Control and Cybernetics
vol.22 (1993) No. 1/2

A method for improving weights
in column aggregated linear programs

by
Sverre Storpy

Department of Informatics
University of Bergen
Bergen

Norway

The loss in accuracy due to aggregation of variables in linear
programs, measured by the value of the objective function, has been
studied by many authers, and good bounds are given. In the present
paper we study how the weights used to aggregate the variables may
be changed iteratively in order to improve the objective value. The
methods are based on dual information from the aggregated problem
and are rather simple to implement.

1. Introduction

There may be several reasons for performing aggregation on the data of large
scale mathematical programming models. One reason can be that the certainty
of the data is questionable, making computations on a detailed level not worth-
while. Another reason could be that the size of the problem is so large that it
cannot be solved accurately in its full size. Yet another reason could be that
the model has a natural organizational decomposition, and that the informa-
tion that is relevant to the different parts of the organization is different with
respect to level of detail. Jornsten and Leisten (1990, 1992) studied aggregation
due to this last presented reason, and very interesting results concerning the
decomposition problem are given.

Bounds on the loss in accuracy when a simpler aggregate problem is solved
have been developed for linear models by Zipkin (1980). These bounds have
been improved by Mendelsschn (1980) and Knolmayer (1986) on the basis of
a related work by Kallio (1977). Similar bounds are developed for aggregated
integer models by Hallefjord and Storgy (1990).

All these bounds are related to the error in the objective function value.
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The objective value (and the solution) of an aggregated problem is a func-
tion of the weights used when aggregating. The problem of determining ”good”
weights may be very complicated. In the survey paper by Rogers and al. (1991)
references to some methods may be found. Their conclusion is, however, that
" ... methodology for better approximating this vector (i.e. the vector of optimal
weights) continues to be an area of interesting research”.

In the present paper we develop a procedure for improving a given set of
weights. The weights are improved in the sense that the objective value of the
aggregated problem corresponding to the improved weights is greater than the
objective value corresponding to the original weights.

The procedure is based on standard postoptimal analysis of the optimal basis
matrix of the aggregated problem.

2. Notation and preliminaries

Let the original problem be:

Z* = maxez (1)
subject to Az <b,6>0 . (2)
z2>0,

where ¢ = (¢;) is an n—vector, b = (b;) is an m-vector, A = (a;;) isan m x n
matrix and z = (z;) is an n—vector of variables. We assume that (1)—-(2) has a
finite optimal solution.

Let @ = {Sklk =1,..., K} be an arbitrary partition of the column indices
{1,...,n} and let ny = |Si|. Then by definition UK Sy = {1,...,n} and
S NS; =0 for all k # j. Denote by A* the m x n; submatrix of A consisting
of columns with indices in Sy, and let ¢* be defined analogously so that ¢ =

(¢',...,cX), with the subvectors rearranged if neccessary.
Now let gf‘ be an ng—vector of nonnegative weights such that Z;‘esk g;.‘ = I
k=1,...,K, and define A = (Algl,,..;AKgK) and ¢ = (glgl,...,gKgK)_
The column aggregate problem is then
Zz=maxcX (3)
subject to AX < b (4)
X>0

where X 1s a K—vector of aggregated variables. We assume that @) and g =
(g',...,9%) have been chosen so that (3)—(4) is feasible.

" A column aggregate problem is always a restriction of the original problem, in
the sense that a feasible aggregate solution always can be disaggregated to a fea-
sible solution of the original problem. The simplest way is to use a fixed-weight
dissaggregation, by defining the ng—vector z* = g* X} k=1,... K.
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An improved disaggregated solution is obtained by performing an optimal
disaggregation of X: Solve K subproblems given as

2*(Xy) = maxc*z*
subject to Az* < Akgka
24> 0,

fork = Lot
In any case, after rearranging the z* vectors into z = (z1,...,2%), we have

that z < ez < z*. Normally the disaggregated solution z is not an extreme ponit
of (2).

The partition @ and the weight vectors g are assumed to be predetermined.
It is of theoretical interest to note that optimal weightings ¢* do exist for any
partition @ such that Z = z* (this is even true for IP-programs, Hallefjord and

Storgy (1990)). Unfortunately, construction of g* requires an optimal solution
of (1)-(2).

3. Improving weights

Let X g be a non-degenerate optimal extreme point solution to the aggregated
problem (3)—(4), and let & be the corresponding dual solution. Then for any
column vector @; of the optimal basis matrix B we have that

In terms of the original problem (1)—(2), (5) may be written as:

E[Ajﬁj] e ngj = 0,
or as: [aA’ — g’]g_’ =
Now Al = (a;,,8;,,...,4;, )and & = (cj-l,ch,‘..,c:-“j). Substituting this in

the formula above, we get:

(gj, —cj)gq +-- -+ (Bg;,

— i, ), =0 (6)

Assume that the optimal basis matrix of (1)-(2) (or at least one of its
columns) has been aggregated into B. If @ is not optimal for the given problem
(1)-(2), we know that, for some j, at least one of the terms in (6), the i-th say,
must be strictly negative:

Egj. — C§, < 0.

Since all the weights in (6) are assumed to be strictly positive, then at least one

term must also be strictly positive, e.g. the k—th:
u

ij — Gy > 0.
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Now define a new vector of weights, Qj, by increasing the weight of a negative
term and reduciong the weight of a positive term accordingly, 1.e.: set & > 0 and

i = g+
i = g )
pid i = gl =1 TELLER

such that gj > 0 for all . _

Then let &; = A7§’ and ¢; = ¢§’, and create a modified aggregated problem
by replacing a; and ¢; in (3)-(4) by a; and ¢;. Let Z be the optimal objective
value of the modified aggregated problem. We then stafe:

THEOREM 1 For o > 0 and sufficiently small, we have z > Z.

ProOF: Since X g is assumed to be nondegenerate, it is possible to select a > 0
and sufficiently small, such that the modified basis matrix B (where a; in B is
replaced by Qj) is a feasible basis for the modified problem. Then since ua; —¢; <
0, it follows from classical postoptimal analysis (see e.g Chavatal (1983)) that
the corresponding objective value will increase when a; and ¢; are replaced by
a; and ¢;, respectively. O

Numerical example:

Consider Zipkin’s example from Zipkin (1980)
Z* = max2.5z, + 3z5 + 4z3 + Sy

subject to 4z + Hhxo + Teg+ 1024 < 54
zi+2z9+23+2z4 < 10
z; > Oalli
The optimal solution is z§ = 16/3, 2% = 2§ = 0, 2% = 14/3, Z* = 32. Suppose
we construct an aggregated problem by letting K = 2, S; = {1,2}, S, = {3,4}
and use the weightings (¢1)7 = (¢2)T = (1/2,1/2). The aggregate problem is
then as follows: B -

Z=max2.75X, +4.5X,

subject to 4.5X; + 85X, < 54
15X+ 15X, < 10

X, X2 = 0.

The optimal solution is X; = 2/3, X = 6, z = 28 5/6, and the optimal
dual solution is #; = 21/48, @i, = 25/48. The optimal basis matrix is B =

45 8.5
1.5 15 |

Consider a, = [ 8.0 ] == a4, and calculate the terms in (6):

3

as +

L] od

1.5

@as — c3 = [21/48,25/48] [ T ] i _%
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= 10 5

ia, —cq = [21/48,25/48] [ 9 ] —-5= —1—2-
In accordance with (6) and Theorem 1 a better aggregate problem is found if
@, is modified by increasing g7 and decreasing g%. Set o = 0.3. Then 32 = 0.8
and g2 = 0.2, we get:

d, = 0.8a5 +0.2a, = [ fg ]

and éo = 0.8¢3 + 0.2¢c4 = 4.2

45 7.6
1.5 1.2
lem, and the new solution is: X; = 1.876, Xy = 6.0, 2 = 30 1/3, with corre-
sponding dual solution 4 = [1/2, 1/3]. Thus a strictly better aggregated problem
has been constructed.

The new basis matrix B = [ ] is the optimal basis for the new prob-

4. ”Steplength” determination

In the numerical example above we selected o = 0.3 as the “steplength” for
weights modifications without any justification of why this value of o would
be good or not. For this small example it is rather straightforward to see that
a = 0.5 is even better, (i.e replace @, with a, and & with c3).

In general we need criteria for calculating the steplength « such that Theo-
rem 1 be valid.

Consider @; in (5). When n; = 2, there are exactly one negative and one
positive terms in (6). However, when n; > 2, there might be several negative
and positive terms. It is then natural to select the most negative term as the
term for which the weight should be increased (this is similar to the criterion
in LP for introducing a nonbasic variable as basic variable).

When there are more than one positive terms in (6), it may be difficult

to decide which weights to reduce, except when d; can be replaced by one

original g; vector, in which case g';; 1s set to one and all the other weights in
Sy are set to zero. :

For simplicity, we will assume in the following that we reduce the weight
of only one positive term (as in (7)), and let that term be the most positive.
Without loss of generality we also assume that the variables are ordered so that

-1- _
B~ a; =¢;
where ¢; is a unit vector with 1 in the j-th position. We then have the following
relations:

B'a; = B\ a;,0i + aj,0h+ -+ 4, 0h) = ¢ (8)
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Now suppose that we increase gf and decrease g’;;, as in (7). Then we get:

a; =a;¢) + -+ gj,.(g{ ta)+ota; (g —o)+-+ a_jnj.gf;_,- (9)
and

G=eugl+oteolel o)+ teplgh @)+t o, 6l (10)

From (8) we then get:

@ = B = ¢ +aB g —g;,)
= ¢ t+ad"
where ¢ = B_l(gjl. —a;,) (11)

The elements of vector @;— are thus:

o 3 . i

& = oad, z#j,tzlj‘..,m}

i, = (12)
a; = l+adf

The new solution X, which we get when a; is replaced by d;, is then basic
feasible if the following conditions are satisfied:

i =1+ad/ >0 | (13)
X3 X;

&nd?fga:, &g>033’=1:"'1m)£7‘_‘j' (14)
J T

The restriction on & imposed by (13) is simply that

1 4
0<C€<m 1fa;’<0 (15)
& E

The restriction on « imposed by (14) may be found by substituting (12) into
(13) and (14):

X; X; % . o
— —, a; >0,i=1,...,m, 1 #].
1+ adf aal d

aX; 2 &
l—l—aa;" - af

Now let

r - X . s 4
X” =m,1n{—!:, a§'>0}, s I
ar. 1 a@'

Then we can determine « such that:
OEXJ' _ Xr

[
1 + aa; alf
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giving
X
*= Xl - X! (26)
o r 7

To summarize, in view of (9)-(10), (13), (14), (15) and (16) we then have
proved the following:

THEOREM 2 When the sleplength o 1s limited by

; g F o} X
0<a<min l(].-gf),gi, (m,a;"<0),(m,ﬂ. >0)}, (17)

the new weights given by (7) yield an aggregated problem which has a basic
feasible solution given by

X—j = /\’g—'?-il-.)(j, i=1,...,m, %:I{:J
4
-~ X;
¥ = 2L 18
, = & (18)

and the corresponding objective value given by
b= (ad ~&)%;. (19)

Consider again the numerical example in the preceding section, and let us
now use (17) to determine the steplength.
Since no = 2 we increase the weight of a; and reduce the weight of a, as

before. We have:

s=[12 53] s=[ ] e[ %]

From (11) we find:

N EINEd

Since af < [] and aj = 0, the last two terms in (17) are not relevant. Then,
since g = g5 = 1/2, we get o = 1/2 (which means that @, should be replaced
by as).

From (12) we find:

~f
a4

1
S+ (=2/3) =
1

I 0=lr

MI'—‘

a5 =
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and from (18) and (19) we find:

5 -1
T = 2/3-%@:22/3
- 6
X2 I — 6,
3 3 e 5 ; s 45 7
giving the new objective value Z = 31 1/3. The new basis matrix B = 15 1

is optimal for the new aggregated problem.
The process may now be repeated if a better objective is wanted. The new

dual variabl Lo | 05416677 .
ual variables are: &= | 'on09aq |, 81VING
Gay—c =—1/8, and @a,—cy=1/8,

indicating that the weight of a, should be increased. Doing so, the same process
then yields a new basis matrix which is the optimal basis matrix for the original
problem.

In general, as long as the conditions of Theorem 2 are satisfied, repeated
application of the process will yield a nondecreasing sequence of objective values.

5. Disscussion

We have developed a procedure for improving a given set of weights used to
aggregate variables (columns) in linear programming models. The procedure is
based on standard postoptimal analysis of the basis matrix. Only two weights
are considered to be changed in each step. It is then rather straightforward to
develop bounds on how much the weights may be changed.

If more than two weights are considered simultaneously, the calculation of
such bounds becomes much more complicated.

We have selected the most negative term in (6) as the indicator of which
weight to be increased (the most positive to be decreased). It would of course
be desirable to change the weight which would contribute most to the increase
in the objective value. However, the extra calculations necessary to find this
weight are greater than our gain when using the simple rule (this is analogous
to the standard simplex method where we use the most negative reduced cost
to introduce a new basic variable, and avoid calculating which nonbasic variable
would contribute most to the change in the objective value). The procedure is
heuristic in the sense that it may not converge to the optimal set of weights. If
one or more of the variables (columns) of the optimal solution of the original
problem (1), (2) are not aggregated into any of the optimal variables (columns)
of the first aggregated problem (3), (4) they will never appear later since only
the weights corresponding to the vectors of the optimal basis matrix B will be
changed by this procedure.
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This may be avoided by considering all negative terms (not only those
defined in (6)) when we decide which weight should be increased. Then the
steplength again becomes difficult to determine. In a forthcomming paper we
will study how this can be done.

The present procedure has been successfully used to generate good approx-
imate solutions to large problems. Numerical results may be found in Jornsten
and Leisten (1992).
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