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A mathematical model of exploitation of communication buffer 
is described. Periodic buffer exhaustion, very useful for rhytmical 
work of transmission system, is defined . The problem of choosing an 
optimal value of exhaustion strategy parameter is formulated. This 
value minimizes expected unit limit cost of transmission aided by 
communication buffer. A method to solve the p'roblem is proposed. 

1. Introduction 

In this paper we assume that a random stream of data comes to a comminication 
buffer and fills it. Many different strategies can be offered for buffer exhaustion. 
One of them is periodic strategy. We consider the problem of choosing an optimal 
value of a parameter connected with buffer exhaustion strategy. 

Buffers which are used in computer systems are of-hardware ot software 
nature. They are mechanisms supporting data transmission process between 
different computer devices. Buffers make data transmission easier, and so their 
role is very important. Proper use of buffers make computer system exploitation 
more effective. So fixing parameter values of buffer usage is essential for system 
functioning . The most significant characteristics of buffer usage are: buffer ca
pacity and strategy of its exhaustion. It is very often so that buffer capacity 
is fixed . The choice of exhaustion parameter values, however, gives designer 
possibility of data flow control. 

In many papers the problem of rhytmical strategy of buffer exhaustion is 
considered . In particular, in computer networks such kind of buffer usage is 
smoothing the arhythmical signal sequences Seidler (1979). So, selection of the 
best period of time between buffer exhaustiG>ns is an important problem. 

The same problem is considered in case when one processor serves many 
buffers Arthurs, Stuck (1979), Eisenberg (1972). Processor visits every buffer at 
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one time interval in a cycle. The best moments of processor visits in the cycle 
could be selected by computer system designer. 

In database systems a special work space called differential file is organized 
in external memory. During database actualization differential file is used as 
a file for collecting inflowing records in order to deliver them to database files 
from time to time Kleirock, Levy (1988), Lehman , Severance (1976), Sever
ance (1982). It is often done for higher reliability of database. In this particular 
case differential file can be thought as a buffer which is exhausted periodically. 

Many authors consider the problem of choosing length of waiting time of 
server during its work Kella (1990), Servi (1986). Others ~re interested in such 
system in which waiting time for tasks service is bounded Swensen (1986). Both 
of the cases above suggest the necessity of non- continuous, and therefore peri
odic, work of queue (buffer) system. 

In many other cases there is no need to wait for buffer being full of data or to 
make empty too often. Random way of buffer exhausting is not the best at all. 
Hence, the length T of intervals between successive buffer exhaustions should 
be fixed. It can happen, however, that a buffer is full of data although timeT 
has not elapsed yet. So, the model of periodic strategy of buffer exhaustion can 
be desribed in terms of different situations : 

a) buffer is exhausted because constant time T has elapsed, 
b) buffer must be exhausted after it has been filled with inflowing dat~, 

t):wugh the constant timeT has not elapsed. 
After each of the situations above the same strategy a)- b) is continued from the 
beginning . 

Buffer exhaustion is connected with many detailed costs. Most often they 
have the following sense: 

duration time of different elementary operations , 
- number of elementary operations, 
- delay of some events, etc. 

In this paper we assume that only the time of buffer filling is interesting . The 
time of buffer exhaustion is omitted and represented only by special detailed 
costs. Such an assumption makes our results easy to apply not only in computer 
systems. 

Our goal is to choose such a time interval T which minimi~es the expected 
unit limit and total costs of the buffer exhaustion process. 

2. Mathematical model 

We assume that random stream ofrecords is comming to the buffer. This stream 
creates the so called renewal process. It means that intervals of time between 
subsequent records are independent random variables which have identical prob
ability distribution with limited expected value . This value is equal a. Buffer 
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capacity (size) is determined by number of data records which can be contained 
in the buffer. This capacity is fixed and it is equal k. 
Assume 
c1 - cost of one record transmission from the environment to the buffer, 
c2 (l) - unit cost of !- sized buffer service, 
c3 (l, n) - cost of handling of n records and of transmission from /- sized buffer 

to its environment when case (a) has occurred, 
~(l, n) - the same cost as above when case (b) has occurred , 
c4 - unit cost of record protection against loss when it arrives during buffer 

exhaustion. 
Functions c3 (l, n) and~(/, n) are practically concave and monotonicaly increas
ing for argument n. 

We assume that the time of buffer exhaustion can be ommited. Simply, what 
we consider is not astronomical time but time of buffer filling only. It must be 
added that the cost of record protect ion against loss during buffer exhaustion 
is considered in this model. Let N(t) be the random process which for fixed t 
is a random variable representing the number of records inftowing to the buffer 
until time t. 

We assume that 
[{ ( t , T) is the cost of record handling and transmission until time t 

while using buffer exhausted periodically, 
K(T) is expected , limit and unit cost of record handling and 

transmission. 
Then 

K(T) = E { lim K(t , T)} 
t-+ oo i 

and 

[+] 
K(t, T) = b K,.(T) + R(t, T), 

r=l 

where 
K,. (T) is the cost of record handling and transmission borne during 

F:(t, T) 
[b] 

the r - th period of buffer exploitation [(r- l)T, rT], 
is the same cost of the interval of time ( [,;,] T, t), 
is the entire part of number b. 

It is easy to show that 

lim I?.(t , T) = 0 
t -+ 00 t 

with probability equal to 1. So we have 

K(T) = E { lim I:i!i K,.(T)} . 
t-+oo t · 

(1) 

(2) 

(3) 

(4) 
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We notice that for every elementary event the system offollowing inequalities 
is true 

"'n K (T) Y(t T) "'n+I Y (T) 0r-I r < \ ' < 0r=1 \r 

n~T t - (n + l)(n~ 1 )T' 
(5) 

where n = [ ;f] for t 2: T. Inequalities (5) give us the following result 

]. L~-1 Kr(T) < ]' K(t, T) < l' L~;; Kr(T) 
1m - llTI 1m ( ) n T , 

n->oo n~T - n->oo t - n->oo n + 1 (n+l) 
(6) 

because t --+ oo follows from n --+ oo . 
Variables Kr(T), r = 1, 2, 3 ... , are dependent random variables because 

time to the first inflowing record in each period can be the remaining time 
from the moment of arrival of the previous record. In practice we can assume 
that correlation of random variables K; (T) and Ki+j (T) converges to zero with 
j --+ oo. Additionally, these random variables have limited variance . 

For such assumptions the Berstein weak law of large numbers takes the 
following form 

p _ lim ( L~= 1 Kr(T) _ L~- 1 E{I<r(T)}) = O, 
n--+ oo n n 

(7) 

wh ere P- lim means convergence in probability. 
It is known from the literature that if the following limit exists 

TJ(T) = lim L~=1 E{I<r(T)} 
n--+oo n 

(8) 

then in equalities given below are true 

"'n F (T) Y(t T) "'n+l K (T) 
p - lim 0r=l lr < lim \ , < p- lim 0r=l r . (9) 

n->oo n !':.±l T - n->oo l - n->oo (n + 1) ....!!±.LT 
n (n+l) 

The following lemma is proved in Knopp (1956). 

LEMMA If there exists a sequence of numbers {xn} for which 

lim Xn = Xn 
n-> oo 

L n 
x· d I i=l ' an xn = 

11 
, then lim X~ = Xn . 

n->oo 

So , using this result, we see that 

TJ(T) l
. L~-1 E{Kr(T)} 

1
. L~.::-; E{Kr(T)} 

lm = lm 
n->oo n n-+00 n + 1 

lim E{Kr(T)}. (10) 
r-+oo 
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This implies more important equalities 

K(T) = E { lim K(t, T)} = TJ(T) = !__ lim E {Kr(T)} 
t--+ co l T T r--+ co 

(11) 

We can show that: 

E {I<r(T)} = 

= E {c1Nr(t)+c2(k)}+P {Nr(T) :S: k}E{<!s(k, Nr(T))/Nr(T) :S:k}+ 

+P {Nr(T) > k} E { C3(k , k) + cs1T[Nr(t)- k]I{Nr(t)>k}dt} , (12) 

where I{A} is the so called indicator of the event A, 

{ 
1 if wE A 

I{A}(w)= 0 if wtf_A 

Nr(t) is the random process representing the number of records 
inc<)ming to the buffer during r - th period till time t [( r -
1) · T , ( r - 1) · T + t]. 

It was shown in Nowicki (1992) , that 

K(T) = !__ lim E{Kr(T)} = !__ [cJ!(T) + c2(k)+ 
Tr--+ co T 

+ (1- Fsk (T)] E { ~(k, N (T))/ N(T) :S: k} + 

+Fsk(T)· (c3(k,k)+cs1T[ih(t)-k]Fsk+,(t)dt)], (13) 

where N (t) - is the sam e renewal process as N(T) in which the time elapsing 
until the first record flows in is the so called limit rest time to 
renewal, 

fi(t) = E{N(t)} , 
flk(t) = E{Nk(t)}, 
.Nk(t) _ { .N(t) if fj_ (t):::: k , 

- k if N ( t) < k. 
sk - is the time in which k records arrive, calculated from the be-

ginning of each period of buffer exploitation, 
Fsk (t) - distribution function of the random variable Sk. 

Using J ensen inequality Klimov (1986) form concave functions we have 

E { c~(k , N(T))/ N(T) ::; k} < <!s (k, E { N(T)/ N(T) ::; k}) 
~ (k, iJk(T)), (14) 

where fik(t) = E{Nk(t)}, 
.Nk(t) _ { N(t) if fj_(t)::; k, 

- k if N(t) > k. 
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Finally; from (13) and (14) we have the upper approximation of function 
(13) in the following form 

R(T) = ~ (cJI(T) + c2(k) + [1- Fsk(T)]· ~(k, f!k(T))+ 

+ Fsk (T) · [c3(k, k) + csfoT [Hk(t)- k]Fsk+' (t)dt]) , (15) 

3. Optimization problem 

We want to find value T* for which 

R(T*) = min R(T) 
TER• 

(16) 

Because of fact that functions: fi, fi k, f!k, c3 , ~ are mono tonically increas
ing, problem (16) can be solved using one of the available numerical methods. 
In practice , the variable T is always limited from above. 

4. Concluding remarks 

The problem considered in the paper was complicated in view of necessity of 
determining the upper approximation R(T) of the~ criterion function K(T). 
For typical distributions of random process N(t) th e function R(T) has only 
one solution. It is easy to find this solution using numerical methods. This is 
the main reason for not giving more information on the optimization problem. 
Construction of the formula of criterion function for problem (16) was the main 
idea of the present paper. 
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