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The paper presents the definitions and calculations related to the 
limit cost characteristic for system consisting of N computers serving 
computational tasks. The tasks arrive at random intervals of time. 
These intervals have the same probability distribution. The calcu­
lation times are also random with the same probability distribution 
for separete computers. 

Markov chain is the mathematical model of the process of allo­
cation of computational tasks to computers. 

The total cost of service per unit time and an estimation of the 
total cost of waiting for the computational tasks per unit are pre­
sented. 

These characteristics can be used to formulate and solve some 
optimization problems. 

1. Preface 

We consider a system cons1stmg of N computers which serve computational 
tasks. A common input stream of computational tasks is divided into N parts 
by some control element (CE). A computational task allocated by CE to n-th 
computer takes place in a FIFO queue for this computer. 

Markov chain (Zi) is the mathematical model of (CE), in which: 
Z; is the random variable being the index of the computer to which i-th com­
putational task was allocated. 

Let us introduce the following notations: 
ti -random variable denoting the instance of arrival of i-th computational task 

at the CE, 
ti+l - ti = Xi - inter arrival time between ( i + 1 )-st and i-th tasks. 
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We asssume that: 
1. {xi} is the squence of indep endent random variables with the same dis1 ri:, 1; 

tion and finite time a. 
Other notations: 

N ( t) -- total number of tasks that arrive at CE until t, 
t!; - random variable corresponding to the instant of arrival of the k- th com­

putational task at the n- th computer, 
t/;+ 1 - t!; =xi; - interarrival t imes between (k + 1)-st and k- th tasks. 

We assume also that : 
2. The Markov chain { Zi} is homogeneous. 

We will now try to develop the expression describing xk. 
We denote by 

ik - the index of the time instant t; at which Markov chain { Z;} returns for 
the k- th time to the state n. 

Then 

ik+l - il; = Yk+l is the number of the time steps between two consecutive in­
stants when the Markov chain is in state n . 

Taking Assumption 2 and the initial condition Z1 = n we obtain that the 
sequence of random variables {y~} is the sequence of independent random vari­
ables with .the same distribution, having all moments (Borovkov, 1972). 

We can present random variable xk in the form 

i~+l 

xi;= L x; (1) 
i=i~+l 

This is the sum of yk+l independent random variables with the same dis­
tribution. Hence , the sequence { xk} is the sequence of independent random 
variables with the same distribution. The mathematical expectation of xk is 

i~+l 

Exk = E L x; = aEyk+l = ahn 
i=i~+l 

and equals 

n a 
Exk =­

Pn 

when the Markov chain is, additionally, aperiodic, and where 

hn = Eyk+l> 

Pn - limit probability for the Markov chain { Z;} of being in the state n. 
Denote by 

(2) 

(3) 

7Jk - random variable for the value of service time of k- th task with n-th com-
puter. · 
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We assume that 
3. { 17k} - the sequence of independent random variables with the same distri­
bution and finite mean time bn, and that we know the following quantities: 
C~ - cost of unit time of computation performed by n-th computer, 
C;); -cost of unit time of waiting for computation at n-th computer. 

2. Cost characteristics of the system 

The quantities introduced give us the possibility of defining the following char­
acteristics: 
- total payment for computation per unit time 

, N Nn(t) 

l. Ro(t, N) - ]" 1 L L en n lm - lm - 0 T/k 
t-+oo t t-+oo t 

n=l k=l 
- total cost of waiting per unit time 

where 

, N Nn(t) 

r hw(t , N) _ r 1" " cnwn 
t~~ t - t~~ t L L w k 

n=l k=l 

Nn(t) - number of tasks having arrived at n- th computer 
wr -waiting time of the k- th task at the n-th computer . 

(4) 

(5) 

By Assumption 1 and the basic theorem of renewal theory we obtain, with 
probability one, 

. Nn(t) 1 l 
hm --=- (6) 

t-+oo t ahn 
or 

. Nn(t) 1 pn 
hm - - =-

t-+ oo t a 

when the Markov chain is aperiodic. 
By Assumption 3 and the strong 

obtain with probability one 

n Nn(t) 

lim ~ " n ~ cnbn 
t-+ oo Nn(t) L 17k o 

k=l 

(7) 

law of large numbers (Doob , 1953) we 

(8) 

Using (8), (10) and the theorefi1 related to multiplication of the limits of 
stochastic processes we can write 

lim Ko(t , N) ~ ..; C~bn 
t-+oo t L ahn 

n= 1 

or , in the case of aperiodic chain, 

!
. Ko(t, N) 1 LN PnC~bn 
lffi = 

t-+oo t a 
n=l 

(9) 

(10) 
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Now we fix our attention on limit estimation for expression (5). The waiting 
time of ( k + 1 )- st task on n-th computer can be expressed in the form 

Wk'+ 1 = max{O , Wk' + TJr- xr} = max{O, Wk' +~k} (11) 

where 

~k = Tik - xr. 
Assuming that W{' = 0, nE N = {1, 2, . . . , N} one can show that 

Wk' = max{O,~!,',~k' + ~k-1> · · · , ~k' + · · · + ~~} (12) 

The sequence { Wk'} is not stationary, so that we can not apply ergodic the­
orem. It follows from Kolmogorov theorem (Borovkov, 1972) that the sequence 
{ f!;}, n E N can be completed to the form 

'{~k'}, -oo < k < oo, nE N . (13) 

Let u~ consider the sequence of random variables {Wk'} where 

Wk = {O,~k',~k' +~k'- 1 ,~k' +~k'- 1 +~k'- 2 , ... } 1:::; k < oo, nE N.(14) 

One can observe that for every elementary event the following condition is 
true 

Wk' :::; TVk', k 2: 1, n E N. (15) 

This property is useful for our estimation . 
As it is shown in (Borovkov , 1972a) the sequences {Wk'}, nE N are station­

ary and if Efk < 0 then Wk' is finite with probability one. Hence we can apply 
ergodic theorem (Loeve, 1955) to the sequence {Wk}, nE N and obtain 

M 

r 1 "' wn 1 wn ( ) 
M~oc M~ k = n' (16) 

k=l 

We emphasize dependence of Wn(N) on N as the number of states of the 
chain { Z;} , which determines xk. 

If we present (5) in the form 

N n n Nn(t) 

lim "'N (t) ~ "' Wk' 
t-->oc ~ t Nn(t) ~ 

n=l k =1 

and use the basic theorem of renewal theory and the theorem on multiplication 
of limits of stochastic processes we can write, considering (5) and (15) 

l
. Kw(t, N) Jm _ _;___...;_ 

t--> 00 t 

< 
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or 

r Kw(t, N) 
t_:~ t < t c : W n(N)Pn 

a 
n=l 

when the chain { Z;} is aperiodic. 

Hence , the respect ive m athematical expectations can be estimated as 

. Kw(t, N) < LN c:EW[' E hm - --'---'-
t --> oo t - ahn 

n=l 

or 
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(17) 

(18) 

We know from Borovkov (1972a) that the distribution of random variables 
W£', n E N with k --+ oo tend to the distributions of random variables W[', 
n E N respectively. 

Let us denote by wn ( N), n E N random variables which satisfy the following 
conditions 

P{Wn(N) < x} = lim P{W£' < x} nE N 
k --> oo 

(19) 

Taking into account the above condition and remarks we can compute EW[' 
as 

EW[' = EWn(N) (20) 

where it is possible to compute EWn(N) as the limit characteristic of the queue­
ing system. 

This characteristic can be expressed sometimes in analytical form . Thus, in 
particular , for homogeneous Poisson process N ( t) and for deterministic service 
time with b = 1, EWn(N) equals 

where Sk , k = 1, . .. , N- 1, 50 = 0 are the roots of the equation 
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3. Remarks and Conclusions 

The results obtained depend strongly on the kind of Markov chain { Zi} consid­
ered because it determines xk and therefore also its Exk. Thus , it is possible 
to investigate the quality of allocation of computational tasks to computers de­
pending up on the form of Markov chain. The estimate of profit per unit time, 
Le. 

(21) 

in which en - performance cost of n-th computer per unit time, can be taken 
as objective function. 

In case when computers are homogeneous i.e. 

C~=Co, bn=b, C~=Cw, nEN 

we obtain 

Let the matrix of transition probabilities be 

1 0 
0 1 

0 0 

(22) 

(23) 

If we assume that the chain {Zi} is given by (23), then we can formulate 
the optimization problem for determination of the number of computers in the 
system i .e: 

(24) 

subject to 

b-N·a<O (25) 

N 2: 0, N - integer (26) 

Objective function corresponding in this case profit per unit time. Con­
straint (25) follows from condition E~n < 0. 
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