented as a sum of piecewise linear trend (not necessarily continuous or 
with finit e number of possible slopes) and normal white noise. The second time 
ser ies introduces information on turning points occurrence into the model. 

Predictors of both models are determined for the mean-square error criterion 
under two basic assumptions : a) incomplete information about current state of 
the serni- Markov process is available only (i. e. the probability of peing in each 
state can only be known); b) some parameters of both models are estimated (i.e. 
they are know n with estimation error). T hese assumptions make the forecasting 
problem more complex but also more realistic. 

It should be also emphasized that the assumption of randomness of holding 
time of Markov chain states is not applied in models considered by Goldfeld and 
Quandt (1973) , Tyssedal and Tjostheim (1988) and Hamilton (1989) , while the 
assumption on incomplete information (on current state) is taken into account 
by Hamilton (1989) only. 
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2. The univariate model 

The univariate Markovian piecewise trend model (UMT) can be written in the 
form: 

Xt = Yt +Et , t = 1, ... (1) 

where : Yt -- sem i- Markov discrete process with realisations Yl, ... , Yr (T ~ 
current time instant) of the form: 

Yt = 

ao + {3;l; 
a 1 + f3j(t- tU l); 

am-i+ f3k(t- f(m-l)); 

am+ f31(t- t (m) ); 

t = t(O) + 1, .. . ,t(l) 

t = t(l ) + 1, ... , tC 2 l; f3j :f (3; 

(2) 
l = tCm-l) + 1, ... , t (m) 

t = tCml + 1, ... , T; (3, :f f3h 

where: t (v) ~ turning points of the trend, (3; , f3j, f3h (3, ~ slopes from the set 
B = { (31 , ... , f3n } , n < 00 . 

Jt is assumed that the following assumptions hold: 

AssUMPTION 1 The sequ ence of slopes of the trend (i.e. the sequence of "beta 's") 
is a realisation of homogenous Markov chain with the state set B and transi­
tion matrix P = [p;j], ( i, j = 1, .. . , n). The probabilitzes Pij have to satzsfy th e 
conditions: 0 S Pij S 1, L:j'= 1 Pij = 1 and Pii = 0. 

AssUMPTION 2 The holding time of every state r , (1 ::; r ::; n) , is a rea lisa­
tzon of th e random variable J{j, (j = 1, ... , n), assuming va lu es from th e set 
{ C,., Cr + 1, ... }, where Cr - integer number satisfying condition Cr ;::: 2; the 
random variables J\1 arc independent. 

AsSUMPTION 3 The constants a1, ... , am of the trend satisfy the conditions: 
av = av-l +f3j(t(v) -t(v - l)), (v = 1,2, ... ) , where ao is nonrandom constant 
(this assumption means that th e piecewis e function generatmg values y1 , ... , YT 

zs continuous). 

AssuMPTION !J The disturbance term Et is th e normal white noise N(O, u;) , 
uncorrelat ed with the variables of th e pTocess' {Yt, t = 1, .. }. 

Distributions of the " future" variables Xr+h, (h;::: 1) , of the process {Xt} , 
can be eas ily determin ed under assumpt ion that the values of "structural" pa­
rallwters of the model (i.e. the slopes f3r, the probabilities Pij, distributions of 
the rand om variab les /\.j and variance u;) as well as the "current state" param­
ete rs (the ind ex I of current slope (31 and time period beetwen the last turning 
point t(m ) and current time instant T) are kn own. In such a case, predictors of 
th(' process { Xt} eau be obtained directly on the basis of general formul ae for 
t he pred ictor of discrete semi- Markov process (see e.g. Gheorghe (1990)). For 
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example , the mean square predictor Xr+h has the form of the expected value 
of the variable Yr+h (because ofthe fact that E(Et = 0) and that variables of 
the processes {Et} and {Yt} are independent) , i .e. 

Xr+h = E(Yr+h) = I: P~~hY~~" ' (3) 
XT+h 

where: XT+h - the set of values of the variable Yr+h , y~~h -an element of 

the set XT+h, p~~h - the probability of an event {YT+h = y~~d , (the forms 
of XT+h, YT+h , and PT+h are presented in detail in Klukowski ( 1 986)). 

However , the assumption that values of structural as well as current state 
parameters of the process { Xt} are known is not always satisfied in practice. 
This follows from the fact that the disturbance term Et makes it difficult to 
determine the values of current state parameters, while values of structural 
parameters are usually to be estimated . Therefore in general one cannot make 
use of the predictor Xr+h and it is necessary to determine another predictor 
under more realist ic assumptions. In this paper the following assumptions are 
used: 

(i) the information on current state parameters is received with a certain 
delay L, (L 2: 1) , (with regard to current instant T) ; 

(ii) the slopes from the set B and the constants av, (v = 0, ... , m), are esti­
mated , i. e. the estimates a0 , . .. , am, t 1 , ... , tn and their variances D 2 ( av), 
(v = l , ... , m) , D 2(tj) , (j = l , .. . ,n) , are known only. 

Under assumptions - (i) and (ii) the mean square predictor can be obtained 
using the Bayesian approach. This predictor is (see Klukowski (1986)) an es­
timate of the expected value of the random variable Yr+h in the a posteriori 
distribution with regard to observations XT - L+ l, (i.e. the last L elements of the 
t ime series) and the estimates am , t1, ... , tn. The predictor under considerat ion 
can be written in the form: 

Xr +h ·= L qghi)~~h , L' (4) 
XT+h 

where: XT+h - the set consisting of the estimates i)~~h,L of the values y~~h,L 
of the random variable Yr+h; the values y~~h,L are determined under the as­

sumption (ii) - the estimates i)~~h,L are obtained on the basis of the values 

am, t1 , ... , tn; q;I'+h - probabilities of the events {Yr+h = y~~h ,d in the a 
posteriori distribu tion . 

(The forms of the set XT +h and of the a posteriori probabilit ies q~~h are de­
scrib ed in detail in Klukowski ( 1 986) and briefly in Appendix 1). 

The variance of the error: 
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of the predictor XT+h, has the form (see Klukowski (1986)): 

D2(i) = D 2 (YT+h) + D 2(XT+h) + 17; (5) 

where: D 2 (YT+h) - the variance of the random variable YT+h, D 2(XT+h)­
the variance of the predictor XT+h. 

The following properties of the predictor XT+h have been derived in Klukowski 
(1986): 

a) for the mean square criterion the predictor XT+h is unbiased and opti­
mal if estimates am, fh, ... , tn, are unbiased and optimal (for the same 
criterion); 

b) the predictor XT+h is not linear with respect to elements of the time series 
Xl' . .. 'XT; 

c) the probabilities of the a priori distribution result from the current state 
parameters of the process {Yt} ( fc.r the time instant T - L) and therefore 
are not subjective probabilities; 

d) in general the distribution of the error iT+h - is not symmetric and not 
the same for different moments T' and T" (in other words the accuracy of 
forecasts is not the same for forecasts obtained for different time moments 
T' and T "); 

e) the form of optimal predictors for the objective functions different from 
the mean square error (e.g. absolute error, minimax error) is not the same 
as the form of the predictor XT+h (some examples of such predictors have 
been proposed in Klukowski (1986)). 

Let us note that the properties of predictor XT+h, (points c) to e)) do 
not hold for other time series models, such as regression trend models, ARMA 
models, exponential smoothing, etc. 

The predictor XT+h can be applied in the case when estimates of slopes f3k 
and values of the structural parameters of the model (2) are known. In practice, 
these parameters are to be estimated on the basis of time series x 1 , ... , XT. 

Estimators of the parameters have been described in detail in Klukowski (1986); 
in the paper a brief discussion of estimation problems is presented only. 

To estimate the structural parameters of the process { X1 } one has to deter­
mine: the number of the states n in Markov chain, the slopes /3j from the set 
B, the parameters of the random variables Kj, the transition probabilities Pij 
and the variance 17;. 

It seems extremely difficult to obtain estimators of all the structural pa­
rameters of the model as a solution to one estimation problem. Therefore it is 
suggested to estimate individual parameters in four consecutive steps. 

Step 1: estimation of the turning points t(ll, ... , t(m). 

Many procedures can be used for this purpose, especially those based on Chow's 
test, see e.g. Chow (1960), or Coopersmith (1979). Results of this step can also 
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be used to estimate constants and slopes of sequential segments of the trend; 
estimates of slopes are denoted by b1, . .. , bm. 

Step 2: estimation of the number of states n. 

Assuming that all the possible states have occurred in the time interval [1 , T] 
(i.e. all the slopes from the set B), the problem of estimating the number n can 
be formulated as the classification problem of the form: 
Accomplish partition of the set B = {b1 , . .. , bm} into nonoverlaping family of 
subsets B 1 , ... , En. in such a way that each subset Bk, (1 ::::; k ::::; n) includes 
parallel slopes only, while slopes from different subsets B; and Bj, (j =f. i), are 
not parallel. The number n of subsets obtained can be regarded as an estimator 
of the number of states n. 

The above classification problem can be solved using pairwise comparison 
algorithms. In the case under consideration the comparisons can be performed 
using parallelity tests for slopes, i.e. by verifying for each pair b;, bj E B the hy­
pothesis H 0 : E(b;) = E(bj) under the alternative H1: E(b;) =f. E(bj ), while the 
partition of the set B can be made using the nearest adjoining order algorithm. 
Some probabilistic properties of such approach are presented in Klukowski 
(1990) . 

Step 3: estimation of slopes {3j E B. 

Each slope f3j (1 ::::; j ::::; n) can be estimated as the average of slopes from 
the subset Bj, obtained in Step 2. However, more efficient approach is to esti­
mate each value /3j from one regression equation including appriopriate dummy 
variables. 

The estimates iim and /:11 (i.e. the estimates of the constant and of the slope 
of the last - fort ::::; T - segment of the trend) can be obtained using the least 
squares method (on tl~e basis of the values X.f<=l+1 , ... ,XT, where £(m) is the 
estimate of the last turning point of the trend, detected in Step 1). 

Step 4: estimation of the probabilities Pij, parameters of the random 
variables I<j, and the variance 0'; . 
The natural estimator of each probability Pij, ( i, j = 1, .. . , n) is the ratio: the 
number of cases when an element of the subset B; is followed by an element of 
the subset Bj divided by the number of elements of the subset B;. 

Parameters of each random variable Kj are to be estimated on the basis of 
holding times of all slopes from the subset Bj, using appriopriate estimators 
(parametric or non parametric). 

The variance a} can be estimated on the basis of residuals obtained during 
the estimation of slopes (Ji, (j = 1, ... , n) in Step 3. Another approach, however 
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Mean sq. error Leading period 
of the method h = 1 h=4 h = 7 
UMT- ex ante 120 193 272 
UMT- ex post 108 195 237 
H-S - ex post 94 201 315 

Table 1. The mean square errors for the Markovian trend model (UMT) and 
the Harrison- Stevens method. 

less efficient one, is to use residuals related to the estimation of turning points 
of the trend in Step 1. 

The model of the form (2) was applied for short term forecasting of weekly 
cocoa prices at New York Commodity Exchange. Forecasts were computed for 
every week of 1984 with seven steps ahe,td. Parameters of the model were ob­
tained using weekly data from the period 1978-1983 . 

The ex ante and ex post mean square errors, obtained for leading periods 1, 
4 and 7 are presented in Table 1. For the purpose of comparison, the ex post 
mean square errors obtained on the basis of Harrison-Stevens (H- S) method 
(see Harrison and Stevens (1976)), are also presented in this table. 

The following conclusions can be drawn from the analysis of the forecasts 
generated (for details see Klukowski (1986)): 

Markovian trend model provides more accurate forecasts than the Harrison­
Stevens method for the leading period greater than 1; for h = 7 the MSE of 
the Harrison- Stevens method is by about 1/3 greater than for the Marko­
vian trend model; 
the difference beetween the MSE of Markovian trend model and Harrison­
Stevens method is greater when leading period is increased (note that as 
the Harrison-Stevens method does not predict changes of the trend slope, 
the resulting forecasts errors are greater for longer leading periods); 

- for the Markovian trend model the values of the mean square errors: ex 
ante and ex post are similar. 

3. The bivariate model 

In some periods forecasts obtained on the basis of the univariate. Markovian 
trend model have relatively large errors. In particular, such errors occur when 
the values of disturbance term Et in the interval (t(m) + 1, T) are extremely high. 
In such cases information content in univariate time series may be too poor to 
generate forecasts with appropriate precision. Therefore, some additional data 
should be incorporated into the model. This can be done by inclusion of an 
additional variable into the model, connected with some stochastic relations 
with the forecasted time series. 

In this paper it is assumed that such a variable can also be represented by a 
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piecewise linear trend with turning points occurring at the same time instants 
as those of the time series to be forecasted. Thus the second variable introduces 
information on turning points into the model. For instance, in the case of the 
short term commodity prices forecasting, the volume of turnover is applied as 
the second variable. 

The bivariate model can be expressed as the bivariate discrete stochastic 
process {Xlt , X21}, where {Xlt} - the univariate Markovian trend model defined 
in Section 2, while {X21 } - the stochastic process of the form: 

(6) 

where: Y21 - discrete stochastic process, with realisations Y21, ... , Y2T of the 
form: 

Y2t = 

bo + -nt; 
fJ1 + /I(t- t(ll); 

bm-1 + /p(t - t(m- 1)); 

bm + /g(t- t(m)); 

t = t(O) + 1, .. . ,t(l), 

/1 -=F {k; t = t(l) + 1, ... 't<2l, 

t = t(m- 1 ) + 1, ... , t (m), 

{g-::j;{p; t=t(m ) +1, ... ,T, 

(7) 

where: t(v) - turning points - the same as in the case of {X1t}; /k, /I, /p, /q 

- th e slopes from some set f (with finite or infinite number of elements); bv -
constant of the v- th segment of the trend, (v = 0, ... , m) ; ~~ - normal white 
noise N(O , (jl) , uncorrelated with the processes {Yu}, {Y2t} and {c:t}. 

The definition of the {Y2t} process is more general than that of {Y11 }, be­
cause the piecewise function , generating the values of Y2t is not assumed to be 
continuous and to have the finite set of possible slopes. No assumption is also 
made on the existence of any relation between slopes of the processes {Ylt} and 
{Y2t}; the common feature of both piecewise functions are the same turning 
points only. 

The mean square predictor of the bivariate model has been determined under 
assumptions similar to those made for univariate one, i .e.: (i) the values of 
structural parameters of the process {Xu} are known with exception of the 
slop es from the set B, which are represented by their estimates , (ii) the values 
of current state parameters of the process {X1t} are received with delay L, 
(L ~ 1), (iii) the slopes and constants of the process {X21 } are estimated and 
are known for time instants t :S T- L. 

It can be shown (see Klukowski (1988)) that the mean square predictor of 
the process {XJt} has the form: 

- ' ( !) (2) - ' ' - ' 
X1,T+h = E(Y1,T+h lx ,x ;am,(3[, ... ,f3n;bm,/g), (8) 

where: 

X(l ) [xt ,T - L+l , ... , Xl,TJ' , 

x(
2

) [x2,T-L+l, · · · ,X2,T]
1

, 
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Mean square Leading period 
error h = 1 h=4 h=7 
Ex ante 127 164 198 
Ex post 122 147 169 

Table 2. The mean square errors of forecasts resulting from the bivariate model. 

am , ~1 , . . . , ~n, 8m, i'q - the estimates of the parameters am, (31, ... , f3n, l!m , 
I q. 

The right- hand side of equality (8) is an estimate of the expected value 
of the random variable Y1 ,T+h in the a posteriori distribution with respect to 
vectors xCll and :z:(Z) and estimates am , ~1 , . .. ,~n, 8m, .:y9 . It can be shown (see 

Klukowski (1988)) that the predictor Xt,T+h has the form : 

X- "" -() -() 
l ,T +h = L...t qT+hYt,T+h (9) 

XT+h 

where: XT+h - the set of estimates Y~ ,~+h of the values y~}+h constituting the 

set of values of the variable Yt,T+h; q~~h - the probabilities of the a posteriori 
distribution of the variable Yt,T+h . 

The form of the set XT+h is the same as in the case of univariate model, while 
the form of a posteriori distribution is not, because the conditional distribution 
consists now of two subvectors x(ll and xC2l (in the univariate case - of 
x Cll only). The form of this distribution , being quite complex, is described in 
detail in Klukowski (1988) and briefly in Appendix 2. The form of variance of 
the forecast error X 1,T+h- X 1,T+h is also similar to that corresponding to the 
univariate model. 

Estimation of the bivariate model parameters can be performed in similar 
way as in the case of the univariate one (see Klukowski (1988)). 

The bivariate model has been examined using the same data (the cocoa 
commodity prices) as those for the univariate one. The mean square errors- ex 
ant e and ex post - of the obtained forecasts , for leading periods 1, 4 and 7 are 
presented in Table 2. 

The comparison of errors resulting from the univariate model, the bivariate 
model and the Harrison- Stevens method leads to the following conclusions: 

The ex post mean square errors of forecasts obtained on the basis of the bi­
variate model are lower than those of the univariate model and the Harrison- Stevens 
method for leading periods h > 1. However, for one step ahead the bivariate 
model has the greatest error among all the models considered . 

The difference among the mean square error of forecasts resulting from the 
bivariate model and the remaining two models increases with the increase of the 
leading period, e.g . for h = 7 the error corresponding to the bivariate model is 
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about 50% of the error of the Harrison-Stevens method and about 66% of the 
error corresponding to the univariate model. 

The ex post errors resulting from the bivariate model are smaller (for all 
leading periods) than ex ante errors . T hese differences may result from the fact 
that the ex ante error of the bivariate model is a function of the variances (]"; 
and (J"l; the lat ter variance is of extremely high value. 

It should be emphasized, however , that application of the bivariate model 
significantly increases the computational cost and this approach is possible when 
a second time series with the same turning points as the predicted one is avail­
able. 

4. Conclusions 

T he Markovian piecewise models presented in the paper are aimed at forecasting 
of t ime series with turning points and changes in the slope of the trend . Main 
features of the models discussed are: 

1° The optimal predictors of both models can be determined under assump­
tion that information on " structural" parameters and "current state" pa­
rameters is incomplete . 

2° The forms of predictors corresponding to different objective functions are 
in general different. 

3° The empirical study concerning short term forecasting of the cocoa com­
modity prices for consecutive weeks of the year 1984 has shown that the 
accuracy offorecasts (measured by the mean square error) of both Marko­
vian models was better than that of the Harrison-Stevens method for 
leading periods h 2 2; these differences increased with the leading period . 
The best accuracy has been obtained for the bivariate model for h 2 2; 
for h = 7 the mean square error of this model was about 50% of the error 
of the Harrison-Stevens method. 
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Appendix 1. The analytic form of the predictor 

Xr+h· 

For the sake of simplicity it is assumed that: 

L, h S Cmin (A1) 

where : Cmin = min{Ct, ... ,Cn}, (Ck is the minimal holding time of the k- th 
state in Markov chain). 

·As it was mentioned in Section 2 the predictor XT+h is an estimate of the 
expected value of the random variable Yr+h in the a posteriori distribution with 
regard to the last L elements of time series XT - L+J , ... , xr and estimates am , 
/3 1 , ... , /Jn . To determine the analytic form of expected value of the variable 
YT+h one has to know: 
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- the set XT+h comprising the estimates y~~h,L of the values y~~h ,L of the 
random variable YT+h, 

- the probabilities q~~h of the events {YT+h = y~~h,L} in the a posteriori 
distribution. 

Assuming that in the time moment T- L the process {Yt} was in the state 
l , ( 1 ::; l ::; n), the set x~+h of values of the variable YT+h is of the form: 

r=Cj, ... , L+ h-l;j:f= 1; d= 1, ... , L+h-r; r::j:.j}, (A2) 

where: 

(0) 
YT+h,L am+ (N + L + h)/31; 

Y~-\-~ , L am+ (N + L + h- r)/31 + rj3j; 

y~!/h_,~ = am+ (N + L + h- T - d)f31 + r(3j + df3r· 

The estimates y~~h,L constituting the set XT+h have the similar form as the 

values y~~h,L, but the parameters am, 81. f]j, f3r have to be replaced by their 

es timates : am, ~I, ~j, ~r · 
The probabilities q~~h are determined on the basis of both the a pnon 

distribution and the conditional distribution . 
The probabilities p~~h of the a priori distribution have the form : 

P(YT+h + y~lh,L) = P(K1 2: N + L + hlK1 2: N ), 

P(YT+h + Y~t)h,L) = P1iP(K1 = N + L + h jK1 2: N)· 
·P(Kj 2: r) , 

P(YT+h + Y~-\-dh,~) = PljPjrP(KI = N + h- T- dj 
IK1 2: N)P(Kj = r)P(I{r 2: d), 

(probabilities Plj, Pjr are elements of the transition matrix P). 

(A3) 

The conditional distribution is constructed as the distribution of the random 
vector u(.) of the form: 

U ( )- X - · () - w 11 , (A4) 

where: X w = [XT-L+l, ... , XT ]' , jL() - an estimate of the expected value of 
the vector X w, obtained on the basis of the estimates am , ~I, ~j, ~r, determined 

by the value y~~h,L, of the variable YT+h, i.e.: 

- for YT +h = y~lh , L the vector p,(o) consists of elements f.J.~o) of the form : 

f.J.p =am + (N + s)~1, s = 1, ... , L; 



Fore ca.sti ng with Ma.rkovia.n trend models 41 

- for YT+h = y¥-f-~.L the vector ,_,Cri) consists of elements J-l~ri) of the form: 

{

am+ (N + s)f31, s ~ L + h- r , 
(r ) 

f-ls 
1 = am+ (N + L + h- r)f31 + (s- L - h- r){3j; 

L + h - T < s ~ L, 

- for YT+h = y¥-f-dh.,i the vector ,_, (ridr ) consists of elements J-l~ridr) of the 
form: 

{

am+(N+s){3j, s~L+h-r - d, 
( Tjdr) 

J-ls = am+(N+L+h-r-d)f31+(s - L-h+r+d){3j; 
L + h- T- d < s ~ L. 

Assuming that estimates am and fit have been obtained on the basis of least 
squares method (what implies that am ~ N(am, var(am)), /J1 ~ N(f31, var(/31)), 

wh~re var(am) = (~~Z~~?)o-;, var(/31) = (N(N
62_l))o-; and cov(am,/31) = 

- n(n6-l)o-;)) the random vector u(o) has the (£- dimensional) normal distri­

bution N(O, Q( 0l), Q(O) = [w~~)], ( i, j = 1, ... , L ), where: 

w\?) = var(am) + (N + s) 2 var(/h) + 2(N + i) cov(am, Pl) +er; } 
w\~ ) = var(am) + (N + i)(N + j) var(ftt) + 2(N + i + j) cov(am, ftt), 

j # i, 

(A5) 

eac,h of the vectors u(rj) has the normal distribution N(O, Q(ril), Q(Tj) = 
[w (ri) J where· 

2) ) . 

l 
var(am) + (N + i) 2 var(/31) + 2(N + s) cov(am,-/31) +a}; 

i ~ L + h- r ; 
w~;1 ) = var(am)+(N+L+h-r) 2 var(/31) 

+2(N +L+h - r) cov(am, /J1)+ 

+(i- L- h + r) 2 var(/31) + o-;; L + h - r < i ~ L ,; 

var( am) + (N + i)(N + j) var(/31) 
+(2N + i + j) cov(am, /31); 

i,j ~ L + h- r; 
var(am) + (N + i)(N + L - r) var(/31) 
+2(N + i + j + L + h- r) cov(a~,/31 ); 

i ~ L + h- r < j or j ~ L + h - r < i; 
var(am) + (N + L) var(/31) 
+2(N + L + h - r ) cov(am,/31); 
+(i - L - h+r)var(/31); i,j>L+h - r, i=/=j 

(A6) 

(A7) 
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each of the vectors u(Tjdr) has the normal distribution N(O, [2(Tjdr)), [2(Tjdr) = 
[w(Tjdr) ] where: 

'J , 

var( am) + (N + i) 2 var(/JI) + 2(N + i) cov( am, /J1) +a}; 
i-::; L + h - T- d; 

var(am) + (N + L + h- T - d) 2 var(/JI) 
+2(N + L + h - T- d) cov(am, /J1)+ 
+(i- L- h + T + d) 2 var(/JI) + O": ; 

L + h - T - d < i -::; L; 

var(am) + (N + i)(N + j) var(/JI) 
+(2N + i + j) cov( am, /J1); 

if-j; i,j'SL+h-T-d; 

var(am) + (N + i)(N + L-T) var(/JI) 
+2(N + i + j + L + h - T) cov(am, /J1); 

i -::; L + h- T < j or j -::; L + h- T < i; 
var(am) + (N + L + h- T) 2 var(/Ji) 
+2(N + L + h- T) cov(am, /J1); 
+(i - L- h + T)(j - L- h + T) var(/JI)i 

if-j;i,j>L+h-T. 

Denoting the probability distribution function of the vectors uC) by 

. (AS) 

(A9) 

g()( u() IYT+h = y~~h ,L; am , /J1, ... , /Jn), one can express the probabilities q~~h 
of a posteriori distribution in the form: 

(0) (0)( (O)IY, (o) A ~ ~ ) 

(0) _ PT+hg u T+h=YT+h,L;am,pl,···,!-'n (AlO) 
qT+h- Q 

(Tjdr) (Tjdr)( (Tjdr) IY, _ (Tjdr) . A ~ (JA ) 
( Tjdr) - PT+h g U T+h - YT+h ,L' am' 1-'1' ... ' n (A12) 

qT+h - Q 

where: 

The formulae (A2), (A10)-(A12) make it possible to evaluate the value of 
the predictor XT+h discussed in Section 2. 
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Appendix 2. The analytic form of the predictor X1,T+h 

For the bivariate model the form of predictor X1,T+h has been also determined 
under assumption that the inequality (A1) from Appendix 1 is satisfied. 

The bivariate predictor is an estimate of the expected value of the random 
variable Y1 ,T+h in the a posteriori distribution with regard to the vectors x(l), 

xC 2 ) and the estimates am,~1 , ... ,~n,6m,i'q· To determine the value of this 

predictor it is neccesary to know: the set Xl,T+h of estimates Y~,~+h of the 

values Y~ ,~+ h of the random variable Y1,T+h, the a priori distribution on this 
set and the relevant conditional distribution. The form of the set of estimates 
Xl,T+h and a priori distribution is the same as in the case of the univariate 
model (see formula (A2) and (A3) in Appendix 1)). As the basis for conditional 
distribution the random vector: 

() _[uC)] 
z - y() (A13) 

is applied , where: uC) - the same vector as in the univariate model (see (A4)); 
y( ) - the vector with elements Vk of the form: 

Vk = x2 ,t(m)+k- J-L~v ), k = N + 1, .. . N +I 

where: 
(V) ' ' 

J-Lk = Dm + /qk 

{ 

L; for Y1,T+h = Yi~f+h 
i= L=r,_(r=l,_._ .. ,L+h); f~~l,T~,=y~~¥+h _ . 

L r d, (r-C, ... ,L+ h 1, d-l, ... ,L+h r) , 
r y (Tjdr) 
lOT l,T+h = Yl ,T+h 

(A14) 

(the meaning of symbols: r , j, d and r is the same as in the uni variate model; 

Y~.~+h is equal to y~~h,L in the univariate model - see formulae (A2)). 

Under the assumptions adopted in Section 3, the vector zC) has L+l - di­
mensional normal distribution with expected value equal to zero and covariance 

matrix nV of the form: 

nCl - [ D~r) 0 l (A15) z - o oCI) , 
V 

where: nV - the same matrix as in the univariate model (see (A5)-(A9)) , 

D~) - the covariance matrix of the subvector y(!) with elements w~Jl, ( i , j = 
1, ... , I), of the form: 

w~{) var(Sm)+(N+i)var()'q)+2(N+i)cov(Sm,i'q); i=l , ... , I 

wg) var(bm)+(N+i)(N+j)var()'q)+(2N+i+j)cov(bm,i'q); i =f- i 
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(the values of bm, )'q, var( bm), var( )'q) and cov( bm, )'q) can be obtained in similar 

way as values of am, /J1, var(am), var(/Jl) and cov(am ,/3/)). 

Due to the fact of block-diagonal form of the matrix nV (resulting from 
the assumption on independency of disturbances Et and ~t) the probability dis­
trrbution function (pdf) gO(z l·) of the vector Z is the product of pdf's of the 
vectors uO and y (J), i.e., has the form: ' 

g() (z(l iY - Y() . a' (3, (3, . r :V)-
UV 1,T+h- 1,T+h• m , 1, · · . , n , Um , ,q -

- ()( ()ly - () 0 A f3A f3A ) - g U l,T:!"h- Y1,T+h• am, 1, · · ·, n · 

(I)( (J)I - () . ·· A )-·g1 V Y1 ,T+h- Y1,T+h • Dm , /q - · 

(27r) - (L+J)/ 2 1nV1-l/ 2 exp{ -~uo' (nV)- 1ucl} . 

·ID~l l- 1 1 2 exp{ -~v(Il' (n~l)- 1 vUl}. 
2 

(A 1.6) 

The number of elements of the vector zC) is equal L +I and therefore is not 
the same for different values of the variable Y1 ,T+h. Thus the realisation of vector 
zCl is a conjunction of L +I random events. As a result, the values of function 

g&~ ( z I·), corresponding to different values of L + I (i.e. different numb er of 
components of the vector zCl) are incomparable. Hence the distribution of the 
vector zC ) cannot be (directly) applied as the conditional one. The natural way 

to assure comparability of functions g&~(zl ·) , for different L +I is to average 
the values of these functions with respect to L +I. An appriopriate way of such 
averaging is to apply the geometrical average (because the realisation of the 
vector z CJ is a conjunction of L +I random events). In such a case the pdf of 
co ndition al distribution has the form: 

(Al7) 

T he formula (A17) makes it possible to determine probabilities q~~h of the a 
posteriori distribu tion in similar way as in the case of the univariate model i.e. 
replacing the values gCl(ul) with these JCl(z()l·) in formulas (A10)-(Al2). 


