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The paper presents the definitions and calculations related to the
limit cost characteristic for system consisting of N computers serving
computational tasks. The tasks arrive at random intervals of time.
These intervals have the same probability distribution. The calcu-
lation times are also random with the same probability distribution
for separete computers.

Markov chain is the mathematical model of the process of allo-
cation of computational tasks to computers.

The total cost of service per unit time and an estimation of the
total cost of waiting for the computational tasks per unit are pre-
sented.

These characteristics can be used to formulate and solve some
optimization problems.

1. Preface

We consider a system consisting of N computers which serve computational
tasks. A common input stream of computational tasks is divided into N parts
by some control element (CE). A computational task allocated by CE to n-th
computer takes place in a FIFO queue for this computer.

Markov chain (Z;) is the mathematical model of (CE), in which:
Z; is the random variable being the index of the computer to which i~th com-
putational task was allocated.

Let us introduce the following notations:
t; —random variable denoting the instance of arrival of i-th computational task

at the CE,

tiy1 —t; = z; — interarrival time between (i 4+ 1)-st and i-th tasks.
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We asssume that:
1. {z;} is the squence of independent random variables with the same disi i/
tion and finite time a.
Other notations:
N(t) - total number of tasks that arrive at CE until ¢,
t7 — random variable corresponding to the instant of arrival of the k-th com-
putational task at the n—th computer,
thy1 — tf =z} — interarrival times between (k + 1)-st and k-th tasks.
We assume also that:
2. The Markov chain {Z;} is homogeneous.

We will now try to develop the expression describing 7.

We denote by
i? — the index of the time instant {; at which Markov chain {Z;} returns for

the k—th time to the state n.

Then

iy — if = Ypyq is the number of the time steps between two consecutive in-
stants when the Markov chain is in state n.

Taking Assumption 2 and the initial condition Z; = n we obtain that the
sequence of random variables {y*} is the sequence of independent random vari-
ables with the same distribution, having all moments (Borovkov, 1972).

We can present-random variable z in the form

it
= Y & (1)

g
i=i7+1

This is the sum of yf,; independent random variables with the same dis-
tribution. Hence, the sequence {z}} is the sequence of independent random
variables with the same distribution. The mathematical expectation of z} is

§:+1
Ez} = F Z z; = aBypy, = ah” (2)
i=it41
and equals
a
Ez} = — 3

when the Markov chain is, additionally, aperiodic, and where
" = Eyf,y,

pn — limit probability for the Markov chain {Z;} of being in the state n.
Denote by

np — random variable for the value of service time of k—th task with n—th com-

puter.
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We assume that
3. {nk} — the sequence of independent random variables with the same distri-
bution and finite mean time b", and that we know the following quantities:
C? — cost of unit time of computation performed by n—th computer,
C? — cost of unit time of waiting for computation at n-th computer.

2. Cost characteristics of the system
The quantities introduced give us the possibility of defining the following char-

acteristics:
— total payment for computation per unit time

N N™(t)

) [\o(t N)

i ) iy L5557 o 0
e e

- total cost of waiting per unit time
= N N™ (t)

% -hm (tl N

;ll.nolo t - zl_lmo t Z ()
n=1 k=1

where
N™(t) — number of tasks having arrived at n-th computer
W[ — waiting time of the k—th task at the n-th computer.
By Assumption 1 and the basic theorem of renewal theory we obtain, with
probability one,

. N"(#) 1 1
t]f-rgo t  ahm (6)
or
‘ J.‘\;rn(t) 1 pn
L (@)

when the Markov chain is aperiodic.
By Assumption 3 and the strong law of large numbers (Doob, 1953) we
obtain with probability one
cn N™(t)

fl_‘fil, N" t) Z e = pnbn (8)

Using (8), (10) anrl the theorem related to multiplication of the limits of
stochastic processes we can write

" N
. Ko(t,N) 1 <= Cob"
lim —T'—'—" = Z -(__;,-h,_n— (9)

i—o0
=1

or, in the case of aperiodic chain,

Ky(t, N LB
lim Vo )1233 0

; (10)

t— 00 i
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Now we fix our attention on limit estimation for expression (5). The waiting
time of (k + 1)-st task on n-th computer can be expressed in the form

Wiy, = max{0, Wi + nf — 2} } = max{0, W' +&; } (11)
where
& = g — k.
Assuming that W' =0, n € N = {1,2,..., N} one can show that
Wi = max{0,&0,&¢ + &y, .-, &k + -+ &5} (12)

The sequence {W]'} is not stationary, so that we can not apply ergodic the-
orem. It follows from Kolmogorov theorem (Borovkov, 1972) that the sequence
{€}, n € N can be completed to the form

€8}, —oo<k<oo, neN. (13)
Let us consider the sequence of random variables {IWW]'} where
W;?:{035;116}:“+£E_1'EE+EE_1+E?_21'} 1Sk<00! HGN(14)

One can observe that for every elementary event the following condition is
true

WP <WP, k>1, n€eN. (15)

This property is useful for our estimation.

As it is shown in (Borovkov, 1972a) the sequences {W['}, n € N are station-
ary and if E£} < 0 then W[ is finite with probability one. Hence we can apply
ergodic theorem (Loeve, 1955) to the sequence {W'}, n € N and obtain

1

M
= in L gn n Tn
n}mﬂﬁgﬂw =Wm"(n), EW"(N)=EW?, nehN. (16)

We emphasize dependence of W™ (N) on N as the number of states of the
chain {Z;}, which determines z}.
If we present (5) in the form

N N™(t)

; Nt (t) C) ik
z]_'."f?o; t N7t kz Wi

=1

and use the basic theorem of renewal theory and the theorem on multiplication
of limits of stochastic processes we can write, considering (5) and (15)

. N™(1)
_ Ku(t,N) . AN Cn N
pL— - = tl_‘.“&nz_:l i N(D) g Wi =
< sim 3N CE SV 1 S OO ()
= tmwiet f NPQ) R T LT ghn
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or

hw(tN < ZN: n

n=1

lim

t—oa

when the chain {Z;} is aperiodic.
Hence, the respective mathematical expectations can be estimated as

;- N =
Ku(t,N) crEW]
= £,

T L an (7)
ar
E lim M < EN: CEE—W‘ (18)
{—o0 ¢ = a

We know from Borovkov (1972a) that the distribution of random variables
W, n € N with k¥ — oo tend to the distributions of random variables W7,
n € N respectively.

Let us denote by W™(N), n € N random variables which satisfy the following
conditions

PAW™(N) < 2} = lim P{W} <z} ne€N (19)

Taking into account the above condition and remarks we can compute EW}
as

EW} = EW™(N) (20)

where it is possible to compute EW™(N) as the limit characteristic of the queue-
ing systern.

This characteristic can be expressed sometimes in analytical form. Thus, in

particular, for homogeneous Poisson process N(t) and for deterministic service
time with b = 1, EW™(N) equals

la —N24 N

N-1 4
EW"™(N) —_
( kZ:: Sk a(N —a)

where S;, k=1,...,N—1, Sy = 0 are the roots of t,l.le equation

aNe'S—-(a-S)“:{)
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3. Remarks and Conclusions

The results obtained depend strongly on the kind of Markov chain {Z;} consid-
ered because it determines 2} and therefore also its Fx}. Thus, it is possible
to investigate the quality of allocation of computational tasks to computers de-
pending up on the form of Markov chain. The estimate of profit per unit time,
ie.

N .
Cgbn - CaEWY .,
3 ( s C ) (1)

=1

in which C™ — performance cost of n-th computer per unit time, can be taken
as objective function.
In case when computers are homogeneous i.e.

Cr=Co, b"=b, C'=Cu, neEN

we obtain

Cibom 1| Cuoa EWP
& Ll e (22)

Let the matrix of transition probabilities be

Lo =/

0 1
p_|00 .o 0 (23)
1 00 ... 0
If we assume that the chain {Z;} is given by (23), then we can formulate

the optimization problem for determination of the number of computers in the
system 1.e:

iR (@ - Sul WYY NC) (24)
a a
subject to
b—N-a<0 (25)
N >0, N - integer (26)

Objective function corresponding in this case profit per unit time. Con-
straint (25) follows from condition E€" < 0.
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